Coupled formation of lamellae is observed by identifying alternative segregation at lamellar interfaces.
A coupled nucleation model is proposed for lamellar structure.
Coupled nucleation and growth of lamellae is due to the smaller free energy barrier and interfacial anisotropy.
[1] | Volmer, M., and Weber, A. (1926). Keimbildung in cubersCattigten gebilden, Z. Phys. Chem. 119, 277−301. |
[2] | Becker, R., and Döring, W. (1935). The kinetic treatment of nuclear formation in supersaturated vapors. Annals of Physics 24, 719−752. |
[3] | Turnbull, D., and Fisher, J. C. (1949). Rate of nucleation in condensed systems. J. Chem. Phys. 17, 71−73. |
[4] | Turnbull, D. (1956). Solid State Physics. Academic Press, https://doi.org/10.1016/C2010-0-66724-1 |
[5] | Gleiser, M., and Howell, R.C. (2005). Resonant nucleation. Phys. Rev. Lett. 94, 151601. |
[6] | Heermann, D.W., and Klein, W. (1983). Nucleation and growth of nonclassical droplets. Phys. Rev. Lett. 50, 1062. |
[7] | Gránásy, L., Pusztai, T., Saylor, D., and Warren, J.A. (2007). Phase field theory of heterogeneous crystal nucleation. Phys. Rev. Lett. 98, 035703. |
[8] | Yau, S.-T., and Vekilov, P. G. (2000). Quasi-planar nucleus structure in apoferritin crystallization. Nature 406, 494−497. |
[9] | Zhou, J., Yang Y.S., Yang Y., et al. Schmid A.K., Nathanson M., et al. (2019). Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 570, 500−503. |
[10] | Tan, P., Xu, N., and Xu, L. (2014). Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization. Nature Physics 10, 73−79. |
[11] | Gasser, U., Weeks, E.R., Schofield, A., et al. (2001). Real-space imaging of nucleation and growth in colloidal crystallization. Science 292, 258−262. |
[12] | Tammann, G., Dean, R.S., and Swenson, L.G. (1925). A text book of metallography: chemistry and physics of the metals and their alloys. Chemical Catalog Co. |
[13] | Hull, F.C., and Mehl, R.F. (1942). The structure of pearlite. Trans. ASM 30, 381−424. |
[14] | Zener, C. (1946). Kinetics of the decomposition of austenite. Trans. AIME 167, 550−595. |
[15] | Tiller, W.A. (1958). Polyphase solidification, in liquid metals and solidification. ASM Cleveland, 276-318. |
[16] | Hillert, M. (1962). Decomposition of austenite by diffusional processes, V. F. Zackay and H. I. Aaronson ed, John Wiley Inc., 197-237. |
[17] | Chadwick, G.A. (1963). Eutectic alloy solidification. Prog. Mater Sci. 12, 99−182. |
[18] | Aaronson, H.I., Enomoto, M., and Lee, J.K., (2010). Mechanisms of Diffusional Phase Transformations in Metals and Alloys, CRC Press. |
[19] | Kim, Y.W. (1994). Ordered intermetallic alloys, part III: gamma titanium aluminides. JOM 46, 30−39. |
[20] | Clemens, H., and Kestler, H. (2000). Processing and applications of intermetallic γ-TiAl-based alloys. Adv. Eng. Mater. 2, 551−570. |
[21] | Bewlay, B.P., Weimer, M., Kelly, T., et al. (2013). The science, technology, and implementation of TiAl alloys in commercial aircraft Engines. MRS Proceedings 1516, 49−58. |
[22] | Chen, G., Peng, Y., Zheng G., et al. (2016). Polysynthetic twinned TiAl single crystals for high temperature applications. Nat. Mater. 15, 876−881. |
[23] | Schuster, J.C., and Palm, M. (2006). Reassessment of the binary aluminum-titanium phase diagram. J.Phase Equilib. Diff. 27, 255−277. |
[24] | Appel, F., Paul, J.D.H., and Oehring, M. (2011). Gamma titanium aluminide alloys: science and technology. John Wiley & Sons. |
[25] | Jones, S.A., and Kaufman, M.J. (1993). Phase equilibria and transformations in intermediate titanium-aluminum alloys. Acta Metall. 41, 387−398. |
[26] | Denquin, A., and Naka, S. (1996). Phase transformation mechanisms involved in two-phase TiAl-based alloys—I. Lamellar structure formation. Acta Mater. 44, 343−352. |
[27] | Pond, R. C., Shang, P., Cheng, T. T. and Aindow, M. (2000). Interfacial dislocation mechanism for diffusional phase transformations exhibiting martensitic crystallography formation of TiAl + Ti3Al lamellae. Acta Mater. 48, 1047−1053. |
[28] | Blackburn, M.J. (1970). The Science, technology, and application of titanium. Pergamon. |
[29] | Menand, A., Zapolsky-Tatarenko, H., and Nerac-Partaix, A. (1998). Atom-probe investigations of TiAl alloys. Mater. Sci. Eng. A 250, 55−64. |
[30] | Gerstl, S.S.A., Kim, Y.W., and Seidman, D.N. (2004). Atomic scale chemistry of α2/γ interfaces in a multi-component TiAl alloy. Interface Science, 12, 303−310. |
[31] | Draper, S.L., and Isheim, D. (2012). Environmental embrittlement of a third generation γ TiAl alloy. Intermetallics 22, 77−83. |
[32] | Mishin, Y., and Herzig, C. (2000). Diffusion in the Ti-Al system. Acta Mater. 48, 589−623. |
[33] | Ren, G.D., and Sun, J. (2018). High-resolution electron microscopy characterization of modulated structure in high Nb-containing lamellar γ-TiAl alloy. Acta Mater. 144, 516−523. |
[34] | Porter, D.A., Easterling, K.E., and Sherif, M.Y. (2009). Phase transformations in metals and alloys. CRC Press. |
[35] | Soper, A. (2000). The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chem. Phys. 258, 121−137. |
[36] | Zhang, L.C., Cheng, T.T., and Aindow, M. (2004). Nucleation of the lamellar decomposition in a Ti-44Al-4Nb-4Zr alloy. Acta Mater. 52, 191−197. |
[37] | Kainuma, R., Fujita, Y., Mitsui, H., et al. (2000). Phase equilibria among α (hcp), β (bcc) and γ (L10) phases in Ti-Al base ternary alloys. Intermetallics 8, 855−867. |
[38] | Zope, R. R., and Mishin, Y. (2003). Interatomic potentials for atomistic simulations of the Ti-Al system. Phys. Rev. B 68, 024102. |
[39] | Farkas, D., and Jones, C. (1996). Interatomic potentials for ternary Nb-Ti-Al alloys. Model. Simul. Mater. Sc. 4, 23−32. |
[40] | Hoover, W.G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695−1697. |
[41] | Hoover, W.G. (1986). Constant-pressure equations of motion. Phys. Rev. A. 34, 2499−2500. |
[42] | Stukowski, A. (2010). Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sc. 18, 015012. |
[43] | Larsen, P.M., Schmidt, S., and Schiøtz, J. (2016). Robust structural identification via polyhedral template matching. Model. Simul. Mater. Sc. 24, 055007. |
Zheng G., Chen Y., Xiang H., et al., (2023). Coupled nucleation of dual-phase lamellar structure. The Innovation Materials 1(3), 100043. https://doi.org/10.59717/j.xinn-mater.2023.100043 |
TEM and APT analysis of the TiAl lamellar structure
SEM and APT reconstructed TiAl lamellar structures after annealing
The coupled nucleation model for TiAl lamellae
MD simulations of dual-phase TiAl lamellar nucleation
In situ HEXRD measurement of binary Ti-Al alloy during continuous cooling