Single-atom catalysts loaded with acid stable conductive metal oxides for enhanced oxygen evolution reaction.
A high-throughput screening framework based on Density Functional Theory and Machine Learning is proposed.
The computational cost was reduced to 1/10 of the traditional DFT method.
14 promising SACs for OER were identified through the approach.
[1] | Chu, S., and Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature 488: 294−303. DOI: 10.1038/nature11475. |
[2] | Peng, L., and Wei, Z. (2020). Catalyst engineering for electrochemical energy conversion from water to water: water electrolysis and the hydrogen fuel cell. Engineering 6: 653−679. DOI: 10.1016/j.eng.2019.07.028. |
[3] | Holladay, J.D., Hu, J., King, D.L., et al. (2009). An overview of hydrogen production technologies. Catal. Today 139: 244−260. DOI: 10.1016/j.cattod.2008.08.039. |
[4] | Song, H.J., Yoon, H., Ju, B., et al. (2021). Highly efficient perovskite‐based electrocatalysts for water oxidation in acidic environments: A mini review. Adv. Energy Mater. 11: 2002428. DOI: 10.1002/aenm.202002428. |
[5] | Chorkendorff, I., Dickens, C.F., Seh, Z.W., et al. (2017). Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355: eaad4998. DOI: 10.1126/science.aad4998. |
[6] | Randolph, K., Miller, E., Peterson, D., et al. (2017). Hydrogen production tech team roadmap. US Doe 55. https://www.energy.gov/sites/default/files/2014/03/f9/hptt_roadmap_june2013.pdf |
[7] | DOE (2020). Department of energy hydrogen program plan. US Dep Energy 56. https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/hydrogen-program-plan-2020.pdf?Status=Master |
[8] | Cao, L., Luo, Q., Chen, J., et al. (2019). Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 10: 1−9. DOI: 10.1038/s41467-019-12886-z. |
[9] | McCrory, C.C.L., Jung, S., Peters, J.C., et al. (2013). Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135: 16977−16987. DOI: 10.1021/ja407115p. |
[10] | Qiao, B., Wang, A., Yang, X., et al. (2011). Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3: 634−641. DOI: 10.1038/nchem.1095. |
[11] | Yang, X., Wang, A., Qiao, B., et al. (2013). Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 46: 1740−1748. DOI: 10.1021/ar300361m. |
[12] | Zhang, H., Liu, G., Shi, L., et al. (2018). Single-atom catalysts: Emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 8: 1−24. DOI: 10.1002/aenm.201701343. |
[13] | Wang, A., Li, J., and Zhang, T. (2018). Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2: 65−81. DOI: 10.1038/s41570-018-0010-1. |
[14] | Liu, M., Wang, L., Zhao, K., et al. (2019). Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 12: 2890−2923. DOI: 10.1039/c9ee01722d. |
[15] | Li, X., Liu, L., Ren, X., et al. (2020). Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Sci. Adv. 6: 1−20. DOI: 10.1126/sciadv.abb6833. |
[16] | Li, L., Chang, X., Lin, X., et al. (2020). Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 49: 8156−8178. DOI: 10.1039/d0cs00795a. |
[17] | Kaiser, S.K., Chen, Z., Faust Akl, D., et al. (2020). Single-atom catalysts across the periodic table. Chem. Rev. 120: 11703−11809. DOI: 10.1021/acs.chemrev.0c00576. |
[18] | Zhang, F.-F., Cheng, C.-Q., Wang, J.-Q., et al. (2021). Iridium oxide modified with silver single atom for boosting oxygen evolution reaction in acidic media. ACS Energy Lett. 6: 1588−1595. DOI: 10.1021/acsenergylett.1c00283. |
[19] | Shan, J., Ye, C., Chen, S., et al. (2021). Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation. J. Am. Chem. Soc. 143: 5201−5211. DOI: 10.1021/jacs.1c01525. |
[20] | Liu, Y., Chen, Y., Mu, X., et al. (2023). Spinel-anchored iridium single atoms enable efficient acidic water oxidation via intermediate stabilization effect. ACS Catal. 13: 3757−3767. DOI: 10.1021/acscatal.2c05940. |
[21] | Shi, X., Peng, H.-J., Hersbach, T.J.P., et al. (2022). Efficient and stable acidic water oxidation enabled by low-concentration, high-valence iridium sites. ACS Energy Lett. 7: 2228−2235. DOI: 10.1021/acsenergylett.2c00578. |
[22] | Kim, D.Y., Ha, M., and Kim, K.S. (2021). A universal screening strategy for the accelerated design of superior oxygen evolution/reduction electrocatalysts. J. Mater. Chem. A 9: 3511−3519. DOI: 10.1039/d0ta02425b. |
[23] | Xu, H., Cheng, D., Cao, D., et al. (2018). A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 1: 339−348. DOI: 10.1038/s41929-018-0063-z. |
[24] | García-Mota, M., Vojvodic, A., Metiu, H., et al. (2011). Tailoring the activity for oxygen evolution electrocatalysis on rutile TiO2(110) by transition-metal substitution. ChemCatChem 3: 1607−1611. DOI: 10.1002/cctc.201100160. |
[25] | Zhong, M., Tran, K., Min, Y., et al. (2020). Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581: 178−183. DOI: 10.1038/s41586-020-2242-8. |
[26] | Back, S., Yoon, J., Tian, N., et al. (2019). Convolutional neural network of atomic surface structures to predict binding energies for high-throughput screening of catalysts. J. Phys. Chem. Lett. 10: 4401−4408. DOI: 10.1021/acs.jpclett.9b01428. |
[27] | Tran, K., and Ulissi, Z.W. (2018). Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1: 696−703. DOI: 10.1038/s41929-018-0142-1. |
[28] | Xu, W., Andersen, M., and Reuter, K. (2021). Data-driven descriptor engineering and refined scaling relations for predicting transition metal oxide reactivity. ACS Catal. 11: 734−742. DOI: 10.1021/acscatal.0c04170. |
[29] | Ha, M., Kim, D.Y., Umer, M., et al. (2021). Tuning metal single atoms embedded in NxCy moieties toward high-performance electrocatalysis. Energy Environ. Sci. 14: 3455−3468. DOI: 10.4135/9781412975704.n47. |
[30] | Guo, X., Lin, S., Gu, J., et al. (2019). Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: The power of single-atom catalysts. ACS Catal. 9: 11042−11054. DOI: 10.1021/acscatal.9b02778. |
[31] | Zafari, M., Kumar, D., Umer, M., et al. (2020). Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts. J. Mater. Chem. A 8: 5209−5216. DOI: 10.1039/c9ta12608b. |
[32] | Lin, S., Xu, H., Wang, Y., et al. (2020). Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning. J. Mater. Chem. A 8: 5663−5670. DOI: 10.1039/c9ta13404b. |
[33] | Scalia, G., Grambow, C.A., Pernici, B., et al. (2020). Evaluating scalable uncertainty estimation methods for deep learning-based molecular property prediction. J. Chem. Inf. Model 60: 2697−2717. DOI: 10.1021/acs.jcim.9b00975. |
[34] | Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2016). Simple and scalable predictive uncertainty estimation using deep ensembles. Guyon, I., Von Luxburg, U., and Bengio, S. et al. Advances in Neural Information Processing Systems 30 (NeurIPS Proceedings |
[35] | Kresse, G., and Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6: 15−50. DOI: 10.1016/0927-0256(96)00008-0. |
[36] | Kresse, G. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59: 1758−1775. DOI: 10.1103/PhysRevB.59.1758. |
[37] | Perdew, J.P., Burke, K., and Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett. 77: 3865−3868. DOI: 10.1103/PhysRevLett.77.3865. |
[38] | Blöchl, P.E. (1994). Projector augmented-wave method. Phys. Rev B 50: 17953−17979. DOI: 10.1103/PhysRevB.50.17953. |
[39] | Dudarev, S.L., Botton, G.A., Savrasov, S.Y., et al. (1998). Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57: 1505−1509. DOI: 10.1103/PhysRevB.57.1505. |
[40] | Jain, A., Ong, S.P., Hautier, G., et al. (2013). Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Mater. 1: 11002. DOI: 10.1063/1.4812323. |
[41] | Back, S., Tran, K., and Ulissi, Z.W. (2019). Toward a design of active oxygen evolution catalysts: Insights from automated density functional theory calculations and machine learning. ACS Catal. 9: 7651−7659. DOI: 10.1021/acscatal.9b02416. |
[42] | Man, I.C., Su, H.Y., Calle-Vallejo, F., et al. (2011). Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3: 1159−1165. DOI: 10.1002/cctc.201000397. |
[43] | Nørskov, J.K., Rossmeisl, J., Logadottir, A., et al. (2004). Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108: 17886−17892. DOI: 10.1021/jp047349j. |
[44] | Gu, G.H., Noh, J., Kim, I., et al. (2019). Machine learning for renewable energy materials. J. Mater. Chem. A 7: 17096−17117. DOI: 10.1039/C9TA02356A. |
[45] | Dietterich, T.G. (2000). Ensemble methods in machine learning. Kittler, J. and Roli, F. (eds). Multiple classifier systems (Springer Berlin Heidelberg), pp: 1–15. DOI: 10.1007/3-540-45014-9_1. |
[46] | Hirschfeld, L., Swanson, K., Yang, K., et al. (2020). Uncertainty quantification using neural networks for molecular property prediction. J. Chem. Inf. Model 60: 3770−3780. DOI: 10.1021/acs.jcim.0c00502. |
[47] | Van Der Maaten, L. (2014). Accelerating t-sne using tree-based algorithms. J. Mach. Learn Res. 15: 3221−3245. DOI: abs/10.5555/2627435.2697068. |
[48] | Singh, A.K., Zhou, L., Shinde, A., et al. (2017). Electrochemical stability of metastable materials. Chem. Mater. 29: 10159−10167. DOI: 10.1021/acs.chemmater.7b03980. |
[49] | Chung, D.Y., Park, S., Lopes, P.P., et al. (2020). Electrokinetic analysis of poorly conductive electrocatalytic materials. ACS Catal. 10: 4990−4996. DOI: 10.1021/acscatal.0c00960. |
[50] | Fei, H., Dong, J., Chen, D., et al. (2019). Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 48: 5207−5241. DOI: 10.1039/c9cs00422j. |
[51] | Sultan, S., Tiwari, J.N., Singh, A.N., et al. (2019). Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 9: 1−48. DOI: 10.1002/aenm.201900624. |
[52] | Parrondo, J., George, M., Capuano, C., et al. (2015). Pyrochlore electrocatalysts for efficient alkaline water electrolysis. J. Mater. Chem. A 3: 10819−10828. DOI: 10.1039/c5ta01771h. |
[53] | Kim, M., Park, J., Kang, M., et al. (2020). Toward efficient electrocatalytic oxygen evolution: Emerging opportunities with metallic pyrochlore oxides for electrocatalysts and conductive supports. ACS Cent Sci 6: 880−891. DOI: 10.1021/acscentsci.0c00479. |
[54] | SNUMAT database. (2024). https://www.snumat.com. |
[55] | Ong, S.P., Richards, W.D., Jain, A., et al. (2013). Python materials genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 68 : 314–319. DOI: https://doi.org/10.1016/j.commatsci.2012.10.028. |
[56] | Xie, T. and Grossman, J.C. (2018). Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120: 145301. DOI: 10.1103/PhysRevLett.120.145301. |
[57] | Gu, G.H., Noh, J., Kim, S., et al. (2020). Practical deep-learning representation for fast heterogeneous catalyst screening. J. Phys. Chem. Lett. 11: 3185−3191. DOI: 10.1021/acs.jpclett.0c00634. |
[58] | Gunasooriya, G.T.K.K. and Nørskov, J.K. (2020). Analysis of acid-stable and active oxides for the oxygen evolution reaction. ACS Energy Lett. 5: 3778−3787. DOI: 10.1021/acsenergylett.0c02030. |
[59] | Craig, M.J., Coulter, G., Dolan, E., et al. (2019). Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential. Nat. Commun. 10: 1−9. DOI: 10.1038/s41467-019-12994-w. |
[60] | Li, N., Keane, T.P., Veroneau, S.S., et al. (2020). Template-stabilized oxidic nickel oxygen evolution catalysts. Proc. Natl. Acad. Sci. 117: 16187−16192. DOI: 10.1073/pnas.2001529117. |
[61] | Wu, W., Yao, J., Liu, S., et al. (2019). Nanostructured hexagonal ReO3 with oxygen vacancies for efficient electrocatalytic hydrogen generation. Nanotechnology 30: 355701. DOI: 10.1088/1361-6528/ab214c. |
[62] | Chemicalbook.com. (2023). https://www.chemicalbook.com/. |
[63] | Pourbaix, M. J. N., Van Muylder, J., and de Zoubov, N. (1959). Electrochemical properties of the palladium metals. Platin Met. Rev. 3: 47−53. DOI: 10.1595/003214059X324753. |
Park W., Noh J., Gu G., et al., (2024). Machine learning-enabled fast exploration of stable and active single-atom catalysts for oxygen evolution reaction. The Innovation Materials 2(2): 100072. https://doi.org/10.59717/j.xinn-mater.2024.100072 |
High-throughput screening (HTS) framework
ML prediction results
Screening results for activity and stability
Volcano activity plot of theoretical overpotential (-ȠOER)
The linear relation of SACs