REVIEW   Open Access     Cite

Vapor-phase methods for synthesizing metal-organic framework thin films

More Information
  • Corresponding author: zhangbin2009@sxicc.ac.cn
    1. Metal-Organic Framework (MOF) thin films exhibit unique catalysis, adsorption/separation, and electronic properties.

      The extensive review presents four vapor-phase approaches for fabricating MOF thin films.

      The characteristics, advantages, applications, and limitations of four approaches are summarized.

  • Due to their unique structures and exceptional physical and chemical properties, metal-organic framework (MOF) materials have garnered extensive attention in various fields, including catalysis, separations, sensing, and optics. Compared with powders or bulk MOF materials, MOF thin films exhibit large vertical and horizontal dimensions, higher specific surface areas, and abundant active sites and undergo facile combination with other functional centers for adsorption/separation, catalysis, and photoelectronic device applications. Among the methods used in preparing MOF thin films, the vapor phase approach enables more effective growth of MOF films with controllable thicknesses, uniformity, and compatibility; thus, it has attracted significant interest. This extensive review presents four vapor-phase approaches for preparing MOF thin films: the steam-assisted conversion method, vapor-phase transformations of metal oxide templates, vapor-phase linker exchange, and the atomic layer deposition/molecular layer deposition method. We summarize the advantages and disadvantages of these different vapor-phase-based methods for thin-film preparation, aiming to promote their use in precise and controllable surface syntheses.
  • 加载中
  • [1] Senkovska, I., Bon, V., Abylgazina, L., et al. (2023). Understanding MOF flexibility: an analysis focused on pillared layer MOFs as a model system. Angewandte Chemie International Edition 62: e202218076. DOI: 10.1002/anie.202218076.

    View in Article CrossRef Google Scholar

    [2] Liu, B., Liu, Z., Lu, X., et al. (2023). Controllable growth of drug-encapsulated metal-organic framework (MOF) on porphyrinic MOF for PDT/chemo-combined therapy. Materials & Design 228: 111861. DOI: 10.1016/j.matdes.2023.111861.

    View in Article CrossRef Google Scholar

    [3] Huang, M., Liang, Z., Huang, J., et al. (2023). Introduction of multicomponent dyes into 2D MOFs: A strategy to fabricate white light-emitting MOF composite nanosheets. ACS Applied Materials & Interfaces 15: 11131−11140. DOI: 10.1021/acsami.2c22568.

    View in Article CrossRef Google Scholar

    [4] Meng, S., Li, G., Wang, P., et al. (2023). Rare earth-based MOFs for photo/electrocatalysis. Materials Chemistry Frontiers 7: 806−827. DOI: 10.1039/D2QM01201D.

    View in Article CrossRef Google Scholar

    [5] Qian, Z., Zhang, R., Xiao, Y., et al. (2023). Trace to the source: self-tuning of MOF photocatalysts. Advanced Energy Materials 13: 2300086. DOI: 10.1002/aenm.202300086.

    View in Article CrossRef Google Scholar

    [6] Zhao, Y., Zhang, Y., Cao, X., et al. (2023). Synthesis of MOF on MOF photocatalysts using PCN-134 as seed through epitaxial growth strategy towards nizatidine degradation. Chemical Engineering Journal 465: 143000. DOI: 10.1016/j.cej.2023.143000.

    View in Article CrossRef Google Scholar

    [7] Chang, Y., Chen, M., Fu, Z., et al. (2023). Building porphyrin-based MOFs on MXenes for ppb-leveNO sensing. Journal of Materials Chemistry A 11: 6966−6977. DOI: 10.1039/D3TA00072A.

    View in Article CrossRef Google Scholar

    [8] Dolgopolova, E.A., Brandt, A.J., Ejegbavwo, O.A., et al. (2017). Electronic properties of bimetallic Metal–Organic Frameworks (MOFs): Tailoring the density of electronic states through MOF modularity. Journal of the American Chemical Society 139: 5201−5209. DOI: 10.1021/jacs.7b01125.

    View in Article CrossRef Google Scholar

    [9] Jiang, S., Lv, T., Peng, Y., Pang, H. (2023). MOFs containing solid-state electrolytes for batteries. Advanced Science 10: 2206887. DOI: 10.1002/advs.202206887.

    View in Article CrossRef Google Scholar

    [10] Xie, S., Zhou, Z., Zhang, X., Fransaer, J. (2023). Cathodic deposition of MOF films: mechanism and applications. Chemical Society Reviews 52: 4292−4312. DOI: 10.1039/D3CS00131H.

    View in Article CrossRef Google Scholar

    [11] De Villenoisy, T., Zheng, X., Wong, V., et al. (2023). Principles of design and synthesis of metal derivatives from MOFs. Advanced Materials 35: 2210166. DOI: 10.1002/adma.202210166.

    View in Article CrossRef Google Scholar

    [12] Yuan, S., Qin, J.-S., Su, J., et al. (2018). Sequential transformation of zirconium(IV)-MOFs into heterobimetallic MOFs bearing magnetic anisotropic cobalt(II) centers. Angewandte Chemie International Edition 57: 12578−12583. DOI: 10.1002/anie.201808568.

    View in Article CrossRef Google Scholar

    [13] Di, X., Pei, Z., Pei, Y., James, T.D. (2023). Tumor microenvironment-oriented MOFs for chemodynamic therapy. Coordination Chemistry Reviews 484: 215098. DOI: 10.1016/j.ccr.2023.215098.

    View in Article CrossRef Google Scholar

    [14] Xu, Y., Xia, P., Wang, C., et al. (2023). A mini-review on MOFs activated peroxide processes and the enhancement with the external energy. Chemical Engineering Journal 462: 142021. DOI: 10.1016/j.cej.2023.142021.

    View in Article CrossRef Google Scholar

    [15] Wang, X., Zhu, L., Lv, Z., et al. (2022). Coupled visible-light driven photocatalytic reactions over porphyrin-based MOF materials. Chemical Engineering Journal 442: 136186. DOI: 10.1016/j.cej.2022.136186.

    View in Article CrossRef Google Scholar

    [16] Liang, J., Yu, H., Shi, J., et al. (2023). Dislocated bilayer MOF enables high-selectivity photocatalytic reduction of CO2 to CO. Advanced Materials 35: 2209814. DOI: 10.1002/adma.202209814.

    View in Article CrossRef Google Scholar

    [17] Wu, H., Kong, X.Y., Wen, X., et al. (2021). Metal–Organic Framework decorated cuprous oxide nanowires for long-lived charges applied in selective photocatalytic CO2 reduction to CH4. Angewandte Chemie International Edition 60: 8455−8459. DOI: 10.1002/anie.202015735.

    View in Article CrossRef Google Scholar

    [18] Gu, Y., Wu, Y.-N., Li, L., et al. (2017). Controllable modular growth of hierarchical MOF-on-MOF architectures. Angewandte Chemie International Edition 56: 15658−15662. DOI: 10.1002/anie.201709738.

    View in Article CrossRef Google Scholar

    [19] Masoomi, M.Y., Morsali, A., Dhakshinamoorthy, A., et al. (2019). Mixed-Metal MOFs: Unique opportunities in Metal–Organic Framework (MOF) functionality and design. Angewandte Chemie International Edition 58: 15188−15205. DOI: 10.1002/anie.201902229.

    View in Article CrossRef Google Scholar

    [20] Liu, X., Kozlowska, M., Okkali, T., et al. (2019). Photoconductivity in Metal–Organic Framework (MOF) thin films. Angewandte Chemie International Edition 58: 9590−9595. DOI: 10.1002/anie.201904475.

    View in Article CrossRef Google Scholar

    [21] Yao, M.-S., Xiu, J.-W., Huang, Q.-Q., et al. (2019). Inside back cover: Van der waals heterostructured MOF-on-MOF thin films: Cascading functionality to realize advanced chemiresistive sensing. Angewandte Chemie International Edition 58: 15161. DOI: 10.1002/anie.201910733.

    View in Article CrossRef Google Scholar

    [22] Zulkifli, M.Y.B., Lin, R., Chai, M., et al. (2022). Transport tuning strategies in MOF film synthesis – a perspective. Journal of Materials Chemistry A 10 : 14641-14654. DOI: 10.1039/D2TA03216C.

    View in Article Google Scholar

    [23] Stavila, V., Schneider, C., Mowry, C., et al. (2016). Thin film growth of nbo MOFs and their integration with electroacoustic devices. Advanced Functional Materials 26: 1699−1707. DOI: 10.1002/adfm.201504211.

    View in Article CrossRef Google Scholar

    [24] Lausund, K.B., Olsen, M.S., Hansen, P.-A., et al. (2020). MOF thin films with bi-aromatic linkers grown by molecular layer deposition. Journal of Materials Chemistry A 8: 2539−2548. DOI: 10.1039/C9TA09303F.

    View in Article CrossRef Google Scholar

    [25] Andrés, M.A., Fontaine, P., Goldmann, M., et al. (2021). Solvent-exchange process in MOF ultrathin films and its effect on CO2 and methanol adsorption. Journal of Colloid and Interface Science 590: 72−81. DOI: 10.1016/j.jcis.2021.01.030.

    View in Article CrossRef Google Scholar

    [26] Liu, M., Nothling, M.D., Webley, P.A., et al. (2020). High-throughput CO2 capture using PIM-1@MOF based thin film composite membranes. Chemical Engineering Journal 396: 125328. DOI: 10.1016/j.cej.2020.125328.

    View in Article CrossRef Google Scholar

    [27] Usov, P.M., Ahrenholtz, S.R., Maza, W.A., et al. (2016). Cooperative electrochemical water oxidation by Zr nodes and Ni–porphyrin linkers of a PCN-224 MOF thin film. Journal of Materials Chemistry A 4: 16818−16823. DOI: 10.1039/C6TA05877A.

    View in Article CrossRef Google Scholar

    [28] Shekhah, O., Liu, J., Fischer, R.A., and Wöll, C. (2011). MOF thin films: existing and future applications. Chemical Society Reviews 40: 1081−1106. DOI: 10.1039/C0CS00147C.

    View in Article CrossRef Google Scholar

    [29] Ji, H., Hwang, S., Kim, K., et al. (2016). Direct in situ conversion of metals into Metal–Organic Frameworks: A strategy for the rapid growth of MOF films on metal substrates. ACS Applied Materials & Interfaces 8: 32414−32420. DOI: 10.1021/acsami.6b12755.

    View in Article CrossRef Google Scholar

    [30] Stassen, I., Styles, M., Grenci, G., et al. (2016). Chemical vapour deposition of zeolitic imidazolate framework thinfilms. Nature Materials 15: 304−310. DOI: 10.1038/nmat4509.

    View in Article CrossRef Google Scholar

    [31] Li, S., Zhang, W., Zhu, Y., et al. (2015). Synthesis of MOFs and their composite structures through sacrificial-template strategy. Crystal Growth & Design 15: 1017−1021. DOI: 10.1021/cg501551y.

    View in Article CrossRef Google Scholar

    [32] Xu, W., Dong, J., Li, J., et al. (1990). A novel method for the preparation of zeolite ZSM-5. Journal of the Chemical Society, Chemical Communications (10):755-756. DOI: 10.1039/C39900000755.

    View in Article Google Scholar

    [33] Shi, Q., Chen, Z., Song, Z., et al. (2011). Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors. Angewandte Chemie International Edition 50: 672−675. DOI: 10.1002/anie.201004937.

    View in Article CrossRef Google Scholar

    [34] Chen, Y., Yang, C., Wang, X., et al. (2017). Vapor phase solvents loaded in zeolite as the sustainable medium for the preparation of Cu-BTC and ZIF-8. Chemical Engineering Journal 313: 179−186. DOI: 10.1016/j.cej.2016.12.055.

    View in Article CrossRef Google Scholar

    [35] Yang, J., Du, B., Yuan, N., et al. (2019). Vapor-assisted preparation of Mn/Fe/Co/Zn–Cu bimetallic metal–organic frameworks based on octahedron micron crystals (PCN-6′). New Journal of Chemistry 43: 6452−6456. DOI: 10.1039/C8NJ04724C.

    View in Article CrossRef Google Scholar

    [36] Virmani, E., Rotter, J.M., Mähringer, A., et al. (2018). On-surface synthesis of highly oriented thin metal–organic framework films through vapor-assisted conversion. Journal of the American Chemical Society 140: 4812−4819. DOI: 10.1021/jacs.7b08174.

    View in Article CrossRef Google Scholar

    [37] M-hringer, A., Hennemann, M., Clark, T., et al. (2021). Energy efficient ultrahigh flux separation of oily pollutants from water with superhydrophilic nanoscale metal–organic framework architectures. Angewandte Chemie International Edition 60: 5519−5526. DOI: 10.1002/anie.202012428.

    View in Article CrossRef Google Scholar

    [38] Bajpai, A., Speed, D., Szulczewski, G.J. (2022). Vapor-phase adsorption of xylene isomers and ethylbenzene in MOF-74 thin films. Langmuir 38: 9518−9525. DOI: 10.1021/acs.langmuir.2c00816.

    View in Article CrossRef Google Scholar

    [39] Luo, J., Li, Y., Zhang, H., et al. (2019). A Metal–organic framework thin film for selective Mg2+ transport. Angewandte Chemie International Edition 58: 15313−15317. DOI: 10.1002/anie.201908706.

    View in Article CrossRef Google Scholar

    [40] Xiao, Y.-H., Gu, Z.-G., Zhang, J., et al. (2020). Vapor-assisted epitaxial growth of porphyrin-based MOF thin film for nonlinear optical limiting. Science China Chemistry 63 : 1059-1065. DOI: 10.1007/s11426-020-9759-6.

    View in Article Google Scholar

    [41] Gao, M.-L., Zhao, S.-Y., Chen, Z.-Y., et al. (2019). Superhydrophobic/superoleophilic MOF composites for oil–water separation. Inorganic Chemistry 58 : 2261-2264. DOI: 10.1021/acs.inorgchem.8b03293.

    View in Article Google Scholar

    [42] Stassen, I., DeVos, D., Ameloot, R. (2016). Vapor-phase deposition and modification of metal–organic frameworks: State-of-the-art and future directions. Chemistry – A European Journal 22: 14452−14460. DOI: 10.1002/chem.201601921.

    View in Article CrossRef Google Scholar

    [43] Tanaka, S., Sakamoto, K., Inada, H., et al. (2018). Vapor-phase synthesis of ZIF-8 MOF thick film by conversion of ZnO nanorod array. Langmuir 34: 7028−7033. DOI: 10.1021/acs.langmuir.8b00948.

    View in Article CrossRef Google Scholar

    [44] Young, C., Wang, J., Kim, J., et al. (2018). Controlled chemical vapor deposition for synthesis of nanowire arrays of metal–organic frameworks and their thermal conversion to carbon/metal oxide hybrid materials. Chemistry of Materials 30: 3379−3386. DOI: 10.1021/acs.chemmater.8b00836.

    View in Article CrossRef Google Scholar

    [45] Paknameh, N., Fatemi, S., Razavian, M. (2019). EPD method of seeding nano ZnO followed by CVD of organo-linker; a step by step method for synthesis of ZIF-8 thin layer on tubular α-alumina. Materials Chemistry and Physics 235: 121764. DOI: 10.1016/j.matchemphys.2019.121764.

    View in Article CrossRef Google Scholar

    [46] Stassin, T., Rodríguez-Hermida, S., Schrode, B., et al. (2019). Vapour-phase deposition of oriented copper dicarboxylate metal–organic framework thin films. Chemical Communications 55: 10056−10059. DOI: 10.1039/C9CC05161A.

    View in Article CrossRef Google Scholar

    [47] Krishtab, M., Stassen, I., Stassin, T., et al. (2019). Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics. Nature Communications 10: 3729. DOI: 10.1038/s41467-019-11703-x.

    View in Article CrossRef Google Scholar

    [48] Stassin, T., Stassen, I., Marreiros, J., et al. (2020). Solvent-free powder synthesis and MOF-CVD thin films of the large-pore metal–organic framework MAF-6. Chemistry of Materials 32: 1784−1793. DOI: 10.1021/acs.chemmater.9b03807.

    View in Article CrossRef Google Scholar

    [49] Han, S., Ciufo, R.A., Meyerson, M.L., et al. (2019). Solvent-free vacuum growth of oriented HKUST-1 thin films. Journal of Materials Chemistry A 7: 19396−19406. DOI: 10.1039/C9TA05179A.

    View in Article CrossRef Google Scholar

    [50] Yuan, H., Li, K., Shi, D., et al. (2023). Large-area fabrication of ultrathin metal-organic framework membranes. Advanced Materials 35: 2211859. DOI: 10.1002/adma.202211859.

    View in Article CrossRef Google Scholar

    [51] Wu, W., Su, J., Jia, M., et al. (2020) Vapor-phase linker exchange of metal-organic frameworks. Science Advances 6 (18):eaax7270. DOI: 10.1126/sciadv.aax7270.

    View in Article Google Scholar

    [52] Horcajada, P., Serre, C., Grosso, D., et al. (2009). Colloidal route for preparing optical thin films of nanoporous metal–organic frameworks. Advanced Materials 21: 1931−1935. DOI: 10.1002/adma.200801851.

    View in Article CrossRef Google Scholar

    [53] Li, W., Su, P., Li, Z., et al. (2017). Ultrathin metal–organic framework membrane production by gel–vapour deposition. Nature Communications 8: 406. DOI: 10.1038/s41467-017-00544-1.

    View in Article CrossRef Google Scholar

    [54] Rong, S., Chen, S., Su, P., et al. (2021). Postsynthetic modification of metal–organic frameworks by vapor-phase grafting. Inorganic Chemistry 60: 11745−11749. DOI: 10.1021/acs.inorgchem.1c00284.

    View in Article CrossRef Google Scholar

    [55] Zou, Z.Q., Zhou, H., Dai, L.M., et al. (2023). A dual stable MOF constructed through ligand exchange for enzyme immobilization with improved performance in biodiesel production. Renewable Energy 208 :17–25. DOI: 10.1016/j.renene.2023.03.072.

    View in Article Google Scholar

    [56] Marreiros, J., Van Dommelen, L., Fleury, G., et al. (2019). Vapor-phase linker exchange of the metal–organic framework ZIF-8: A solvent-free approach to post-synthetic modification. Angewandte Chemie International Edition 58: 18471−18475. DOI: 10.1002/anie.201912088.

    View in Article CrossRef Google Scholar

    [57] Choe, M., Kim, S., Choi, H.C. (2020). Smooth and large scale organometallic complex film by vapor-phase ligand exchange reaction. RSC Advances 10: 9536−9538. DOI: 10.1039/D0RA00403K.

    View in Article CrossRef Google Scholar

    [58] Gao, Z., Qin, Y. (2017). Design and properties of confined nanocatalysts by atomic layer deposition. Accounts of Chemical Research 50: 2309−2316. DOI: 10.1021/acs.accounts.7b00266.

    View in Article CrossRef Google Scholar

    [59] George, S.M., (2010). Atomic layer deposition: An overview. Chemical Reviews 110 (1):111-131. DOI: 10.1021/cr900056b.

    View in Article Google Scholar

    [60] Xiong, M., Gao, Z., Qin, Y. (2021). Spillover in heterogeneous catalysis: New insights and opportunities. ACS Catalysis 11: 3159−3172. DOI: 10.1021/acscatal.0c05567.

    View in Article CrossRef Google Scholar

    [61] Sun, X., Jiang, K., Zhang, N., et al. (2015). Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 9: 7634−7640. DOI: 10.1021/acsnano.5b02986.

    View in Article CrossRef Google Scholar

    [62] George, S.M., Yoon, B., and Dameron, A.A. (2009). Surface chemistry for molecular layer deposition of organic and hybrid organic−inorganic polymers. Accounts of Chemical Research 42: 498−508. DOI: 10.1021/ar800105q.

    View in Article CrossRef Google Scholar

    [63] Cao, Y.-Q., Zhu, L., Li, X., et al. (2015). Growth characteristics of Ti-based fumaric acid hybrid thin films by molecular layer deposition. Dalton Transactions 44: 14782−14792. DOI: 10.1039/C5DT00384A.

    View in Article CrossRef Google Scholar

    [64] Han, S., Mullins, C.B. (2020). Current progress and future directions in gas-phase metal-organic framework thin-film growth. ChemSusChem 13: 5433−5442. DOI: 10.1002/cssc.202001504.

    View in Article CrossRef Google Scholar

    [65] Weber, M., Julbe, A., Ayral, A., et al. (2018). Atomic layer deposition for membranes: Basics, challenges, and opportunities. Chemistry of Materials 30: 7368−7390. DOI: 10.1021/acs.chemmater.8b02687.

    View in Article CrossRef Google Scholar

    [66] Salmi, L.D., Heikkilä, M.J., Puukilainen, E., et al. (2013). Studies on atomic layer deposition of MOF-5 thin films. Microporous and Mesoporous Materials 182: 147−154. DOI: 10.1016/j.micromeso.2013.08.024.

    View in Article CrossRef Google Scholar

    [67] Salmi, L.D., Heikkilä, M.J., Vehkamäki, M., et al. (2014). Studies on atomic layer deposition of IRMOF-8 thin film. Journal of Vacuum Science & Technology A 33: 01A121. DOI: 10.1116/1.4901455.

    View in Article CrossRef Google Scholar

    [68] Goswami, S., Yu, J., Patwardhan, S., et al. (2021). Light-harvesting “antenna” behavior in NU-1000. ACS Energy Letters 6: 848−853. DOI: 10.1021/acsenergylett.0c02514.

    View in Article CrossRef Google Scholar

    [69] Lausund, K.B., Nilsen, O. (2016). All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition. Nature Communications 7: 13578. DOI: 10.1038/ncomms13578.

    View in Article CrossRef Google Scholar

    [70] Smets, J., Cruz, A.J., Rubio-Giménez, V., et al. (2023). Molecular layer deposition of zeolitic imidazolate framework-8 films. Chemistry of Materials 35: 1684−1690. DOI: 10.1021/acs.chemmater.2c03439.

    View in Article CrossRef Google Scholar

    [71] Ahvenniemi, E., Karppinen, M. (2016). Atomic/molecular layer deposition: a direct gas-phase route to crystalline metal–organic framework thin films. Chemical Communications 52: 1139−1142. DOI: 10.1039/C5CC08538A.

    View in Article CrossRef Google Scholar

    [72] Ahvenniemi, E., Karppinen, M. (2016). ALD/MLD processes for Mn and Co based hybrid thin films. Dalton Transactions 45: 10730−10735. DOI: 10.1039/C6DT00851H.

    View in Article CrossRef Google Scholar

    [73] Tanskanen, A., Karppinen, M. (2018). Iron-terephthalate coordination network thin films through in-situ atomic/molecular layer deposition. Scientific Reports 8: 8976. DOI: 10.1038/s41598-018-27124-7.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Xue L., Luo G., Yang X., et al., (2024). Vapor-phase methods for synthesizing metal-organic framework thin films. The Innovation Materials 2(1): 100047. https://doi.org/10.59717/j.xinn-mater.2024.100047
    Xue L., Luo G., Yang X., et al., (2024). Vapor-phase methods for synthesizing metal-organic framework thin films. The Innovation Materials 2(1): 100047. https://doi.org/10.59717/j.xinn-mater.2024.100047

Welcome!

To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.

Figures(9)    

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(4933) PDF downloads(1076) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint