[1] | Ren, Y., Liu, Z., Jin, G., et al. (2021). Electric-field-induced gradient ionogels for highly sensitive, broad-range-response, and freeze/heat-resistant ionic fingers. Adv. Mater. 33: 2008486. DOI: 10.1002/adma.202008486. |
[2] | Ye, Y., Yu, L., Lizundia, E., et al. (2023). Cellulose-based ionic conductor: an emerging material toward sustainable devices. Chem. Rev. 123: 9204−9264. DOI: 10.1021/acs.chemrev.2c00618. |
[3] | Sun, Z., Liu, R., Su, T., et al. (2023). Emergence of layered nanoscale mesh networks through intrinsic molecular confinement self-assembly. Nat. Nanotechnol. 18: 273−280. DOI: 10.1038/s41565-022-01293-z. |
[4] | Zhu, Y., Guo, Y., Cao, K., et al. (2023). A general strategy for synthesizing biomacromolecular ionogel membranes via solvent-induced self-assembly. Nat. Synth. 2: 864−872. DOI: 10.1038/s44160-023-00315-5. |
[5] | Zhao, D., Zhu, Y., Cheng, W., et al. (2020). A dynamic gel with reversible and tunable topological networks and performances. Matter 2: 390−403. DOI: 10.1016/j.matt.2019.10.020. |
Xu C. and Chen C. (2023). "Milk skin"-inspired ionogel membranes: From 3D colloids to repeatable 2D membranes through solvent-induced self-assembly. The Innovation Materials 1(3), 100033. https://doi.org/10.59717/j.xinn-mater.2023.100033 |
The fabrication process of ‘Milk Skin’-inspired IGM via solvent-induced self-assembly