Coupled formation of lamellae is observed by identifying alternative segregation at lamellar interfaces.
A coupled nucleation model is proposed for lamellar structure.
Coupled nucleation and growth of lamellae is due to the smaller free energy barrier and interfacial anisotropy.
[1] | Volmer, M. and Weber, A. (1926). Keimbildung in übersättigten Gebilden. Z. Phys. Chem. 119: 277−301. DOI: 10.1515/zpch-1926-11927. |
[2] | Becker, R. and Döring, W. (1935). The kinetic treatment of nuclear formation in supersaturated vapors. Ann. Phys. 24: 719−752. |
[3] | Turnbull, D., and Fisher, J. C. (1949). Rate of nucleation in condensed systems. J. Chem. Phys. 17: 71−73. DOI: 10.1063/1.1747055. |
[4] | Turnbull, D. (1956). Solid State Physics. Academic Press, https://doi.org/10.1016/C2010-0-66724-1 |
[5] | Gleiser, M., and Howell, R.C. (2005). Resonant nucleation. Phys. Rev. Lett. 94: 151601. DOI: 10.1103/PhysRevLett.94.151601. |
[6] | Heermann, D.W., and Klein, W. (1983). Nucleation and growth of nonclassical droplets. Phys. Rev. Lett. 50: 1062. DOI: 10.1103/PhysRevLett.50.1062. |
[7] | Gránásy, L., Pusztai, T., Saylor, D., and Warren, J.A. (2007). Phase field theory of heterogeneous crystal nucleation. Phys. Rev. Lett. 98: 035703. DOI: 10.1103/PhysRevLett.98.035703. |
[8] | Yau, S.-T., and Vekilov, P. G. (2000). Quasi-planar nucleus structure in apoferritin crystallization. Nature 406: 494−497. DOI: 10.1038/35020035. |
[9] | Zhou, J., Yang Y.S., Yang Y., et al. Schmid A.K., Nathanson M., et al. (2019). Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 570: 500−503. DOI: 10.1038/s41586-019-1317-x. |
[10] | Tan, P., Xu, N., and Xu, L. (2014). Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization. Nature Physics 10: 73−79. DOI: 10.1038/nphys2817. |
[11] | Gasser, U., Weeks, E.R., Schofield, A., et al. (2001). Real-space imaging of nucleation and growth in colloidal crystallization. Science 292: 258−262. DOI: 10.1126/science.1058457. |
[12] | Tammann, G., Dean, R.S., and Swenson, L.G. (1925). A text book of metallography: chemistry and physics of the metals and their alloys. Chemical Catalog Co. |
[13] | Hull, F.C., and Mehl, R.F. (1942). The structure of pearlite. Trans. ASM 30: 381−424. |
[14] | Zener, C. (1946). Kinetics of the decomposition of austenite. Trans. AIME 167: 550−595. |
[15] | Tiller, W.A. (1958). Polyphase solidification, in liquid metals and solidification. ASM Cleveland, 276-318. |
[16] | Hillert, M. (1962). Decomposition of austenite by diffusional processes, V. F. Zackay and H. I. Aaronson ed, John Wiley Inc., 197-237. |
[17] | Chadwick, G.A. (1963). Eutectic alloy solidification. Prog. Mater Sci. 12: 99−182. DOI: 10.1016/0079-6425(63)90037-9. |
[18] | Aaronson, H.I., Enomoto, M., and Lee, J.K., (2010). Mechanisms of Diffusional Phase Transformations in Metals and Alloys, CRC Press. |
[19] | Kim, Y.W. (1994). Ordered intermetallic alloys, part III: Gamma titanium aluminides. JOM 46: 30−39. |
[20] | Clemens, H. and Kestler, H. (2000). Processing and applications of intermetallic γ-TiAl-based alloys. Adv. Eng. Mater. 2: 551−570. DOI: 3.0.CO;2-U">10.1002/1527-2648(200009)2:9<551::AID-ADEM551>3.0.CO;2-U. |
[21] | Bewlay, B.P., Weimer, M., Kelly, T., et al. (2013). The science, technology, and implementation of TiAl alloys in commercial aircraft Engines. MRS Proceedings 1516: 49−58. DOI: 10.1557/opl.2013.44. |
[22] | Chen, G., Peng, Y., Zheng G., et al. (2016). Polysynthetic twinned TiAl single crystals for high temperature applications. Nat. Mater. 15: 876−881. DOI: 10.1038/nmat4677. |
[23] | Schuster, J.C. and Palm, M. (2006). Reassessment of the binary aluminum-titanium phase diagram. J.Phase Equilib. Diff. 27: 255−277. DOI: 10.1361/154770306X109809. |
[24] | Appel, F., Paul, J.D.H., and Oehring, M. (2011). Gamma titanium aluminide alloys: science and technology. John Wiley & Sons. |
[25] | Jones, S.A., and Kaufman, M.J. (1993). Phase equilibria and transformations in intermediate titanium-aluminum alloys. Acta Metall. 41: 387−398. DOI: 10.1016/0956-7151(93)90069-5. |
[26] | Denquin, A., and Naka, S. (1996). Phase transformation mechanisms involved in two-phase TiAl-based alloys—I. Lamellar structure formation. Acta Mater. 44: 343−352. |
[27] | Pond, R. C., Shang, P., Cheng, T. T. and Aindow, M. (2000). Interfacial dislocation mechanism for diffusional phase transformations exhibiting martensitic crystallography formation of TiAl + Ti3Al lamellae. Acta Mater. 48: 1047−1053. DOI: 10.1016/S1359-6454(99)00416-4. |
[28] | Blackburn, M.J. (1970). The Science, technology, and application of titanium. Pergamon. |
[29] | Menand, A., Zapolsky-Tatarenko, H., and Nerac-Partaix, A. (1998). Atom-probe investigations of TiAl alloys. Mater. Sci. Eng. A 250: 55−64. DOI: 10.1016/S0921-5093(98)00536-X. |
[30] | Gerstl, S.S.A., Kim, Y.W., and Seidman, D.N. (2004). Atomic scale chemistry of α2/γ interfaces in a multi-component TiAl alloy. Interface Science, 12: 303−310. DOI: 10.1023/B:INTS.0000028659.31526.2b. |
[31] | Draper, S.L., and Isheim, D. (2012). Environmental embrittlement of a third generation γ TiAl alloy. Intermetallics 22: 77−83. DOI: 10.1016/j.intermet.2011.10.006. |
[32] | Mishin, Y., and Herzig, C. (2000). Diffusion in the Ti-Al system. Acta Mater. 48: 589−623. DOI: 10.1016/S1359-6454(99)00400-0. |
[33] | Ren, G.D., and Sun, J. (2018). High-resolution electron microscopy characterization of modulated structure in high Nb-containing lamellar γ-TiAl alloy. Acta Mater. 144: 516−523. DOI: 10.1016/j.actamat.2017.11.016. |
[34] | Porter, D.A., Easterling, K.E., and Sherif, M.Y. (2009). Phase transformations in metals and alloys. CRC Press. |
[35] | Soper, A. (2000). The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chem. Phys. 258: 121−137. DOI: 10.1016/S0301-0104(00)00179-8. |
[36] | Zhang, L.C., Cheng, T.T., and Aindow, M. (2004). Nucleation of the lamellar decomposition in a Ti-44Al-4Nb-4Zr alloy. Acta Mater. 52: 191−197. DOI: 10.1016/j.actamat.2003.09.005. |
[37] | Kainuma, R., Fujita, Y., Mitsui, H., et al. (2000). Phase equilibria among α (hcp), β (bcc) and γ (L10) phases in Ti-Al base ternary alloys. Intermetallics 8: 855−867. DOI: 10.1016/S0966-9795(00)00015-7. |
[38] | Zope, R. R., and Mishin, Y. (2003). Interatomic potentials for atomistic simulations of the Ti-Al system. Phys. Rev. B 68: 024102. DOI: 10.1103/PhysRevB.68.024102. |
[39] | Farkas, D., and Jones, C. (1996). Interatomic potentials for ternary Nb-Ti-Al alloys. Model. Simul. Mater. Sc. 4: 23−32. DOI: 10.1088/0965-0393/4/1/004. |
[40] | Hoover, W.G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31: 1695−1697. DOI: 10.1103/PhysRevA.31.1695. |
[41] | Hoover, W.G. (1986). Constant-pressure equations of motion. Phys. Rev. A. 34: 2499−2500. DOI: 10.1103/PhysRevA.34.2499. |
[42] | Stukowski, A. (2010). Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sc. 18: 015012. DOI: 10.1088/0965-0393/18/1/015012. |
[43] | Larsen, P.M., Schmidt, S., and Schiøtz, J. (2016). Robust structural identification via polyhedral template matching. Model. Simul. Mater. Sc. 24: 055007. DOI: 10.1088/0965-0393/24/5/055007. |
Zheng G., Chen Y., Xiang H., et al., (2023). Coupled nucleation of dual-phase lamellar structure. The Innovation Materials 1(3), 100043. https://doi.org/10.59717/j.xinn-mater.2023.100043 |
TEM and APT analysis of the TiAl lamellar structure
SEM and APT reconstructed TiAl lamellar structures after annealing
The coupled nucleation model for TiAl lamellae
MD simulations of dual-phase TiAl lamellar nucleation
In situ HEXRD measurement of binary Ti-Al alloy during continuous cooling