The high-performance hydrogel is constructed via cellulose nanofibril-guided orienting response of network.
The supramolecular assembly process of cellulosic network from isotropic to aligned structure is revealed.
The enabling hydrogel combines superstretchability, ultrarobustness, and fatigue-resistance.
[1] | Yang, C. and Suo, Z. (2018). Hydrogel ionotronics. Nat. Rev. Mater. 3: 125−142. DOI: 10.1038/s41578-018-0018-7. |
[2] | Ye, Y., Yu, L., Lizundia, E., et al. (2023). Cellulose-based ionic conductor: an emerging material toward sustainable devices. Chem. Rev. 123: 9204−9264. DOI: 10.1021/acs.chemrev.2c00618. |
[3] | Liu, X., Liu, J., Lin, S., et al. (2020). Hydrogel machines. Mater. Today 36: 102−124. DOI: 10.1016/j.mattod.2019.12.026. |
[4] | Zhang, Y.S., and Khademhosseini, A. (2017). Advances in engineering hydrogels. Science 356: eaaf3627. DOI: 10.1126/science.aaf3627. |
[5] | Zhao, X. (2017). Designing toughness and strength for soft materials. Proc. Natl. Acad. Sci. USA 114: 8138−8140. DOI: 10.1073/pnas.1710942114. |
[6] | Zhao, X., Chen, X., Yuk, H., et al. (2021). Soft materials by design: Unconventional Polymer networks give extreme properties. Chem. Rev. 121: 4309−4372. DOI: 10.1021/acs.chemrev.0c01088. |
[7] | Gong, J.P. (2014). Materials both tough and soft. Science 344: 161−162. DOI: 10.1126/science.1252389. |
[8] | Shao, G., Hanaor, D.A.H., Shen, X., and Gurlo, A. (2020). Freeze casting: From low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 32: 1907176. DOI: 10.1002/adma.201907176. |
[9] | Hua, M., Wu, S., Ma, Y., et al. (2021). Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590: 594−599. DOI: 10.1038/s41586-021-03212-z. |
[10] | Cui, K., and Gong, J.P. (2021). Aggregated structures and their functionalities in hydrogels. Aggregate 2: e33. DOI: 10.1002/agt2.33. |
[11] | Lin, S., Liu, J., Liu, X., and Zhao, X. (2019). Muscle-like fatigue-resistant hydrogels by mechanical training. Proc. Natl. Acad. Sci. USA 116: 10244−10249. DOI: 10.1073/pnas.1903019116. |
[12] | Zhang, Y., Li, D., Liu, Y., et al. (2024). 3D-bioprinted anisotropic bicellular living hydrogels boost osteochondral regeneration via reconstruction of cartilage-bone interface. The Innovation 5: 100542. DOI: 10.1016/j.xinn.2023.100542. |
[13] | Li, L., Zhang, Y., Lu, H., et al. (2020). Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nat. Commun. 11: 62. DOI: 10.1038/s41467-019-13959-9. |
[14] | Liang, X., Chen, G., Lin, S., et al. (2021). Anisotropically fatigue-resistant hydrogels. Adv. Mater. 33: 2102011. DOI: 10.1002/adma.202102011. |
[15] | Liang, X., Chen, G., Lin, S., et al. (2022). Bioinspired 2D isotropically fatigue-resistant hydrogels. Adv. Mater. 34: 2107106. DOI: 10.1002/adma.202107106. |
[16] | Mredha, M.T.I., Guo, Y.Z., Nonoyama, T., et al. (2018). A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures. Adv. Mater. 30: 1704937. DOI: 10.1002/adma.201704937. |
[17] | Liu, C., Morimoto, N., Jiang, L., et al. (2021). Tough hydrogels with rapid self-reinforcement. Science 372: 1078−1081. DOI: 10.1126/science.aaz6694. |
[18] | Zhang, S., Shi, W., and Wang, X. (2022). Locking volatile organic molecules by subnanometer inorganic nanowire-based organogels. Science 377: 100−104. DOI: 10.1126/science.abm7574. |
[19] | Wang, Z., Zheng, X., Ouchi, T., et al. (2021). Toughening hydrogels through force-triggered chemical reactions that lengthen polymer strands. Sciecne 373: 193−196. DOI: 10.1126/science.abg2689. |
[20] | Han, Z., Wang, P., Lu, Y., et al. (2022). A versatile hydrogel network–repairing strategy achieved by the covalent-like hydrogen bond interaction. Sci. Adv. 8: eabl5066. DOI: 10.1126/sciadv.abl5066. |
[21] | Jiang, G., Wang, G., Zhu, Y., et al. (2022). A scalable bacterial cellulose ionogel for multisensory electronic skin. Research 2022: 1−11. DOI: 10.34133/2022/9814767. |
[22] | Wu, S., Hua, M., Alsaid, Y., et al. (2021). Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect. Adv. Mater. 33: 2007829. DOI: 10.1002/adma.202007829. |
[23] | Cui, W., Zheng, Y., Zhu, R., et al. (2022). Strong tough conductive hydrogels via the synergy of ion‐induced cross‐linking and salting‐out. Adv. Funct. Mater. 32: 2204823. DOI: 10.1002/adfm.202204823. |
[24] | Lloyd, G.O. and Steed, J.W. (2009). Anion-tuning of supramolecular gel properties. Nat. Chem. 1: 437−442. DOI: 10.1038/nchem.283. |
[25] | Jungwirth, P. and Cremer, P.S. (2014). Beyond hofmeister. Nat. Chem. 6: 261−263. DOI: 10.1038/nchem.1899. |
[26] | Sun, X., Mao, Y., Yu, Z., et al. (2024). A biomimetic "salting out-alignment-locking" tactic to design strong and tough hydrogel. Adv. Mater. 36: 2400084. DOI: 10.1002/adma.202400084. |
[27] | Xu, L., Qiao, Y., and Qiu, D. (2023). Coordinatively stiffen and toughen hydrogels with adaptable crystal-domain cross-linking. Adv. Mater. 35: 2209913. DOI: 10.1002/adma.202209913. |
[28] | Liu, D., Cao, Y., Jiang, P., et al. (2023). Tough, transparent, and slippery PVA hydrogel led by syneresis. Small 19: 2206819. DOI: 10.1002/smll.202206819. |
[29] | Wang, S., Zhang, L., Wang, Z., et al. (2024). Humidity‐adaptive, mechanically robust, and recyclable bioplastic films amplified by nanoconfined assembly. Aggregate Early View : e643 DOI: 10.1002/agt2.643. |
[30] | Zhang, L., Chen, L., Wang, S., et al. (2024). Cellulose nanofiber-mediated manifold dynamic synergy enabling adhesive and photo-detachable hydrogel for self-powered E-skin. Nat. Commun. 15: 3859. DOI: 10.1038/s41467-024-47986-y. |
[31] | Sun, X., Pang, Z., Zhu, Y., et al. (2023). All-cellulose hydrogel-based adhesive. The Innovation Materials 1: 100040. DOI: 10.59717/j.xinn-mater.2023.100040. |
[32] | Wang, Z., Xu, C., Qi, L., et al. (2024). Chemical modification of polysaccharides for sustainable bioplastics. Trends Chem. 6: 314−331. DOI: 10.1016/j.trechm.2024.04.009. |
[33] | Niu, X., He, Y., Musl, O., et al. (2024). Bark extractives as sources of carbon-efficient functional precursors and materials. The Innovation Materials 2: 100074. DOI: 10.59717/j.xinn-mater.2024.100074. |
[34] | Ye, Y., Zhang, Y., Chen, Y., et al. (2020). Cellulose nanofibrils enhanced, strong, stretchable, freezing‐tolerant ionic conductive organohydrogel for multi‐functional sensors. Adv. Funct. Mater. 30: 2003430. DOI: 10.1002/adfm.202003430. |
[35] | Hourahine, B., Aradi, B., Blum, V., et al. (2020). DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 152: 124101. DOI: 10.1063/1.5143190. |
[36] | Grimme, S., Antony, J., Ehrlich, S., et al. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132: 154104. DOI: 10.1063/1.3382344. |
[37] | Grimme, S., Ehrlich, S., and Goerigk, L. (2011). Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32: 1456−1465. DOI: 10.1002/jcc.21759. |
[38] | Gaus, M., Goez, A., and Elstner, M. (2013). Parametrization and benchmark of DFTB3 for organic molecules. J. Chem. Theory Comput. 9: 338−354. DOI: 10.1021/ct300849w. |
[39] | Gaus, M., Lu, X., Elstner, M., et al. (2014). Parameterization of DFTB3/3OB for sulfur and phosphorus for chemical and biological applications. J. Chem. Theory Comput. 10: 1518−1537. DOI: 10.1021/ct401002w. |
[40] | Lu, X., Gaus, M., Elstner, M., et al. (2015). Parametrization of DFTB3/3OB for magnesium and zinc for chemical and biological applications. J. Phys. Chem. B 119: 1062−1082. DOI: 10.1021/jp506557r. |
[41] | Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117: 1−19. DOI: 10.1006/jcph.1995.1039. |
[42] | Sun, H., Mumby, S.J., Maple, J.R., et al. (2002). An ab Initio CFF93 all-atom force field for polycarbonates. J. Am. Chem. Soc. 116: 2978−2987. DOI: 10.1021/ja00086a030. |
[43] | Lordi, V. and Yao, N. (2011). Molecular mechanics of binding in carbon-nanotube–polymer composites. J. Mater. Res. 15: 2770−2779. DOI: 10.1557/jmr.2000.0396. |
[44] | Martinez, L., Andrade, R., Birgin, E.G., et al. (2009). PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30: 2157−2164. DOI: 10.1002/jcc.21224. |
[45] | Gallina, D. (2011). Finite element prediction of crack formation induced by quenching in a forged valve. Eng. Failure Anal. 18: 2250−2259. DOI: 10.1016/j.engfailanal.2011.07.020. |
[46] | Wang, S., Yu, L., Wang, S., et al. (2022). Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions. Nat. Commun. 13: 3408. DOI: 10.1038/s41467-022-30224-8. |
[47] | Alsaid, Y., Wu, S., Wu, D., et al. (2021). Tunable sponge-like hierarchically porous hydrogels with simultaneously enhanced diffusivity and mechanical properties. Adv. Mater. 33: 2008235. DOI: 10.1002/adma.202008235. |
[48] | Wang, S., Wang, Z., Zhang, L., et al. (2024). Sweat-adaptive adhesive hydrogel electronics enabled by dynamic hydrogen bond networks. Chem. Eng. J. 492: 152290. DOI: 10.1016/j.cej.2024.152290. |
[49] | Wang, Z., Wang, S., Zhang, L., et al. (2024). Highly strong, tough, and cryogenically adaptive hydrogel ionic conductors via coordination interactions. Research 7: 0298. DOI: 10.34133/research.0298. |
[50] | Zhao, D., Pang, B., Zhu, Y., et al. (2022). A stiffness-switchable, biomimetic smart material enabled by supramolecular reconfiguration. Adv. Mater. 34: 2107857. DOI: 10.1002/adma.202107857. |
[51] | Cao, J., Zhao, X., and Ye, L. (2020). Facile method to fabricate superstrong and tough poly(vinyl alcohol) hydrogels with high energy dissipation. Ind. Eng. Chem. Res. 59: 10705−10715. DOI: 10.1021/acs.iecr.0c01083. |
[52] | Assender, H.E., and Windle, A.H. (1998). Crystallinity in poly(vinyl alcohol) 2. Computer modelling of crystal structure over a range of tacticities. Polymer 39: 4303−4312. DOI: 10.1016/s0032-3861(97)10297-x. |
[53] | Hao, B., Ding, Z., Tao, X., et al. (2023). Atomic-scale imaging of polyvinyl alcohol crystallinity using electron ptychography. Polymer 284: 126305. DOI: 10.1016/j.polymer.2023.126305. |
[54] | Chen, H., Wei, P., Qi, Y., et al. (2023). Water-induced cellulose nanofibers/poly(vinyl alcohol) hydrogels regulated by hydrogen bonding for in situ water shutoff. ACS Appl. Mater. Interfaces 15: 39883−39895. DOI: 10.1021/acsami.3c07989. |
[55] | Li, Y., Ren, P., Sun, Z., et al. (2024). High-strength, anti-fatigue, cellulose nanofiber reinforced polyvinyl alcohol based ionic conductive hydrogels for flexible strain/pressure sensors and triboelectric nanogenerators. J. Colloid Interface Sci. 669: 248−257. DOI: 10.1016/j.jcis.2024.05.011. |
[56] | Xu, L., Gao, S., Guo, Q., et al. (2020). A solvent-exchange strategy to regulate noncovalent interactions for strong and antiswelling hydrogels. Adv. Mater. 32: 2004579. DOI: 10.1002/adma.202004579. |
[57] | Otsuka, E., Komiya, S., Sasaki, S., et al. (2012). Effects of preparation temperature on swelling and mechanical properties of PVA cast gels. Soft Matter 8: 8129. DOI: 10.1039/c2sm25513h. |
[58] | Tang, N., Jiang, Y., Wei, K., et al. (2024). Evolutionary reinforcement of polymer networks: A stepwise-enhanced strategy for ultrarobust eutectogels. Adv. Mater. 36: 2309576. DOI: 10.1002/adma.202309576. |
[59] | Zuo, B., Hu, Y., Lu, X., et al. (2013). Surface properties of poly(vinyl alcohol) films dominated by spontaneous adsorption of ethanol and governed by hydrogen bonding. The J. Phys. Chem. C 117: 3396−3406. DOI: 10.1021/jp3113304. |
[60] | Wang, J., Wu, B., Wei, P., et al. (2022). Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh. Nat. Commun. 13: 4411. DOI: 10.1038/s41467-022-32140-3. |
[61] | Liu, L., Zhu, M., Xu, X., et al. (2021). Dynamic nanoconfinement enabled highly stretchable and supratough polymeric materials with desirable healability and biocompatibility. Adv. Mater. 33: 2105829. DOI: 10.1002/adma.202105829. |
[62] | Kobayash, M., Ando, I., Ishii, Takahiro., et al. (1995). Structural study of poly (vinyl alcohol) in the gel state by high-resolution solid-state 13C NMR spectroscopy. Macromolecules 28: 6677−6679. DOI: 10.1021/ma00123a039. |
[63] | Xu, L., Wang, C., Cui, Y., et al. (2019). Conjoined-network rendered stiff and tough hydrogels from biogenic molecules. Sci. Adv. 5: eaau3442. DOI: 10.1126/sciadv.aau3442. |
[64] | Ji, D., Park, J.M., Oh, M.S., et al. (2022). Superstrong, superstiff, and conductive alginate hydrogels. Nat. Commun. 13: 3019. DOI: 10.1038/s41467-022-30691-z. |
[65] | Bai, R., Chen, B., Yang, J., et al. (2019). Tearing a hydrogel of complex rheology. J. Mech. Phys. Solids 125: 749−761. DOI: 10.1016/j.jmps.2019.01.017. |
[66] | Bai, R., Yang, J., and Suo, Z. (2019). Fatigue of hydrogels. Eur. J. Mech. A. Solids 74: 337−370. DOI: 10.1016/j.euromechsol.2018.12.001. |
[67] | Li, W., Wang, X., Liu, Z., et al. (2024). Nanoconfined polymerization limits crack propagation in hysteresis-free gels. Nat. Mater. 23: 131−138. DOI: 10.1038/s41563-023-01697-9. |
[68] | Wang, Y., Huang, X., and Zhang, X. (2021). Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat. Commun. 12: 1291. DOI: 10.1038/s41467-021-21577-7. |
[69] | Lei, Z., Gao, W., Zhu, W., et al. (2022). Anti‐fatigue and highly conductive thermocells for continuous electricity generation. Adv. Funct. Mater. 32: 2201021. DOI: 10.1002/adfm.202201021. |
[70] | Lin, S., Liu, X., Liu, J., et al. (2019). Anti-fatigue-fracture hydrogels. Sci. Adv. 5: eaau8528. DOI: 10.1126/sciadv.aau8528. |
[71] | Zhou, Y., Chen, C., Zhang, X., et al. (2019). Decoupling ionic and electronic pathways in low-dimensional hybrid conductors. J. Am. Chem. Soc. 141: 17830−17837. DOI: 10.1021/jacs.9b09009. |
Wang S., Yu L., Jia X., et al., (2024). Cellulose nanofibril-guided orienting response of supramolecular network enables superstretchable, robust, and antifatigue hydrogel. The Innovation Materials 2(4): 100092. https://doi.org/10.59717/j.xinn-mater.2024.100092 |
Design principle for the high-performance hydrogel
Morphology and structural analyses of hydrogels
Tensile and compressive performance of hydrogels
Antifatigue performance of hydrogels
Structural evolution during stretching of the PVA/CNF-Salting out hydrogel