Multi-anionic high-entropy carbonitrides with superconducting properties were designed and synthesized.
Ti0.2Nb0.2Ta0.2Mo0.2W0.2C1-xNx possess type-II Dirac points.
Ti0.2Nb0.2Ta0.2Mo0.2W0.2C1-xNx are candidates for topological superconductors.
[1] | George, E. P., Raabe, D., and Ritchie, R. O. (2019). High-entropy alloys. Nat. Rev. Mater. 4, 515−534. |
[2] | Miracle, D. B., and Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448−511. |
[3] | Koželj, P., Vrtnik, S., Jelen, A., et al. (2014). Discovery of a superconducting high-Entropy Alloy. Phys. Rev. Lett. 113, 107001. |
[4] | Xiao, G., Zhu, Q., Yang, W., et al. (2023). Centrosymmetric to noncentrosymmetric structural transformation in a superconducting high-entropy alloy due to carbon addition. Sci. China Mater. 66, 257−263. |
[5] | Jung, S.-G., Han, Y., Kim, J. H., et al. (2022). High critical current density and high-tolerance superconductivity in high-entropy alloy thin films. Nat. Commun. 13, 3373. |
[6] | Kim, G., Lee, M.-H., Yun, J. H., et al. (2020). Strongly correlated and strongly coupled s-wave superconductivity of the high entropy alloy Ta1/6Nb2/6Hf1/6Zr1/6Ti1/6 compound. Acta Mater. 186, 250−256. |
[7] | Zeng, L., Hu, X., Boubeche, M., et al. (2023). Extremely strong coupling s-wave superconductivity in the medium-entropy alloy TiHfNbTa. Sci. China Phys. Mech. Astron. 66, 277412. |
[8] | Kitagawa, J., Hamamoto, S., and Ishizu, N. (2020). Cutting edge of high-entropy alloy superconductors from the perspective of materials research. Metals 10, 1078. |
[9] | Motla, K., Soni, V., Meena, P. K., and Singh, R. P. (2022). Boron based new high entropy alloy superconductor Mo0.11W0.11V0.11Re0.34B0.33. Supercond. Sci. Technol. 35 , 074002. |
[10] | Kasem, M. R., Yamashita, A., Hatano, T., et al. (2021). Anomalous broadening of specific heat jump at Tc in high-entropy-alloy-type superconductor TrZr2. Supercond. Sci. Technol. 34, 125001. |
[11] | Sun, L., and Cava, R. J. (2019). High-entropy alloy superconductors: status, opportunities, and challenges. Phys. Rev. Mater. 3, 090301. |
[12] | Guo, J., Wang, H., von Rohr, F., et al. (2017). Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa. Proc. Natl. Acad. Sci. U.S.A. 114, 13144−13147. |
[13] | Liu, B., Wu, J., Cui, Y., et al. (2021). Superconductivity and paramagnetism in Cr-containing tetragonal high-entropy alloys. J. Alloys Compd. 869, 159293. |
[14] | Sogabe, R., Goto, Y., Abe, T., et al. (2019). Improvement of superconducting properties by high mixing entropy at blocking layers in BiS2-based superconductor REO0.5F0.5BiS2. Solid State Commun. 295 , 43-49. |
[15] | von Rohr, F., Winiarski, M. J., Tao, J., et al. (2016). Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor. Proc. Natl. Acad. Sci. U.S.A. 113, E7144−E7150. |
[16] | Oses, C., Toher, C., and Curtarolo, S. (2020). High-entropy ceramics. Nat. Rev. Mater. 5, 295−309. |
[17] | Rost, C. M., Sachet, E., Borman, T., et al. (2015). Entropy-stabilized oxides. Nat. Commun. 6, 8485. |
[18] | Akrami, S., Edalati, P., Fuji, M., and Edalati, K. (2021). High-entropy ceramics: review of principles, production and applications. Mater. Sci. Eng. R Rep. 146, 100644. |
[19] | Xiang, H., Xing, Y., Dai, F.-Z., et al. (2021). High-entropy ceramics: present status, challenges, and a look forward. J. Adv. Ceram. 10, 385−441. |
[20] | Zhang, Y., Sun, S.-K., Guo, W.-M., et al. (2021). Fabrication of textured (Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2 high-entropy ceramics. J. Eur. Ceram. Soc. 41 , 1015-1019. |
[21] | Zhang, Y., Sun, S.-K., Zhang, W., et al. (2020). Improved densification and hardness of high-entropy diboride ceramics from fine powders synthesized via borothermal reduction process. Ceram. Int. 46, 14299−14303. |
[22] | Jin, T., Sang, X., Unocic, R. R., et al. (2018). Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Adv. Mater. 30, 1707512. |
[23] | Wang, Z., Li, Z., Zhao, S., and Wu, Z. (2021). High-entropy carbide ceramics: a perspective review. Tungsten 3, 131−142. |
[24] | Harrington, T. J., Gild, J., Sarker, P., et al. (2019). Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater. 166, 271−280. |
[25] | Sarker, P., Harrington, T., Toher, C., et al. (2018). High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9, 4980. |
[26] | Cao, Z., Sun, J., Meng, L., et al. (2023). Progress in densification and toughening of high entropy carbide ceramics. J. Mater. Sci. Technol. 161, 10−43. |
[27] | Hossain, M. D., Borman, T., Kumar, A., et al. (2021). Carbon stoichiometry and mechanical properties of high entropy carbides. Acta Mater. 215, 117051. |
[28] | Zeng, L., Wang, Z., Song, J., et al. (2023). Discovery of the High-entropy carbide ceramic topological superconductor candidate (Ti0.2Zr0.2Nb0.2Hf0.2Ta0.2)C. Adv. Funct. Mater. 33 , 2301929. |
[29] | Wang, Y., Csanádi, T., Zhang, H., et al. (2022). Synthesis, microstructure, and mechanical properties of novel high entropy carbonitrides. Acta Mater. 231, 117887. |
[30] | Jing, C., Zhou, S.-J., Zhang, W., et al. (2022). Low temperature synthesis and densification of (Ti,V,Nb,Ta,Mo)(C,N) high-entropy carbonitride ceramics. J. Alloys Compd. 927, 167095. |
[31] | Zhang, P., Liu, X., Cai, A., et al. (2021). High-entropy carbide-nitrides with enhanced toughness and sinterability. Sci. China Mater. 64, 2037−2044. |
[32] | Xia, L., Dong, S., Xin, J., et al. (2023). Fabrication of multi-anionic high-entropy carbonitride ultra-high-temperature ceramics by a green and low-cost process with excellent mechanical properties. J. Adv. Ceram. 12, 1258−1272. |
[33] | Zhang, Z., Fang, Y., Wang, D., et al. (2020). One-step synthesis of nitrogen-rich Mo2C1- x N x solid solution with enhanced superconductivity. J. Mater. Chem. C. 8, 2682−2686. |
[34] | Stolze, K., Cevallos, F. A., Kong, T., and Cava, R. J. (2018). High-entropy alloy superconductors on an α-Mn lattice. J. Mater. Chem. C. 6, 10441−10449. |
[35] | Xiao, G., Yang, W., Zhu, Q., et al. (2023). Superconductivity with large upper critical field in noncentrosymmetric Cr-bearing high-entropy alloys. Scr. Mater. 223, 115099. |
[36] | Zeng, L., Hu, X., Wang, N., et al. (2022). Interplay between charge-density-wave, superconductivity, and ferromagnetism in CuIr2- x Cr x Te4 chalcogenides. J. Phys. Chem. Lett. 13, 2442−2451. |
[37] | Zeng, L., Hu, X., Guo, S., et al. (2022). Ta4CoSi: A tantalum-rich superconductor with a honeycomb network structure. Phys. Rev. B. 106, 134501. |
[38] | Matthias, B. T. (1955). Empirical relation between superconductivity and the number of valence electrons per atom. Phys. Rev. 97, 74−76. |
[39] | Collver, M. M., Hammond, R. H. (1979). Superconductivity in amorphous 3 d -transition-metal alloy films. Phys. Rev. B. 19, 525−526. |
[40] | Walle, A. V. (2009). Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit. Calphad 33, 266−278. |
[41] | Kresse, G., and Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 47, 558−561. |
[42] | Kresse, G., and Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169−11186. |
[43] | Blöchl, P. E. (1994). Projector augmented-wave method. Phys. Rev. B. 50, 17953−17979. |
[44] | Perdew, J. P., Burke, K., and Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865−3868. |
[45] | Bellaiche, L., and Vanderbilt, D. (2000). Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites. Phys. Rev. B. 61, 7877−7882. |
Zeng L., Hu X., Zhou Y., et al., (2023). Superconductivity and non-trivial band topology in high-entropy carbonitride Ti0.2Nb0.2Ta0.2Mo0.2W0.2C1-xNx. The Innovation Materials 1(3), 100042. https://doi.org/10.59717/j.xinn-mater.2023.100042 |
Crystal structure of Ti0.2Nb0.2Ta0.2Mo0.2W0.2C1-xNx HECNs
Normal to superconducting phase transition of the Ti0.2Nb0.2Ta0.2Mo0.2W0.2C1-xNx HECNs
Magnetotransport properties of Ti0.2Nb0.2Ta0.2Mo0.2W0.2C1-xNx (0 ≤ x ≤ 0.45) HECNs
Specific heat capacity jumps for Ti0.2Nb0.2Ta0.2Mo0.2W0.2C1-xNx (0 ≤ x ≤ 0.45) HECNs
Phase diagram for Ti0.2Nb0.2Ta0.2Mo0.2W0.2C1-xNx (0 ≤ x ≤ 0.45) HECNs
Electronic structure Ti0.2Nb0.2Ta0.2Mo0.2W0.2C1-xNx (0 ≤ x ≤ 0.45) HECNs