Dialcohol cellulose nanorods are prepared through sequential oxidation and reduction.
Primary hydroxyl groups bring about more out-of-plane hydrogen bonds.
Concentrated dialcohol cellulose nanorods can form an all-cellulose hydrogel.
The all-cellulose hydrogel shows high adhesion to various substrates.
[1] | Li, A., Jia, Y., Sun, S., et al. (2018) Mineral-enhanced polyacrylic acid hydrogel as an oyster-inspired organic–inorganic hybrid adhesive. ACS Appl. Mater. Interfaces. 10 : 10471-10479. DOI: 10.1021/acsami.8b01082. |
[2] | Pang, H., Yan, Q., Ma, C., et al. (2021) Polyphenol-metal ion redox-induced gelation system for constructing plant protein adhesives with excellent fluidity and cold-pressing adhesion. ACS Appl. Mater. Interfaces. 13 : 59527-59537. DOI: 10.1021/acsami.1c18401. |
[3] | Choi, Y., Kang, K., Son, D., et al. (2022) Molecular rationale for the design of instantaneous, strain-tolerant polymeric adhesive in a stretchable underwater human–machine interface. ACS Nano 16 : 1368-1380. DOI: 10.1021/acsnano.1c09393. |
[4] | Pei, X., Wang, J., Cong, Y., et al. (2021) Recent progress in polymer hydrogel bioadhesives. J. Polym. Sci. 59 : 1312-1337. DOI: 10.1002/pol.20210249. |
[5] | Zhang, W., Hu, J., Yang, H., et al. (2021). Fatigue-resistant adhesion ii: swell tolerance. extrem. Mech. Lett. 43: 101182. DOI: 10.1016/j.eml.2021.101182. |
[6] | Zhang, W., Gao, Y., Yang, H., et al. (2020). Fatigue-resistant adhesion I. Long-chain polymers as elastic dissipaters. Extrem. Mech. Lett. 39: 100813. DOI: 10.1016/j.eml.2020.100813. |
[7] | Sun, J., Tan, H., Liu, H., et al. (2020). A reduced polydopamine nanoparticle-coupled sprayable PEG hydrogel adhesive with anti-infection activity for rapid wound sealing. Biomater. Sci. 8: 6946−6956. DOI: 10.1039/D0BM01213K. |
[8] | Oelker, A.M., Berlin, J.A., Wathier, M., and Grinstaff, M.W. (2011). Synthesis and characterization of dendron cross-linked peg hydrogels as corneal adhesives. Biomacromolecules 12: 1658−1665. DOI: 10.1021/bm200039s. |
[9] | Wang, J., Zhang, N., Tan, Y., et al. (2022). Sweat-Resistant Silk Fibroin-Based Double Network Hydrogel Adhesives. ACS Appl. Mater. Interfaces. 14: 21945−21953. DOI: 10.1021/acsami.2c02534. |
[10] | Yan, Y., Xu, S., Liu, H., et al. (2020). A multi-functional reversible hydrogel adhesive. Colloids Surfaces A Physicochem. Eng. Asp. 593: 124622. DOI: 10.1016/j.colsurfa.2020.124622. |
[11] | Yuk, H., Varela, C.E., Nabzdyk, C.S., et al. (2019). Dry double-sided tape for adhesion of wet tissues and devices. Nature 575: 169−174. DOI: 10.1038/s41586-019-1710-5. |
[12] | Joshi, S., Mahadevan, G., Verma, S., and Valiyaveettil, S. (2020). Bioinspired adenine–dopamine immobilized polymer hydrogel adhesives for tissue engineering. Chem. Commun. 56: 11303−11306. DOI: 10.1039/D0CC04909C. |
[13] | Zhang, J.N., Zhu, H., Liu, T., et al. (2020). Strong adhesion of hydrogels by polyelectrolyte adhesives. Polymer (Guildf). 206: 122845. DOI: 10.1016/j.polymer.2020.122845. |
[14] | Kim, K., Shin, M., Koh, M., et al. (2015). TAPE : a medical adhesive inspired by a ubiquitous compound in plants. Adv. Func. Mater. 25: 2402−2410. DOI: 10.1002/adfm.201500034. |
[15] | Chen, K., Lin, Q., Wang, L., et al. (2021). An all-in-one tannic acid-containing hydrogel adhesive with high toughness , notch insensitivity , self-healability , tailorable topography , and strong , instant , and on-demand underwater adhesion. ACS Appl. Mater. Interfaces. 13: 9748−9761. DOI: 10.1021/acsami.1c00637. |
[16] | Yang, J., Bai, R., and Suo, Z. (2018). Topological adhesion of wet materials. Adv. Mater. 30: 1800671. DOI: 10.1002/adma.201800671. |
[17] | Hong, S., Pirovich, D., Kilcoyne, A., et al. (2016). Supramolecular metallo-bioadhesive for minimally invasive use. Adv. Mater. 28: 8675−8680. DOI: 10.1002/adma.201602606. |
[18] | Yuan, J., Du, G., Yang, H., et al. (2022). Functionalization of cellulose with amine group and cross-linked with branched epoxy to construct high-performance wood adhesive. Int. J. Biol. Macromol. 222: 2719−2728. DOI: 10.1016/j.ijbiomac.2022.10.053. |
[19] | Zhao, D., Zhu, Y., Cheng, W., Xu, G., Wang, Q., Liu, S., Li, J., Chen, C., Yu, H., and Hu, L. (2020). A dynamic gel with reversible and tunable topological networks and performances. Matter 2: 390−403. DOI: 10.1016/j.matt.2019.10.020. |
[20] | Liu, S., Du, G., Yang, H., et al. (2021). Developing high-performance cellulose-based wood adhesive with a cross-linked network. ACS Sustain. Chem. Eng. 9: 16849−16861. DOI: 10.1021/acssuschemeng.1c07012. |
[21] | Tardy, B.L., Richardson, J.J., Greca, L.G., et al. (2020). Exploiting supramolecular interactions from polymeric colloids for strong anisotropic adhesion between solid surfaces. Adv. Mater. 32: 1906886. DOI: 10.1002/adma.201906886. |
[22] | Liu, J., Li, J., Yu, F., et al. (2020). In situ forming hydrogel of natural polysaccharides through Schiff base reaction for soft tissue adhesive and hemostasis. Int. J. Biol. Macromol. 147: 653−666. DOI: 10.1016/j.ijbiomac.2020.01.005. |
[23] | Zeng, Z., Mo, X., He, C., et al. (2016). An in situ forming tissue adhesive based on poly(ethylene glycol)-dimethacrylate and thiolated chitosan through the Michael reaction. J. Mater. Chem. B 4: 5585−5592. DOI: 10.1039/C6TB01475E. |
[24] | Wang, J., Wang, L., Wu, C., et al. (2020). Antibacterial zwitterionic polyelectrolyte hydrogel adhesives with adhesion strength mediated by electrostatic mismatch. ACS Appl. Mater. Interfaces. 12: 46816−46826. DOI: 10.1021/acsami.0c14959. |
[25] | Fan, H., Wang, J., and Jin, Z. (2018). Tough, swelling-resistant, self-healing, and adhesive dual-cross-linked hydrogels based on polymer-tannic acid multiple hydrogen bonds. Macromolecules 51: 1696−1705. DOI: 10.1021/acs.macromol.7b02653. |
[26] | Wu, J., Zhang, Z., Wu, Z., et al. (2022). Strong and ultra‐tough supramolecular hydrogel enabled by strain‐induced microphase separation. Adv. Funct. Mater. 33: 2210395. DOI: 10.1002/adfm.202210395. |
[27] | Liu, H., Hu, X., Li, W., et al. (2023). A highly-stretchable and adhesive hydrogel for noninvasive joint wound closure driven by hydrogen bonds. Chem. Eng. J. 452: 139368. DOI: 10.1016/j.cej.2022.139368. |
[28] | Zhao, X., Liang, Y., Huang, Y., et al. (2020). Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv. Funct. Mater. 30: 1910748. DOI: 10.1002/adfm.201910748. |
[29] | Chen, J., Wang, D., Wang, L.H., et al. (2020). An adhesive hydrogel with “load-sharing” effect as tissue bandages for drug and cell delivery. Adv. Mater. 32: 2001628. DOI: 10.1002/adma.202001628. |
[30] | Zhao, D., Pang, B., Zhu, Y., et al. (2022). A stiffness-switchable, biomimetic smart material enabled by supramolecular reconfiguration. Adv. Mater. 34: 2107857. DOI: 10.1002/adma.202107857. |
[31] | Zhu, Y., Guo, Y., Cao, K., et al. (2023). A general strategy for synthesizing biomacromolecular ionogel membranes via solvent-induced self-assembly. Nat. Synth. 2: 864−872. DOI: 10.1038/s44160-023-00315-5. |
[32] | Ng, H.M., Sin, L.T., Bee, S.T., et al. (2017). Review of nanocellulose polymer composite characteristics and challenges. Polym. - Plast. Technol. Eng. 56: 687−731. DOI: 10.1080/03602559.2016.1233277. |
[33] | Thomas, B., Raj, M.C., Athira, B.K., et al. (2018). Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem. Rev. 118: 11575−11625. DOI: 10.1021/acs.chemrev.7b00627. |
[34] | Kresse G, Furthmüller J. (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6: 15-50. DOI: 10.1016/0927-0256(96)00008-0. |
[35] | Kresse, G. and Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54: 11169. DOI: 10.1103/PhysRevB.54.11169. |
[36] | Blöchl, P. E. (1994). Projector augmented-wave method. Phys. Rev. B 50: 17953. DOI: 10.1103/PhysRevB.50.17953. |
[37] | Perdew, J. P., Burke, K., and Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. lett. 77: 3865. DOI: 10.1103/PhysRevLett.77.3865. |
[38] | Monkhorst, H. J. and Pack, J. D. (1976). Special points for Brillouin-zone integrations. Phys. Rev. B 13: 5188. DOI: 10.1103/PhysRevB.13.5188. DOI: 10.1103/PhysRevB.13.5188. |
[39] | Allouche, A. R. (2011). Gabedit—A graphical user interface for computational chemistry softwares. J. Comput. Chem. 32: 174-182. DOI: 10.1002/jcc.21600. DOI: 10.1002/jcc.21600. |
[40] | Merindol, R., Diabang, S., Mujica, R., et al. (2020). Assembly of anisotropic nanocellulose films stronger than the original tree. ACS Nano 14: 16525−16534. DOI: 10.1021/acsnano.0c01372. |
[41] | Li, K., Skolrood, L.N., Aytug, T., et al. (2019). Strong and tough cellulose nanofibrils composite films: mechanism of synergetic effect of hydrogen bonds and ionic interactions. ACS Sustain. Chem. Eng. 7: 14341−14346. DOI: 10.1021/acssuschemeng.9b03442. |
[42] | Jiang, G., Wang, G., Zhu, Y., et al. (2022). A scalable bacterial cellulose ionogel for multisensory electronic skin. Research 2022: 9814767. DOI: 10.34133/2022/9814767. |
[43] | Huang, J., Yu, L., Wang, S., et al. (2023). An ultrathin nanocellulosic ion redistributor for long-life zinc anode. Innov. Mater. 1: 100029. DOI: 10.59717/j.xinn-mater.2023.100029. |
[44] | Sun, X., Zhu, Y., Yu, Z., et al. (2023). Dialcohol cellulose nanocrystals enhanced polymerizable deep eutectic solvent-based self-healing ion conductors with ultra-stretchability and sensitivity. Adv. Sens. Res. 2: 2200045. DOI: 10.1002/adsr.202200045. |
[45] | Kristiansen, K.A., Potthast, A., Christensen, B.E. (2010) Periodate oxidation of polysaccharides for modification of chemical and physical properties. Carbohydr. Res. 345 : 1264. DOI: 10.1016/j.carres.2010.02.011. |
[46] | Casu, B., Naggi, A., Torri, G., et al. (1985). Stereoregular acyclic polyalcohols and polyacetates from cellulose and amylose. Macromolecules 18: 2762−2767. DOI: 10.1021/ma00154a068. |
[47] | Painter, T.J. (1988). Control of depolymerisation during the preparation of reduced dialdehyde cellulose. Carbohydr. Res. 179: 259−268. DOI: 10.1016/0008-6215(88)84123-5. |
[48] | Liu, C., Xie, X., Kong, X., et al. (2022) A removable, antibacterial and strong adhesive based on hyperbranched catechol polymers. Mater. Lett. 316 : 132019. DOI: 10.1016/j.matlet.2022.132019. |
[49] | Borrero-López, A.M., Guzmán, D.B., González-Delgado, J.A., et al. (2021) Toward UV-triggered curing of solvent-free polyurethane adhesives based on castor oil. ACS Sustain. Chem. Eng, 9 : 11032-11040. DOI: 10.1021/acssuschemeng.1c02461. |
[50] | Liu, J., Scherman, O.A. (2018) Cucurbit [n] uril supramolecular hydrogel networks as tough and healable adhesives. Adv. Funct. Mater. 28 : 1800848. DOI: 10.1002/adfm.201800848. |
[51] | Xu, C., Xu, Y., Chen, M., et al. (2020) Soy protein adhesive with bio-based epoxidized daidzein for high strength and mildew resistance. Chem. Eng. J. 390 : 124622. DOI: 10.1016/j.cej.2020.124622. |
[52] | Pan, F., Ye, S., Wang, R., et al. (2020) Hydrogel networks as underwater contact adhesives for different surfaces. Mater. Horizons 7 : 2063-2070. DOI: 10.1039/D0MH00176G. |
[53] | Islam, M.N., Faruk, M.O., Rana, M.N., et al. (2021) Preparation and evaluation of rice bran‐modified urea formaldehyde as environmental friendly wood adhesive. Glob. Challenges 5 : 2000044. DOI: 10.1002/gch2.202000044. |
[54] | He, X., Liu, R., Liu, H., et al. (2021) Facile preparation of tunicate-inspired chitosan hydrogel adhesive with self-healing and antibacterial properties. Polymers 13 : 4322. DOI: 10.3390/polym13244322. |
[55] | Li, Z., Du, G., Yang, H., et al. (2022) Construction of a cellulose-based high-performance adhesive with a crosslinking structure bridged by Schiff base and ureido groups. Int. J. Biol. Macromol. 223 : 971. DOI: 10.1016/j.ijbiomac.2022.11.069. |
[56] | Huang, X., Chen, Y., Li, J., et al. (2022) Improving the coating and prepressing properties of soybean meal adhesive by constructing a biomimetic topological structure. Mater. Des. 223 : 111163. DOI: 10.1016/j.matdes.2022.111163. |
[57] | Zhang, X., Xu, C., Liu, Z., et al. (2022) A water-resistant and mildewproof soy protein adhesive enhanced by epoxidized xylitol. Ind. Crops Prod. 180 : 114794. DOI: 10.1016/j.indcrop.2022.114794. |
[58] | Huang, C., Peng, Z., Li, J., et al. (2022) Unlocking the role of lignin for preparing the lignin-based wood adhesive: A review. Ind. Crops Prod. 187 : 115388. DOI: 10.1016/j.indcrop.2022.115388. |
[59] | Xu, Y., Zhang, X., Liu, Z., et al. (2022) Constructing SiO2 nanohybrid to develop a strong soy protein adhesive with excellent flame-retardant and coating ability. Chem. Eng. J. 446 : 137065. DOI: 10.1016/j.cej.2022.137065. |
[60] | Zhang, H., Xiao, Y., Chen, P., et al. (2022) Robust natural polyphenolic adhesives against various harsh environments. Biomacromolecules 23 : 3493-3504. DOI: 10.1021/acs.biomac.2c00704. |
[61] | Chai, C., Guo, Y., Huang, Z., et al. (2020) Antiswelling and durable adhesion biodegradable hydrogels for tissue repairs and strain sensors. Langmuir 36 : 10448. DOI: 10.1021/acs.langmuir.0c01605. |
Sun X., Pang Z., Zhu Y., et al., (2023). All-cellulose hydrogel-based adhesive. The Innovation Materials 1(3), 100040. https://doi.org/10.59717/j.xinn-mater.2023.100040 |
Schematic illustration of DCNRs hydrogel-based adhesive
Characterizations of DCNRs
Injectability and rheological property of DCNRs hydrogels
Adhesion of wood