[1] | Chen, C., Kuang, Y, Zhu, S., et al. (2020). Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5: 642−666. DOI: 10.1038/s41578-020-0195-z. |
[2] | Sulis, D.B., Jiang, X., Yang, C., et al. (2023). Multiplex CRISPR editing of wood for sustainable fiber production. Science 381: 216−221. DOI: 10.1126/science.add4514. |
[3] | Liu, G., Lin, Q., Jin, S., et al. (2022). The CRISPR-Cas toolbox and gene editing technologies. Mol. Cell 82: 333−347. DOI: 10.1016/j.molcel.2021.12.002. |
[4] | Matthews, M.L., Wang, J.P., Sederoff, R., et al. (2021). A multiscale model of lignin biosynthesis for predicting bioenergy traits in Populus trichocarpa. Comput. Struct. Biotechnol. J. 19: 168−182. DOI: 10.1016/j.csbj.2020.11.046. |
[5] | Zeidler, V.G.Z. (2023). Genetic editing of wood for sustainability. Science 381: 124−125. DOI: 10.1126/science.adi8186. |
Xu C., Xu G., and Chen C. (2024). Sustainable biomass utilization powered by multiplex CRISPR editing. The Innovation Materials 2(1): 100055. https://doi.org/10.59717/j.xinn-mater.2024.100055 |
Multiplex CRISPR editing for wood to solve chemical treatment issues