REPORT   Open Access    

Micro-beam XAFS reveals in-situ 3D exsolution of transition metal nanoparticles in accelerating hydrogen separation

More Information
    1. A perovskite-type hydrogen permeation membrane was synthesized.

      The valence evolution behavior of transition metals was investigated using X-ray absorption fine structure (XAFS).

      Revealing 3D exsolution of transition metal nanoparticles via micro-beam XAFS.

  • Perovskite-based membranes for hydrogen separation have garnered significant attention due to their exceptional capability in efficiently segregating and refining hydrogen. A successful strategy for enhancing the electronic conductivity and catalytic properties of perovskite-based membranes involves anchoring transition metal particles onto carriers composed of perovskite oxides at elevated temperatures. This study involved doping Fe, Co, and Ni elements into the B-site of the BaZr0.1Ce0.7Y0.1Yb0.1O3-δ perovskite structure. We effectively demonstrated the exsolution of transition metal elements by combining X-ray absorption fine structure (XAFS) spectroscopy and electron microscopy. Furthermore, micro-beam XAFS analysis reveals that the exsolution of transition metals occurs not only at the surface but also within the bulk phase. This highlights the capability of micro-beam XAFS technique in elucidating changes in valence states of elements within bulk regions. Consequently, we have extended the concept of "nanoparticles for electronic conduction and catalysis" from two-dimensional surfaces to three-dimensional bulk phase structures for the first time.
  • 加载中
  • [1] Zhang, Y., Cui, J., Liu, Z., et al. (2021). Rational Design of Two-Layer Fe-Doped PrBa0.8Ca0.2Co2O6-δ Double Perovskite Oxides for High-Performance Fuel Cell Cathodes. J. Phys. Chem. C. 125 (48): 26448-26459. DOI: 10.1021/acs.jpcc.1c07564.

    View in Article Google Scholar

    [2] Zhu, J., Cui, J., Zhang, Y., et al. (2023). Enhanced H2 permeation and CO2 tolerance of self-assembled ceramic–metal-ceramic BZCYYb-Ni-CeO2 hybrid membrane for hydrogen separation. J. Energy Chem. 82: 47−55. DOI: 10.1016/j.jechem.2023.03.027.

    View in Article CrossRef Google Scholar

    [3] Li, S., Lin, L., Wang, Z., and Ma, D. (2023). Direct utilization of crude and waste H2 via CO-tolerant hydrogenation. The Innovation. 4(1): 100353. DOI: 10.1016/j.xinn.2022.100353.

    View in Article CrossRef Google Scholar

    [4] Ma, Y., Shi, R., and Zhang, T. (2022). Palladium membrane electro-hydrogenation. The Innovation. 3(6): 100324. DOI: 10.1016/j.xinn.2022.100324.

    View in Article CrossRef Google Scholar

    [5] Xu, X., Su, C., and Shao, Z. (2021). Fundamental understanding and application of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite in energy storage and conversion: past, present, and future. Energ Fuel. 35 (17): 13585-13609. DOI: 10.1021/acs.energyfuels.1c02111.

    View in Article Google Scholar

    [6] Xu, X., Wang, W., Zhou, W., and Shao, Z. (2018). Recent advances in novel nanostructuring methods of perovskite electrocatalysts for energy-related applications. Small Methods 2(7): 1800071. DOI: 10.1002/smtd.201800071.

    View in Article CrossRef Google Scholar

    [7] Chen, S., Wei, X., Zhang, G., et al. (2023). All-temperature area battery application mechanism, performance, and strategies. The Innovation 4 (4):100465. DOI: 10.1016/j.xinn.2023.100465.

    View in Article Google Scholar

    [8] Bhat, S.A., and Sadhukhan, J. (2009). Process intensification aspects for steam methane reforming: An overview. AIChE J 55(2): 408−422. DOI: 10.1002/aic.11687.

    View in Article CrossRef Google Scholar

    [9] Liu, J., Jiang, Y., Zhang, X., et al. (2022). Performance optimization of an HT-PEMFC and PSA integrated system with impure hydrogen containing CO2. Appl Therm Eng. 214: 118859. DOI: 10.1016/j.applthermaleng.2022.118859.

    View in Article CrossRef Google Scholar

    [10] Yang, M., He, F., Zhou, C., et al. (2021). New perovskite membrane with improved sintering and self-reconstructed surface for efficient hydrogen permeation. J. Membr. Sci. 620: 118980. DOI: 10.1016/j.memsci.2020.118980.

    View in Article CrossRef Google Scholar

    [11] Rebollo, E., Mortalo, C., Escolástico, S., et al. (2015). Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3-δ and Y-or Gd-doped ceria. Energ Environ. Sci. 8 (12): 3675-3686. DOI: 10.1039/c5ee01793a.

    View in Article Google Scholar

    [12] Zhou, C., Sunarso, J., Dai, J., et al. (2020). Realizing stable high hydrogen permeation flux through BaCo0.4Fe0.4Zr0.1Y0.1O3-δ membrane using a thin Pd film protection strategy. J. Membr. Sci. 596 : 117709. DOI: 10.1016/j.memsci.2019.117709.

    View in Article Google Scholar

    [13] Zhu, Z., Sun, W., Yan, L., et al. (2011). Synthesis and hydrogen permeation of Ni–Ba(Zr0.1Ce0.7Y0.2)O3-δ metal–ceramic asymmetric membranes. Int. J Hydrogen Energ. 36 (10): 6337-6342. DOI: 10.1016/j.ijhydene.2011.02.029.

    View in Article Google Scholar

    [14] Fang, S., Wang, S., Brinkman, K.S., et al. (2015). Relationship between fabrication method and chemical stability of Ni–BaZr0.8Y0.2O3-δ membrane. J. Power Sources. 278 : 614-622. DOI: 10.1016/j.jpowsour.2014.12.108.

    View in Article Google Scholar

    [15] Ivanova, M.E., Escolástico, S., Balaguer, M., et al. (2016). Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3-δ:Ce0.8Y0.2O2-δ at intermediate temperatures. Sci. Rep. 6 (1): 34773. DOI: 10.1038/srep34773.

    View in Article Google Scholar

    [16] Zuo, C., Lee, T., Dorris, S., et al. (2006). Composite Ni-Ba(Zr0.1Ce0.7Y0.2)O3 membrane for hydrogen separation. J. Power Sources. 159 (2): 1291-1295. DOI: 10.1016/j.jpowsour.2005.12.042.

    View in Article Google Scholar

    [17] Bian, W., Wu, W., Wang, B., et al. (2022). Revitalizing interface in protonic ceramic cells by acid etch. Nature 604(7906): 479−485. DOI: 10.1038/s41586-022-04457-y.

    View in Article CrossRef Google Scholar

    [18] Kuai, X., Yang, G., Chen, Y., et al. (2019). Boosting the activity of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ perovskite for oxygen reduction reactions at low-to-intermediate temperatures through tuning B-site cation deficiency. Adv. Energy. Mater. 9 (38): 1902384. DOI: 10.1002/aenm.201902384.

    View in Article Google Scholar

    [19] Kim, J., Ferree, M., Gunduz, S., et al. (2022). Exsolution of nanoparticles on A-site-deficient lanthanum ferrite perovskites: its effect on co-electrolysis of CO2 and H2O. J. Mater. Chem. A. 10(5): 2483−2495. DOI: 10.1039/d1ta07389c.

    View in Article CrossRef Google Scholar

    [20] Caldes, M., Kravchyk, K., Benamira, M., et al. (2012). Metallic nanoparticles and proton conductivity: improving proton conductivity of BaCe0.9Y0.1O3-δ using a catalytic approach. Chem. Mater. 24 (24): 4641-4646. DOI: 10.1021/cm301685x.

    View in Article Google Scholar

    [21] Sun, Y., Li, J., Zeng, Y., et al. (2015). A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes. J. Mater. Chem. A. 3(20): 11048−11056. DOI: 10.1039/c6ta90256a.

    View in Article CrossRef Google Scholar

    [22] Ruan, P., Chen, B., Zhou, Q., et al. (2023). Upgrading heterogeneous Ni catalysts with thiol modification. The Innovation 4 (1):100362. DOI: 10.1016/j.xinn.2022.100362.

    View in Article Google Scholar

    [23] Weng, G., Ouyang, K., Lin, X., et al. (2022). Enhanced Hydrogen Permeability of Mixed Protonic–Electronic Conducting Membranes through an In-Situ Exsolution Strategy. Adv. Funct. Mater. 32(36): 2205255. DOI: 10.1002/adfm.202205255.

    View in Article CrossRef Google Scholar

    [24] He, F., Teng, Z., Yang, G., et al. (2020). Manipulating cation nonstoichiometry towards developing better electrolyte for self-humidified dual-ion solid oxide fuel cells. J Power Sources. 460: 228105. DOI: 10.1016/j.jpowsour.2020.228105.

    View in Article CrossRef Google Scholar

    [25] An, H., Im, S., Kim, J., et al. (2022). An unprecedented vapor-phase sintering activator for highly refractory proton-conducting oxides. ACS Energy Lett. 7(11): 4036−4044. DOI: 10.1021/acsenergylett.2c02059.

    View in Article CrossRef Google Scholar

    [26] Li, L., Zhou, J., Hu, Z., et al. (2021). First-Principles Insight into the Effects of Intrinsic Oxygen Defects on Proton Conduction in Ruddlesden–Popper Oxides. J. Phy. Chem. Lett. 12(47): 11503−11510. DOI: 10.1021/acs.jpclett.1c02749.

    View in Article CrossRef Google Scholar

    [27] Li, L., Sun, H., Hu, Z., et al. (2021). In situ/operando capturing unusual Ir6+ facilitating ultrafast electrocatalytic water oxidation. Adv. Funct. Mater. 31(43): 2104746. DOI: 10.1002/adfm.202104746.

    View in Article CrossRef Google Scholar

    [28] Lin, X., Huang, Y.-C., Hu, Z., et al. (2021). 5f covalency synergistically boosting oxygen evolution of UCoO4 catalyst. J. Am. Chem. Soc. 144(1): 416−423. DOI: 10.1021/jacs.1c10311.

    View in Article CrossRef Google Scholar

    [29] Agrestini, S., Chen, K., Kuo, C.-Y., et al. (2019). Nature of the magnetism of iridium in the double perovskite Sr2CoIrO6. Phys. Rev. B 100(1): 014443. DOI: 10.1103/physrevb.100.014443.

    View in Article CrossRef Google Scholar

    [30] Zhang, L.-J., Wang, J.-Q., Li, J., et al. (2012). High-Tc ferromagnetism in a Co-doped ZnO system dominated by the formation of a zinc-blende type Co-rich ZnCoO phase. Chem. Commun. 48(1): 91−93. DOI: 10.1039/c1cc15622e.

    View in Article CrossRef Google Scholar

    [31] Jo, M., Bae, H., Park, K., et al. (2023). Layered barium cobaltite structure materials containing perovskite and CdI2-based layers for reversible solid oxide cells with exceptionally high performance. Chem. Eng. J. 451: 138954. DOI: 10.1016/j.cej.2022.138954.

    View in Article CrossRef Google Scholar

    [32] Xu, X., Wang, H., Fronzi, M., et al. (2019). Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance. J. Mater. Chem. A. 7(36): 20624−20632. DOI: 10.1039/c9ta05300j.

    View in Article CrossRef Google Scholar

    [33] Wang, J., Syed, K., Ning, S., et al. (2022). Exsolution synthesis of nanocomposite perovskites with tunable electrical and magnetic properties. Adv. Funct. Mater. 32(9): 2108005. DOI: 10.1002/adfm.202108005.

    View in Article CrossRef Google Scholar

    [34] Zhu, T., Troiani, H.E., Mogni, L.V., et al. (2018). Ni-substituted Sr (Ti, Fe) O3 SOFC anodes: achieving high performance via metal alloy nanoparticle exsolution. Joule. 2(3): 478−496. DOI: 10.1016/j.joule.2018.02.006.

    View in Article CrossRef Google Scholar

    [35] Kwon, O., Sengodan, S., Kim, K., et al. (2017). Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites. Nat. Commun. 8(1): 15967. DOI: 10.1038/ncomms15967.

    View in Article CrossRef Google Scholar

    [36] Jiang, B., Xue, H., Wang, P., et al. (2023). Noble-Metal–Metalloid Alloy Architectures: Mesoporous Amorphous Iridium–Tellurium Alloy for Electrochemical N2 Reduction. J. Am. Chem. Soc. 145(11): 6079−6086. DOI: 10.1021/jacs.2c10637.

    View in Article CrossRef Google Scholar

    [37] Kang, Y., Cretu, O., Kikkawa, J., et al. (2023). Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites. Nat. Commun. 14(1): 4182. DOI: 10.1038/s41467-023-39157-2.

    View in Article CrossRef Google Scholar

    [38] Zhou, C., Sunarso, J., Song, Y., et al. (2019). New reduced-temperature ceramic fuel cells with dual-ion conducting electrolyte and triple-conducting double perovskite cathode. J. Mater. Chem. A. 7(21): 13265−13274. DOI: 10.1039/c9ta03501j.

    View in Article CrossRef Google Scholar

    [39] Huang, J., Fu, Y., Zhao, Y., et al. (2021). Anti-sintering non-stoichiometric nickel ferrite for highly efficient and thermal-stable thermochemical CO2 splitting. Chem. Eng. J. 404: 127067. DOI: 10.1016/j.cej.2020.127067.

    View in Article CrossRef Google Scholar

    [40] Murthy, P.R., Zhang, J.-C., and Li, W.-Z. (2021). Anti-sintering Au nanoparticles stabilized by a Fe-incorporated MgAl2O4 spinel for CO oxidation. Catal. Sci. Technol. 11(5): 1854−1861. DOI: 10.1039/d0cy02208j.

    View in Article CrossRef Google Scholar

    [41] Yu, H., Wei, X., & Li, J. (2015). The XAFS beamline of SSRF. Nucl. Sci. Tech. 26(5): 7. DOI: 10.13538/j.1001-8042/nst.26.050102.

    View in Article CrossRef Google Scholar

    [42] Ravel, B., and Newville, M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron. Radiat. 12(4): 537−541. DOI: 10.1107/s0909049505012719.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Zhu J., Zhang Y., Liu Z., et al., (2024). Micro-beam XAFS reveals in-situ 3D exsolution of transition metal nanoparticles in accelerating hydrogen separation. The Innovation Materials 2(1): 100054. https://doi.org/10.59717/j.xinn-mater.2024.100054
    Zhu J., Zhang Y., Liu Z., et al., (2024). Micro-beam XAFS reveals in-situ 3D exsolution of transition metal nanoparticles in accelerating hydrogen separation. The Innovation Materials 2(1): 100054. https://doi.org/10.59717/j.xinn-mater.2024.100054

Figures(5)     Tables(1)

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(1695) PDF downloads(468) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint