A perovskite-type hydrogen permeation membrane was synthesized.
The valence evolution behavior of transition metals was investigated using X-ray absorption fine structure (XAFS).
Revealing 3D exsolution of transition metal nanoparticles via micro-beam XAFS.
[1] | Zhang, Y., Cui, J., Liu, Z., et al. (2021). Rational design of two-layer Fe-doped PrBa0.8Ca0.2Co2O6-δ double perovskite oxides for high-performance fuel cell cathodes. J. Phys. Chem. C 125 : 26448-26459. DOI: 10.1021/acs.jpcc.1c07564. |
[2] | Zhu, J., Cui, J., Zhang, Y., et al. (2023). Enhanced H2 permeation and CO2 tolerance of self-assembled ceramic–metal-ceramic BZCYYb-Ni-CeO2 hybrid membrane for hydrogen separation. J. Energy Chem. 82: 47−55. DOI: 10.1016/j.jechem.2023.03.027. |
[3] | Li, S., Lin, L., Wang, Z., and Ma, D. (2023). Direct utilization of crude and waste H2 via CO-tolerant hydrogenation. The Innovation 4: 100353. DOI: 10.1016/j.xinn.2022.100353. |
[4] | Ma, Y., Shi, R., and Zhang, T. (2022). Palladium membrane electro-hydrogenation. The Innovation 3: 100324. DOI: 10.1016/j.xinn.2022.100324. |
[5] | Xu, X., Su, C., and Shao, Z. (2021). Fundamental understanding and application of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite in energy storage and conversion: Past, present, and future. Energ. Fuel 35 : 13585-13609. DOI: 10.1021/acs.energyfuels.1c02111. |
[6] | Xu, X., Wang, W., Zhou, W., and Shao, Z. (2018). Recent advances in novel nanostructuring methods of perovskite electrocatalysts for energy-related applications. Small Methods 2: 1800071. DOI: 10.1002/smtd.201800071. |
[7] | Chen, S., Wei, X., Zhang, G., et al. (2023). All-temperature area battery application mechanism, performance, and strategies. The Innovation 4 : 100465. DOI: 10.1016/j.xinn.2023.100465. |
[8] | Bhat, S.A., and Sadhukhan, J. (2009). Process intensification aspects for steam methane reforming: An overview. AIChE J. 55: 408−422. DOI: 10.1002/aic.11687. |
[9] | Liu, J., Jiang, Y., Zhang, X., et al. (2022). Performance optimization of an HT-PEMFC and PSA integrated system with impure hydrogen containing CO2. Appl. Therm. Eng. 214: 118859. DOI: 10.1016/j.applthermaleng.2022.118859. |
[10] | Yang, M., He, F., Zhou, C., et al. (2021). New perovskite membrane with improved sintering and self-reconstructed surface for efficient hydrogen permeation. J. Membr. Sci. 620: 118980. DOI: 10.1016/j.memsci.2020.118980. |
[11] | Rebollo, E., Mortalo, C., Escolástico, S., et al. (2015). Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3-δ and Y-or Gd-doped ceria. Energ. Environ. Sci. 8 : 3675-3686. DOI: 10.1039/c5ee01793a. |
[12] | Zhou, C., Sunarso, J., Dai, J., et al. (2020). Realizing stable high hydrogen permeation flux through BaCo0.4Fe0.4Zr0.1Y0.1O3-δ membrane using a thin Pd film protection strategy. J. Membr. Sci. 596 : 117709. DOI: 10.1016/j.memsci.2019.117709. |
[13] | Zhu, Z., Sun, W., Yan, L., et al. (2011). Synthesis and hydrogen permeation of Ni–Ba(Zr0.1Ce0.7Y0.2)O3-δ metal–ceramic asymmetric membranes. Int. J. Hydrogen. Energ. 36 : 6337-6342. DOI: 10.1016/j.ijhydene.2011.02.029. |
[14] | Fang, S., Wang, S., Brinkman, K.S., et al. (2015). Relationship between fabrication method and chemical stability of Ni–BaZr0.8Y0.2O3-δ membrane. J. Power Sources 278 : 614-622. DOI: 10.1016/j.jpowsour.2014.12.108. |
[15] | Ivanova, M.E., Escolástico, S., Balaguer, M., et al. (2016). Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ at intermediate temperatures. Sci. Rep. 6 : 34773. DOI: 10.1038/srep34773. |
[16] | Zuo, C., Lee, T., Dorris, S., et al. (2006). Composite Ni-Ba(Zr0.1Ce0.7Y0.2)O3 membrane for hydrogen separation. J. Power Sources 159 : 1291-1295. DOI: 10.1016/j.jpowsour.2005.12.042. |
[17] | Bian, W., Wu, W., Wang, B., et al. (2022). Revitalizing interface in protonic ceramic cells by acid etch. Nature 604: 479−485. DOI: 10.1038/s41586-022-04457-y. |
[18] | Kuai, X., Yang, G., Chen, Y., et al. (2019). Boosting the activity of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ perovskite for oxygen reduction reactions at low-to-intermediate temperatures through tuning B-site cation deficiency. Adv. Energy Mater. 9 : 1902384. DOI: 10.1002/aenm.201902384. |
[19] | Kim, J., Ferree, M., Gunduz, S., et al. (2022). Exsolution of nanoparticles on a-site-deficient lanthanum ferrite perovskites: Its effect on co-electrolysis of CO2 and H2O. J. Mater. Chem. A 10: 2483−2495. DOI: 10.1039/d1ta07389c. |
[20] | Caldes, M., Kravchyk, K., Benamira, M., et al. (2012). Metallic nanoparticles and proton conductivity: improving proton conductivity of BaCe0.9Y0.1O3-δ using a catalytic approach. Chem. Mater. 24 : 4641-4646. DOI: 10.1021/cm301685x. |
[21] | Sun, Y., Li, J., Zeng, Y., et al. (2015). A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes. J. Mater. Chem. A 3: 11048−11056. DOI: 10.1039/c6ta90256a. |
[22] | Ruan, P., Chen, B., Zhou, Q., et al. (2023). Upgrading heterogeneous Ni catalysts with thiol modification. The Innovation 4 :100362. DOI: 10.1016/j.xinn.2022.100362. |
[23] | Weng, G., Ouyang, K., Lin, X., et al. (2022). Enhanced hydrogen permeability of mixed protonic–electronic conducting membranes through an in-situ exsolution strategy. Adv. Funct. Mater. 32: 2205255. DOI: 10.1002/adfm.202205255. |
[24] | He, F., Teng, Z., Yang, G., et al. (2020). Manipulating cation nonstoichiometry towards developing better electrolyte for self-humidified dual-ion solid oxide fuel cells. J. Power Sources 460: 228105. DOI: 10.1016/j.jpowsour.2020.228105. |
[25] | An, H., Im, S., Kim, J., et al. (2022). An unprecedented vapor-phase sintering activator for highly refractory proton-conducting oxides. ACS Energy Lett. 7: 4036−4044. DOI: 10.1021/acsenergylett.2c02059. |
[26] | Li, L., Zhou, J., Hu, Z., et al. (2021). First-principles insight into the effects of intrinsic oxygen defects on proton conduction in ruddlesden–popper oxides. J. Phy. Chem. Lett. 12: 11503−11510. DOI: 10.1021/acs.jpclett.1c02749. |
[27] | Li, L., Sun, H., Hu, Z., et al. (2021). In situ/operando capturing unusual Ir6+ facilitating ultrafast electrocatalytic water oxidation. Adv. Funct. Mater. 31: 2104746. DOI: 10.1002/adfm.202104746. |
[28] | Lin, X., Huang, Y.-C., Hu, Z., et al. (2021). 5f covalency synergistically boosting oxygen evolution of UCoO4 catalyst. J. Am. Chem. Soc. 144: 416−423. DOI: 10.1021/jacs.1c10311. |
[29] | Agrestini, S., Chen, K., Kuo, C.-Y., et al. (2019). Nature of the magnetism of iridium in the double perovskite Sr2CoIrO6. Phys. Rev. B 100: 014443. DOI: 10.1103/physrevb.100.014443. |
[30] | Zhang, L.-J., Wang, J.-Q., Li, J., et al. (2012). High-Tc ferromagnetism in a Co-doped ZnO system dominated by the formation of a zinc-blende type Co-rich ZnCoO phase. Chem. Commun. 48: 91−93. DOI: 10.1039/c1cc15622e. |
[31] | Jo, M., Bae, H., Park, K., et al. (2023). Layered barium cobaltite structure materials containing perovskite and CdI2-based layers for reversible solid oxide cells with exceptionally high performance. Chem. Eng. J. 451: 138954. DOI: 10.1016/j.cej.2022.138954. |
[32] | Xu, X., Wang, H., Fronzi, M., et al. (2019). Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance. J. Mater. Chem. A 7: 20624−20632. DOI: 10.1039/c9ta05300j. |
[33] | Wang, J., Syed, K., Ning, S., et al. (2022). Exsolution synthesis of nanocomposite perovskites with tunable electrical and magnetic properties. Adv. Funct. Mater. 32: 2108005. DOI: 10.1002/adfm.202108005. |
[34] | Zhu, T., Troiani, H.E., Mogni, L.V., et al. (2018). Ni-substituted Sr (Ti, Fe) O3 SOFC anodes: achieving high performance via metal alloy nanoparticle exsolution. Joule 2: 478−496. DOI: 10.1016/j.joule.2018.02.006. |
[35] | Kwon, O., Sengodan, S., Kim, K., et al. (2017). Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites. Nat. Commun. 8: 15967. DOI: 10.1038/ncomms15967. |
[36] | Jiang, B., Xue, H., Wang, P., et al. (2023). Noble-metal–metalloid alloy architectures: Mesoporous amorphous Iridium–Tellurium alloy for electrochemical N2 reduction. J. Am. Chem. Soc. 145: 6079−6086. DOI: 10.1021/jacs.2c10637. |
[37] | Kang, Y., Cretu, O., Kikkawa, J., et al. (2023). Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites. Nat. Commun. 14: 4182. DOI: 10.1038/s41467-023-39157-2. |
[38] | Zhou, C., Sunarso, J., Song, Y., et al. (2019). New reduced-temperature ceramic fuel cells with dual-ion conducting electrolyte and triple-conducting double perovskite cathode. J. Mater. Chem. A 7: 13265−13274. DOI: 10.1039/c9ta03501j. |
[39] | Huang, J., Fu, Y., Zhao, Y., et al. (2021). Anti-sintering non-stoichiometric nickel ferrite for highly efficient and thermal-stable thermochemical CO2 splitting. Chem. Eng. J. 404: 127067. DOI: 10.1016/j.cej.2020.127067. |
[40] | Murthy, P.R., Zhang, J.-C., and Li, W.-Z. (2021). Anti-sintering Au nanoparticles stabilized by a Fe-incorporated MgAl2O4 spinel for CO oxidation. Catal. Sci. Technol. 11(5): 1854−1861. DOI: 10.1039/d0cy02208j. |
[41] | Yu, H., Wei, X., and Li, J. (2015). The XAFS beamline of SSRF. Nucl. Sci. Tech. 26: 7. DOI: 10.13538/j.1001-8042/nst.26.050102. |
[42] | Ravel, B., and Newville, M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12(4): 537−541. DOI: 10.1107/s0909049505012719. |
Zhu J., Zhang Y., Liu Z., et al., (2024). Micro-beam XAFS reveals in-situ 3D exsolution of transition metal nanoparticles in accelerating hydrogen separation. The Innovation Materials 2(1): 100054. https://doi.org/10.59717/j.xinn-mater.2024.100054 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
Crystal structure and microstructure of BZCYYbMy
Electronic structure of transition metal elements in BZCYYbMy
Microstructure and electronic structure of transition metals in BZCYYbMy after hydrogen treated
The 3D exsolution of Co and Ni elements
Electrochemical and hydrogen separation performance of BZCYYbMy