Metal-Organic Framework (MOF) thin films exhibit unique catalysis, adsorption/separation, and electronic properties.
The extensive review presents four vapor-phase approaches for fabricating MOF thin films.
The characteristics, advantages, applications, and limitations of four approaches are summarized.
[1] | Senkovska, I., Bon, V., Abylgazina, L., et al. (2023). Understanding MOF flexibility: an analysis focused on pillared layer MOFs as a model system. Angewandte Chemie International Edition 62: e202218076. DOI: 10.1002/anie.202218076. |
[2] | Liu, B., Liu, Z., Lu, X., et al. (2023). Controllable growth of drug-encapsulated metal-organic framework (MOF) on porphyrinic MOF for PDT/chemo-combined therapy. Materials & Design 228: 111861. DOI: 10.1016/j.matdes.2023.111861. |
[3] | Huang, M., Liang, Z., Huang, J., et al. (2023). Introduction of multicomponent dyes into 2D MOFs: A strategy to fabricate white light-emitting MOF composite nanosheets. ACS Applied Materials & Interfaces 15: 11131−11140. DOI: 10.1021/acsami.2c22568. |
[4] | Meng, S., Li, G., Wang, P., et al. (2023). Rare earth-based MOFs for photo/electrocatalysis. Materials Chemistry Frontiers 7: 806−827. DOI: 10.1039/D2QM01201D. |
[5] | Qian, Z., Zhang, R., Xiao, Y., et al. (2023). Trace to the source: self-tuning of MOF photocatalysts. Advanced Energy Materials 13: 2300086. DOI: 10.1002/aenm.202300086. |
[6] | Zhao, Y., Zhang, Y., Cao, X., et al. (2023). Synthesis of MOF on MOF photocatalysts using PCN-134 as seed through epitaxial growth strategy towards nizatidine degradation. Chemical Engineering Journal 465: 143000. DOI: 10.1016/j.cej.2023.143000. |
[7] | Chang, Y., Chen, M., Fu, Z., et al. (2023). Building porphyrin-based MOFs on MXenes for ppb-leveNO sensing. Journal of Materials Chemistry A 11: 6966−6977. DOI: 10.1039/D3TA00072A. |
[8] | Dolgopolova, E.A., Brandt, A.J., Ejegbavwo, O.A., et al. (2017). Electronic properties of bimetallic Metal–Organic Frameworks (MOFs): Tailoring the density of electronic states through MOF modularity. Journal of the American Chemical Society 139: 5201−5209. DOI: 10.1021/jacs.7b01125. |
[9] | Jiang, S., Lv, T., Peng, Y., Pang, H. (2023). MOFs containing solid-state electrolytes for batteries. Advanced Science 10: 2206887. DOI: 10.1002/advs.202206887. |
[10] | Xie, S., Zhou, Z., Zhang, X., Fransaer, J. (2023). Cathodic deposition of MOF films: mechanism and applications. Chemical Society Reviews 52: 4292−4312. DOI: 10.1039/D3CS00131H. |
[11] | De Villenoisy, T., Zheng, X., Wong, V., et al. (2023). Principles of design and synthesis of metal derivatives from MOFs. Advanced Materials 35: 2210166. DOI: 10.1002/adma.202210166. |
[12] | Yuan, S., Qin, J.-S., Su, J., et al. (2018). Sequential transformation of zirconium(IV)-MOFs into heterobimetallic MOFs bearing magnetic anisotropic cobalt(II) centers. Angewandte Chemie International Edition 57: 12578−12583. DOI: 10.1002/anie.201808568. |
[13] | Di, X., Pei, Z., Pei, Y., James, T.D. (2023). Tumor microenvironment-oriented MOFs for chemodynamic therapy. Coordination Chemistry Reviews 484: 215098. DOI: 10.1016/j.ccr.2023.215098. |
[14] | Xu, Y., Xia, P., Wang, C., et al. (2023). A mini-review on MOFs activated peroxide processes and the enhancement with the external energy. Chemical Engineering Journal 462: 142021. DOI: 10.1016/j.cej.2023.142021. |
[15] | Wang, X., Zhu, L., Lv, Z., et al. (2022). Coupled visible-light driven photocatalytic reactions over porphyrin-based MOF materials. Chemical Engineering Journal 442: 136186. DOI: 10.1016/j.cej.2022.136186. |
[16] | Liang, J., Yu, H., Shi, J., et al. (2023). Dislocated bilayer MOF enables high-selectivity photocatalytic reduction of CO2 to CO. Advanced Materials 35: 2209814. DOI: 10.1002/adma.202209814. |
[17] | Wu, H., Kong, X.Y., Wen, X., et al. (2021). Metal–Organic Framework decorated cuprous oxide nanowires for long-lived charges applied in selective photocatalytic CO2 reduction to CH4. Angewandte Chemie International Edition 60: 8455−8459. DOI: 10.1002/anie.202015735. |
[18] | Gu, Y., Wu, Y.-N., Li, L., et al. (2017). Controllable modular growth of hierarchical MOF-on-MOF architectures. Angewandte Chemie International Edition 56: 15658−15662. DOI: 10.1002/anie.201709738. |
[19] | Masoomi, M.Y., Morsali, A., Dhakshinamoorthy, A., et al. (2019). Mixed-Metal MOFs: Unique opportunities in Metal–Organic Framework (MOF) functionality and design. Angewandte Chemie International Edition 58: 15188−15205. DOI: 10.1002/anie.201902229. |
[20] | Liu, X., Kozlowska, M., Okkali, T., et al. (2019). Photoconductivity in Metal–Organic Framework (MOF) thin films. Angewandte Chemie International Edition 58: 9590−9595. DOI: 10.1002/anie.201904475. |
[21] | Yao, M.-S., Xiu, J.-W., Huang, Q.-Q., et al. (2019). Inside back cover: Van der waals heterostructured MOF-on-MOF thin films: Cascading functionality to realize advanced chemiresistive sensing. Angewandte Chemie International Edition 58: 15161. DOI: 10.1002/anie.201910733. |
[22] | Zulkifli, M.Y.B., Lin, R., Chai, M., et al. (2022). Transport tuning strategies in MOF film synthesis – a perspective. Journal of Materials Chemistry A 10 : 14641-14654. DOI: 10.1039/D2TA03216C. |
[23] | Stavila, V., Schneider, C., Mowry, C., et al. (2016). Thin film growth of nbo MOFs and their integration with electroacoustic devices. Advanced Functional Materials 26: 1699−1707. DOI: 10.1002/adfm.201504211. |
[24] | Lausund, K.B., Olsen, M.S., Hansen, P.-A., et al. (2020). MOF thin films with bi-aromatic linkers grown by molecular layer deposition. Journal of Materials Chemistry A 8: 2539−2548. DOI: 10.1039/C9TA09303F. |
[25] | Andrés, M.A., Fontaine, P., Goldmann, M., et al. (2021). Solvent-exchange process in MOF ultrathin films and its effect on CO2 and methanol adsorption. Journal of Colloid and Interface Science 590: 72−81. DOI: 10.1016/j.jcis.2021.01.030. |
[26] | Liu, M., Nothling, M.D., Webley, P.A., et al. (2020). High-throughput CO2 capture using PIM-1@MOF based thin film composite membranes. Chemical Engineering Journal 396: 125328. DOI: 10.1016/j.cej.2020.125328. |
[27] | Usov, P.M., Ahrenholtz, S.R., Maza, W.A., et al. (2016). Cooperative electrochemical water oxidation by Zr nodes and Ni–porphyrin linkers of a PCN-224 MOF thin film. Journal of Materials Chemistry A 4: 16818−16823. DOI: 10.1039/C6TA05877A. |
[28] | Shekhah, O., Liu, J., Fischer, R.A., and Wöll, C. (2011). MOF thin films: existing and future applications. Chemical Society Reviews 40: 1081−1106. DOI: 10.1039/C0CS00147C. |
[29] | Ji, H., Hwang, S., Kim, K., et al. (2016). Direct in situ conversion of metals into Metal–Organic Frameworks: A strategy for the rapid growth of MOF films on metal substrates. ACS Applied Materials & Interfaces 8: 32414−32420. DOI: 10.1021/acsami.6b12755. |
[30] | Stassen, I., Styles, M., Grenci, G., et al. (2016). Chemical vapour deposition of zeolitic imidazolate framework thinfilms. Nature Materials 15: 304−310. DOI: 10.1038/nmat4509. |
[31] | Li, S., Zhang, W., Zhu, Y., et al. (2015). Synthesis of MOFs and their composite structures through sacrificial-template strategy. Crystal Growth & Design 15: 1017−1021. DOI: 10.1021/cg501551y. |
[32] | Xu, W., Dong, J., Li, J., et al. (1990). A novel method for the preparation of zeolite ZSM-5. Journal of the Chemical Society, Chemical Communications (10):755-756. DOI: 10.1039/C39900000755. |
[33] | Shi, Q., Chen, Z., Song, Z., et al. (2011). Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors. Angewandte Chemie International Edition 50: 672−675. DOI: 10.1002/anie.201004937. |
[34] | Chen, Y., Yang, C., Wang, X., et al. (2017). Vapor phase solvents loaded in zeolite as the sustainable medium for the preparation of Cu-BTC and ZIF-8. Chemical Engineering Journal 313: 179−186. DOI: 10.1016/j.cej.2016.12.055. |
[35] | Yang, J., Du, B., Yuan, N., et al. (2019). Vapor-assisted preparation of Mn/Fe/Co/Zn–Cu bimetallic metal–organic frameworks based on octahedron micron crystals (PCN-6′). New Journal of Chemistry 43: 6452−6456. DOI: 10.1039/C8NJ04724C. |
[36] | Virmani, E., Rotter, J.M., Mähringer, A., et al. (2018). On-surface synthesis of highly oriented thin metal–organic framework films through vapor-assisted conversion. Journal of the American Chemical Society 140: 4812−4819. DOI: 10.1021/jacs.7b08174. |
[37] | M-hringer, A., Hennemann, M., Clark, T., et al. (2021). Energy efficient ultrahigh flux separation of oily pollutants from water with superhydrophilic nanoscale metal–organic framework architectures. Angewandte Chemie International Edition 60: 5519−5526. DOI: 10.1002/anie.202012428. |
[38] | Bajpai, A., Speed, D., Szulczewski, G.J. (2022). Vapor-phase adsorption of xylene isomers and ethylbenzene in MOF-74 thin films. Langmuir 38: 9518−9525. DOI: 10.1021/acs.langmuir.2c00816. |
[39] | Luo, J., Li, Y., Zhang, H., et al. (2019). A Metal–organic framework thin film for selective Mg2+ transport. Angewandte Chemie International Edition 58: 15313−15317. DOI: 10.1002/anie.201908706. |
[40] | Xiao, Y.-H., Gu, Z.-G., Zhang, J., et al. (2020). Vapor-assisted epitaxial growth of porphyrin-based MOF thin film for nonlinear optical limiting. Science China Chemistry 63 : 1059-1065. DOI: 10.1007/s11426-020-9759-6. |
[41] | Gao, M.-L., Zhao, S.-Y., Chen, Z.-Y., et al. (2019). Superhydrophobic/superoleophilic MOF composites for oil–water separation. Inorganic Chemistry 58 : 2261-2264. DOI: 10.1021/acs.inorgchem.8b03293. |
[42] | Stassen, I., DeVos, D., Ameloot, R. (2016). Vapor-phase deposition and modification of metal–organic frameworks: State-of-the-art and future directions. Chemistry – A European Journal 22: 14452−14460. DOI: 10.1002/chem.201601921. |
[43] | Tanaka, S., Sakamoto, K., Inada, H., et al. (2018). Vapor-phase synthesis of ZIF-8 MOF thick film by conversion of ZnO nanorod array. Langmuir 34: 7028−7033. DOI: 10.1021/acs.langmuir.8b00948. |
[44] | Young, C., Wang, J., Kim, J., et al. (2018). Controlled chemical vapor deposition for synthesis of nanowire arrays of metal–organic frameworks and their thermal conversion to carbon/metal oxide hybrid materials. Chemistry of Materials 30: 3379−3386. DOI: 10.1021/acs.chemmater.8b00836. |
[45] | Paknameh, N., Fatemi, S., Razavian, M. (2019). EPD method of seeding nano ZnO followed by CVD of organo-linker; a step by step method for synthesis of ZIF-8 thin layer on tubular α-alumina. Materials Chemistry and Physics 235: 121764. DOI: 10.1016/j.matchemphys.2019.121764. |
[46] | Stassin, T., Rodríguez-Hermida, S., Schrode, B., et al. (2019). Vapour-phase deposition of oriented copper dicarboxylate metal–organic framework thin films. Chemical Communications 55: 10056−10059. DOI: 10.1039/C9CC05161A. |
[47] | Krishtab, M., Stassen, I., Stassin, T., et al. (2019). Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics. Nature Communications 10: 3729. DOI: 10.1038/s41467-019-11703-x. |
[48] | Stassin, T., Stassen, I., Marreiros, J., et al. (2020). Solvent-free powder synthesis and MOF-CVD thin films of the large-pore metal–organic framework MAF-6. Chemistry of Materials 32: 1784−1793. DOI: 10.1021/acs.chemmater.9b03807. |
[49] | Han, S., Ciufo, R.A., Meyerson, M.L., et al. (2019). Solvent-free vacuum growth of oriented HKUST-1 thin films. Journal of Materials Chemistry A 7: 19396−19406. DOI: 10.1039/C9TA05179A. |
[50] | Yuan, H., Li, K., Shi, D., et al. (2023). Large-area fabrication of ultrathin metal-organic framework membranes. Advanced Materials 35: 2211859. DOI: 10.1002/adma.202211859. |
[51] | Wu, W., Su, J., Jia, M., et al. (2020) Vapor-phase linker exchange of metal-organic frameworks. Science Advances 6 (18):eaax7270. DOI: 10.1126/sciadv.aax7270. |
[52] | Horcajada, P., Serre, C., Grosso, D., et al. (2009). Colloidal route for preparing optical thin films of nanoporous metal–organic frameworks. Advanced Materials 21: 1931−1935. DOI: 10.1002/adma.200801851. |
[53] | Li, W., Su, P., Li, Z., et al. (2017). Ultrathin metal–organic framework membrane production by gel–vapour deposition. Nature Communications 8: 406. DOI: 10.1038/s41467-017-00544-1. |
[54] | Rong, S., Chen, S., Su, P., et al. (2021). Postsynthetic modification of metal–organic frameworks by vapor-phase grafting. Inorganic Chemistry 60: 11745−11749. DOI: 10.1021/acs.inorgchem.1c00284. |
[55] | Zou, Z.Q., Zhou, H., Dai, L.M., et al. (2023). A dual stable MOF constructed through ligand exchange for enzyme immobilization with improved performance in biodiesel production. Renewable Energy 208 :17–25. DOI: 10.1016/j.renene.2023.03.072. |
[56] | Marreiros, J., Van Dommelen, L., Fleury, G., et al. (2019). Vapor-phase linker exchange of the metal–organic framework ZIF-8: A solvent-free approach to post-synthetic modification. Angewandte Chemie International Edition 58: 18471−18475. DOI: 10.1002/anie.201912088. |
[57] | Choe, M., Kim, S., Choi, H.C. (2020). Smooth and large scale organometallic complex film by vapor-phase ligand exchange reaction. RSC Advances 10: 9536−9538. DOI: 10.1039/D0RA00403K. |
[58] | Gao, Z., Qin, Y. (2017). Design and properties of confined nanocatalysts by atomic layer deposition. Accounts of Chemical Research 50: 2309−2316. DOI: 10.1021/acs.accounts.7b00266. |
[59] | George, S.M., (2010). Atomic layer deposition: An overview. Chemical Reviews 110 (1):111-131. DOI: 10.1021/cr900056b. |
[60] | Xiong, M., Gao, Z., Qin, Y. (2021). Spillover in heterogeneous catalysis: New insights and opportunities. ACS Catalysis 11: 3159−3172. DOI: 10.1021/acscatal.0c05567. |
[61] | Sun, X., Jiang, K., Zhang, N., et al. (2015). Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 9: 7634−7640. DOI: 10.1021/acsnano.5b02986. |
[62] | George, S.M., Yoon, B., and Dameron, A.A. (2009). Surface chemistry for molecular layer deposition of organic and hybrid organic−inorganic polymers. Accounts of Chemical Research 42: 498−508. DOI: 10.1021/ar800105q. |
[63] | Cao, Y.-Q., Zhu, L., Li, X., et al. (2015). Growth characteristics of Ti-based fumaric acid hybrid thin films by molecular layer deposition. Dalton Transactions 44: 14782−14792. DOI: 10.1039/C5DT00384A. |
[64] | Han, S., Mullins, C.B. (2020). Current progress and future directions in gas-phase metal-organic framework thin-film growth. ChemSusChem 13: 5433−5442. DOI: 10.1002/cssc.202001504. |
[65] | Weber, M., Julbe, A., Ayral, A., et al. (2018). Atomic layer deposition for membranes: Basics, challenges, and opportunities. Chemistry of Materials 30: 7368−7390. DOI: 10.1021/acs.chemmater.8b02687. |
[66] | Salmi, L.D., Heikkilä, M.J., Puukilainen, E., et al. (2013). Studies on atomic layer deposition of MOF-5 thin films. Microporous and Mesoporous Materials 182: 147−154. DOI: 10.1016/j.micromeso.2013.08.024. |
[67] | Salmi, L.D., Heikkilä, M.J., Vehkamäki, M., et al. (2014). Studies on atomic layer deposition of IRMOF-8 thin film. Journal of Vacuum Science & Technology A 33: 01A121. DOI: 10.1116/1.4901455. |
[68] | Goswami, S., Yu, J., Patwardhan, S., et al. (2021). Light-harvesting “antenna” behavior in NU-1000. ACS Energy Letters 6: 848−853. DOI: 10.1021/acsenergylett.0c02514. |
[69] | Lausund, K.B., Nilsen, O. (2016). All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition. Nature Communications 7: 13578. DOI: 10.1038/ncomms13578. |
[70] | Smets, J., Cruz, A.J., Rubio-Giménez, V., et al. (2023). Molecular layer deposition of zeolitic imidazolate framework-8 films. Chemistry of Materials 35: 1684−1690. DOI: 10.1021/acs.chemmater.2c03439. |
[71] | Ahvenniemi, E., Karppinen, M. (2016). Atomic/molecular layer deposition: a direct gas-phase route to crystalline metal–organic framework thin films. Chemical Communications 52: 1139−1142. DOI: 10.1039/C5CC08538A. |
[72] | Ahvenniemi, E., Karppinen, M. (2016). ALD/MLD processes for Mn and Co based hybrid thin films. Dalton Transactions 45: 10730−10735. DOI: 10.1039/C6DT00851H. |
[73] | Tanskanen, A., Karppinen, M. (2018). Iron-terephthalate coordination network thin films through in-situ atomic/molecular layer deposition. Scientific Reports 8: 8976. DOI: 10.1038/s41598-018-27124-7. |
Xue L., Luo G., Yang X., et al., (2024). Vapor-phase methods for synthesizing metal-organic framework thin films. The Innovation Materials 2(1): 100047. https://doi.org/10.59717/j.xinn-mater.2024.100047 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
Vapor phase preparation technology and advantages of the MOF thin films.
Formation processes of ZIFs
Schematic illustration showing the fabrication of oriented MOF films via the VAC method
Vapor phase transformation of a metal oxide film to MOF
Conversion of oxide film to MOF film by the VPT strategy
The preparation of ZIF via the chemical vapor-phase deposition method
Summary of successful VPLE modifications
Preparation of MOF films via ALD/MLD
Preparation of polycrystalline MOF thin film with vapor deposition method