ARTICLE   Open Access     Cite

Cellulose nanofibril-guided orienting response of supramolecular network enables superstretchable, robust, and antifatigue hydrogel

More Information
    1. The high-performance hydrogel is constructed via cellulose nanofibril-guided orienting response of network.

      The supramolecular assembly process of cellulosic network from isotropic to aligned structure is revealed.

      The enabling hydrogel combines superstretchability, ultrarobustness, and fatigue-resistance.

  • Hydrogels featuring randomly networked matrix typically show poor mechanical strength owing to the weak interchain interactions of the matrix. Encouragingly, the stretchability and toughness of hydrogel materials along a certain direction were recently improved to an unprecedented level with the design of structured and oriented matrix, the realization of excellent and concurrently isotropic mechanical performance for hydrogels now become the next- research goal. Herein, a self-assembling process of poly(vinyl alcohol) (PVA) macromolecular chain and cellulose nanofibril (CNF) induced by the salting-out effect was reported, which allowed the formation of a strongly hydrogen-bonded PVA-CNF supramolecular matrix. The resulting hydrogel, in any direction, can show an ultra-high stretchability of 7,400% and a true tensile strength of 420 MPa through the orientation of the supramolecular matrix. The robustness of the supramolecular interaction between PVA and CNF was experimentally demonstrated by the fact that the hydrogel showed a high fracture energy (reaching up to 95.7 kJ m−2) and low notch sensitivity (fatigue threshold of 3,203 J m−2), even outperforming most state-of-the-art anisotropic hydrogels. These results highlight that constructing supramolecular interaction among various components of gel matrix holds great promise for the design of future gel materials with the extraordinary mechanical performance.
  • 加载中
  • [1] Yang, C. and Suo, Z. (2018). Hydrogel ionotronics. Nat. Rev. Mater. 3: 125−142. DOI: 10.1038/s41578-018-0018-7.

    View in Article CrossRef Google Scholar

    [2] Ye, Y., Yu, L., Lizundia, E., et al. (2023). Cellulose-based ionic conductor: an emerging material toward sustainable devices. Chem. Rev. 123: 9204−9264. DOI: 10.1021/acs.chemrev.2c00618.

    View in Article CrossRef Google Scholar

    [3] Liu, X., Liu, J., Lin, S., et al. (2020). Hydrogel machines. Mater. Today 36: 102−124. DOI: 10.1016/j.mattod.2019.12.026.

    View in Article CrossRef Google Scholar

    [4] Zhang, Y.S., and Khademhosseini, A. (2017). Advances in engineering hydrogels. Science 356: eaaf3627. DOI: 10.1126/science.aaf3627.

    View in Article CrossRef Google Scholar

    [5] Zhao, X. (2017). Designing toughness and strength for soft materials. Proc. Natl. Acad. Sci. USA 114: 8138−8140. DOI: 10.1073/pnas.1710942114.

    View in Article CrossRef Google Scholar

    [6] Zhao, X., Chen, X., Yuk, H., et al. (2021). Soft materials by design: Unconventional Polymer networks give extreme properties. Chem. Rev. 121: 4309−4372. DOI: 10.1021/acs.chemrev.0c01088.

    View in Article CrossRef Google Scholar

    [7] Gong, J.P. (2014). Materials both tough and soft. Science 344: 161−162. DOI: 10.1126/science.1252389.

    View in Article CrossRef Google Scholar

    [8] Shao, G., Hanaor, D.A.H., Shen, X., and Gurlo, A. (2020). Freeze casting: From low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 32: 1907176. DOI: 10.1002/adma.201907176.

    View in Article CrossRef Google Scholar

    [9] Hua, M., Wu, S., Ma, Y., et al. (2021). Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590: 594−599. DOI: 10.1038/s41586-021-03212-z.

    View in Article CrossRef Google Scholar

    [10] Cui, K., and Gong, J.P. (2021). Aggregated structures and their functionalities in hydrogels. Aggregate 2: e33. DOI: 10.1002/agt2.33.

    View in Article CrossRef Google Scholar

    [11] Lin, S., Liu, J., Liu, X., and Zhao, X. (2019). Muscle-like fatigue-resistant hydrogels by mechanical training. Proc. Natl. Acad. Sci. USA 116: 10244−10249. DOI: 10.1073/pnas.1903019116.

    View in Article CrossRef Google Scholar

    [12] Zhang, Y., Li, D., Liu, Y., et al. (2024). 3D-bioprinted anisotropic bicellular living hydrogels boost osteochondral regeneration via reconstruction of cartilage-bone interface. The Innovation 5: 100542. DOI: 10.1016/j.xinn.2023.100542.

    View in Article CrossRef Google Scholar

    [13] Li, L., Zhang, Y., Lu, H., et al. (2020). Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nat. Commun. 11: 62. DOI: 10.1038/s41467-019-13959-9.

    View in Article CrossRef Google Scholar

    [14] Liang, X., Chen, G., Lin, S., et al. (2021). Anisotropically fatigue-resistant hydrogels. Adv. Mater. 33: 2102011. DOI: 10.1002/adma.202102011.

    View in Article CrossRef Google Scholar

    [15] Liang, X., Chen, G., Lin, S., et al. (2022). Bioinspired 2D isotropically fatigue-resistant hydrogels. Adv. Mater. 34: 2107106. DOI: 10.1002/adma.202107106.

    View in Article CrossRef Google Scholar

    [16] Mredha, M.T.I., Guo, Y.Z., Nonoyama, T., et al. (2018). A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures. Adv. Mater. 30: 1704937. DOI: 10.1002/adma.201704937.

    View in Article CrossRef Google Scholar

    [17] Liu, C., Morimoto, N., Jiang, L., et al. (2021). Tough hydrogels with rapid self-reinforcement. Science 372: 1078−1081. DOI: 10.1126/science.aaz6694.

    View in Article CrossRef Google Scholar

    [18] Zhang, S., Shi, W., and Wang, X. (2022). Locking volatile organic molecules by subnanometer inorganic nanowire-based organogels. Science 377: 100−104. DOI: 10.1126/science.abm7574.

    View in Article CrossRef Google Scholar

    [19] Wang, Z., Zheng, X., Ouchi, T., et al. (2021). Toughening hydrogels through force-triggered chemical reactions that lengthen polymer strands. Sciecne 373: 193−196. DOI: 10.1126/science.abg2689.

    View in Article CrossRef Google Scholar

    [20] Han, Z., Wang, P., Lu, Y., et al. (2022). A versatile hydrogel network–repairing strategy achieved by the covalent-like hydrogen bond interaction. Sci. Adv. 8: eabl5066. DOI: 10.1126/sciadv.abl5066.

    View in Article CrossRef Google Scholar

    [21] Jiang, G., Wang, G., Zhu, Y., et al. (2022). A scalable bacterial cellulose ionogel for multisensory electronic skin. Research 2022: 1−11. DOI: 10.34133/2022/9814767.

    View in Article CrossRef Google Scholar

    [22] Wu, S., Hua, M., Alsaid, Y., et al. (2021). Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect. Adv. Mater. 33: 2007829. DOI: 10.1002/adma.202007829.

    View in Article CrossRef Google Scholar

    [23] Cui, W., Zheng, Y., Zhu, R., et al. (2022). Strong tough conductive hydrogels via the synergy of ion‐induced cross‐linking and salting‐out. Adv. Funct. Mater. 32: 2204823. DOI: 10.1002/adfm.202204823.

    View in Article CrossRef Google Scholar

    [24] Lloyd, G.O. and Steed, J.W. (2009). Anion-tuning of supramolecular gel properties. Nat. Chem. 1: 437−442. DOI: 10.1038/nchem.283.

    View in Article CrossRef Google Scholar

    [25] Jungwirth, P. and Cremer, P.S. (2014). Beyond hofmeister. Nat. Chem. 6: 261−263. DOI: 10.1038/nchem.1899.

    View in Article CrossRef Google Scholar

    [26] Sun, X., Mao, Y., Yu, Z., et al. (2024). A biomimetic "salting out-alignment-locking" tactic to design strong and tough hydrogel. Adv. Mater. 36: 2400084. DOI: 10.1002/adma.202400084.

    View in Article CrossRef Google Scholar

    [27] Xu, L., Qiao, Y., and Qiu, D. (2023). Coordinatively stiffen and toughen hydrogels with adaptable crystal-domain cross-linking. Adv. Mater. 35: 2209913. DOI: 10.1002/adma.202209913.

    View in Article CrossRef Google Scholar

    [28] Liu, D., Cao, Y., Jiang, P., et al. (2023). Tough, transparent, and slippery PVA hydrogel led by syneresis. Small 19: 2206819. DOI: 10.1002/smll.202206819.

    View in Article CrossRef Google Scholar

    [29] Wang, S., Zhang, L., Wang, Z., et al. (2024). Humidity‐adaptive, mechanically robust, and recyclable bioplastic films amplified by nanoconfined assembly. Aggregate Early View : e643 DOI: 10.1002/agt2.643.

    View in Article Google Scholar

    [30] Zhang, L., Chen, L., Wang, S., et al. (2024). Cellulose nanofiber-mediated manifold dynamic synergy enabling adhesive and photo-detachable hydrogel for self-powered E-skin. Nat. Commun. 15: 3859. DOI: 10.1038/s41467-024-47986-y.

    View in Article CrossRef Google Scholar

    [31] Sun, X., Pang, Z., Zhu, Y., et al. (2023). All-cellulose hydrogel-based adhesive. The Innovation Materials 1: 100040. DOI: 10.59717/j.xinn-mater.2023.100040.

    View in Article CrossRef Google Scholar

    [32] Wang, Z., Xu, C., Qi, L., et al. (2024). Chemical modification of polysaccharides for sustainable bioplastics. Trends Chem. 6: 314−331. DOI: 10.1016/j.trechm.2024.04.009.

    View in Article CrossRef Google Scholar

    [33] Niu, X., He, Y., Musl, O., et al. (2024). Bark extractives as sources of carbon-efficient functional precursors and materials. The Innovation Materials 2: 100074. DOI: 10.59717/j.xinn-mater.2024.100074.

    View in Article CrossRef Google Scholar

    [34] Ye, Y., Zhang, Y., Chen, Y., et al. (2020). Cellulose nanofibrils enhanced, strong, stretchable, freezing‐tolerant ionic conductive organohydrogel for multi‐functional sensors. Adv. Funct. Mater. 30: 2003430. DOI: 10.1002/adfm.202003430.

    View in Article CrossRef Google Scholar

    [35] Hourahine, B., Aradi, B., Blum, V., et al. (2020). DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 152: 124101. DOI: 10.1063/1.5143190.

    View in Article CrossRef Google Scholar

    [36] Grimme, S., Antony, J., Ehrlich, S., et al. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132: 154104. DOI: 10.1063/1.3382344.

    View in Article CrossRef Google Scholar

    [37] Grimme, S., Ehrlich, S., and Goerigk, L. (2011). Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32: 1456−1465. DOI: 10.1002/jcc.21759.

    View in Article CrossRef Google Scholar

    [38] Gaus, M., Goez, A., and Elstner, M. (2013). Parametrization and benchmark of DFTB3 for organic molecules. J. Chem. Theory Comput. 9: 338−354. DOI: 10.1021/ct300849w.

    View in Article CrossRef Google Scholar

    [39] Gaus, M., Lu, X., Elstner, M., et al. (2014). Parameterization of DFTB3/3OB for sulfur and phosphorus for chemical and biological applications. J. Chem. Theory Comput. 10: 1518−1537. DOI: 10.1021/ct401002w.

    View in Article CrossRef Google Scholar

    [40] Lu, X., Gaus, M., Elstner, M., et al. (2015). Parametrization of DFTB3/3OB for magnesium and zinc for chemical and biological applications. J. Phys. Chem. B 119: 1062−1082. DOI: 10.1021/jp506557r.

    View in Article CrossRef Google Scholar

    [41] Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117: 1−19. DOI: 10.1006/jcph.1995.1039.

    View in Article CrossRef Google Scholar

    [42] Sun, H., Mumby, S.J., Maple, J.R., et al. (2002). An ab Initio CFF93 all-atom force field for polycarbonates. J. Am. Chem. Soc. 116: 2978−2987. DOI: 10.1021/ja00086a030.

    View in Article CrossRef Google Scholar

    [43] Lordi, V. and Yao, N. (2011). Molecular mechanics of binding in carbon-nanotube–polymer composites. J. Mater. Res. 15: 2770−2779. DOI: 10.1557/jmr.2000.0396.

    View in Article CrossRef Google Scholar

    [44] Martinez, L., Andrade, R., Birgin, E.G., et al. (2009). PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30: 2157−2164. DOI: 10.1002/jcc.21224.

    View in Article CrossRef Google Scholar

    [45] Gallina, D. (2011). Finite element prediction of crack formation induced by quenching in a forged valve. Eng. Failure Anal. 18: 2250−2259. DOI: 10.1016/j.engfailanal.2011.07.020.

    View in Article CrossRef Google Scholar

    [46] Wang, S., Yu, L., Wang, S., et al. (2022). Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions. Nat. Commun. 13: 3408. DOI: 10.1038/s41467-022-30224-8.

    View in Article CrossRef Google Scholar

    [47] Alsaid, Y., Wu, S., Wu, D., et al. (2021). Tunable sponge-like hierarchically porous hydrogels with simultaneously enhanced diffusivity and mechanical properties. Adv. Mater. 33: 2008235. DOI: 10.1002/adma.202008235.

    View in Article CrossRef Google Scholar

    [48] Wang, S., Wang, Z., Zhang, L., et al. (2024). Sweat-adaptive adhesive hydrogel electronics enabled by dynamic hydrogen bond networks. Chem. Eng. J. 492: 152290. DOI: 10.1016/j.cej.2024.152290.

    View in Article CrossRef Google Scholar

    [49] Wang, Z., Wang, S., Zhang, L., et al. (2024). Highly strong, tough, and cryogenically adaptive hydrogel ionic conductors via coordination interactions. Research 7: 0298. DOI: 10.34133/research.0298.

    View in Article CrossRef Google Scholar

    [50] Zhao, D., Pang, B., Zhu, Y., et al. (2022). A stiffness-switchable, biomimetic smart material enabled by supramolecular reconfiguration. Adv. Mater. 34: 2107857. DOI: 10.1002/adma.202107857.

    View in Article CrossRef Google Scholar

    [51] Cao, J., Zhao, X., and Ye, L. (2020). Facile method to fabricate superstrong and tough poly(vinyl alcohol) hydrogels with high energy dissipation. Ind. Eng. Chem. Res. 59: 10705−10715. DOI: 10.1021/acs.iecr.0c01083.

    View in Article CrossRef Google Scholar

    [52] Assender, H.E., and Windle, A.H. (1998). Crystallinity in poly(vinyl alcohol) 2. Computer modelling of crystal structure over a range of tacticities. Polymer 39: 4303−4312. DOI: 10.1016/s0032-3861(97)10297-x.

    View in Article CrossRef Google Scholar

    [53] Hao, B., Ding, Z., Tao, X., et al. (2023). Atomic-scale imaging of polyvinyl alcohol crystallinity using electron ptychography. Polymer 284: 126305. DOI: 10.1016/j.polymer.2023.126305.

    View in Article CrossRef Google Scholar

    [54] Chen, H., Wei, P., Qi, Y., et al. (2023). Water-induced cellulose nanofibers/poly(vinyl alcohol) hydrogels regulated by hydrogen bonding for in situ water shutoff. ACS Appl. Mater. Interfaces 15: 39883−39895. DOI: 10.1021/acsami.3c07989.

    View in Article CrossRef Google Scholar

    [55] Li, Y., Ren, P., Sun, Z., et al. (2024). High-strength, anti-fatigue, cellulose nanofiber reinforced polyvinyl alcohol based ionic conductive hydrogels for flexible strain/pressure sensors and triboelectric nanogenerators. J. Colloid Interface Sci. 669: 248−257. DOI: 10.1016/j.jcis.2024.05.011.

    View in Article CrossRef Google Scholar

    [56] Xu, L., Gao, S., Guo, Q., et al. (2020). A solvent-exchange strategy to regulate noncovalent interactions for strong and antiswelling hydrogels. Adv. Mater. 32: 2004579. DOI: 10.1002/adma.202004579.

    View in Article CrossRef Google Scholar

    [57] Otsuka, E., Komiya, S., Sasaki, S., et al. (2012). Effects of preparation temperature on swelling and mechanical properties of PVA cast gels. Soft Matter 8: 8129. DOI: 10.1039/c2sm25513h.

    View in Article CrossRef Google Scholar

    [58] Tang, N., Jiang, Y., Wei, K., et al. (2024). Evolutionary reinforcement of polymer networks: A stepwise-enhanced strategy for ultrarobust eutectogels. Adv. Mater. 36: 2309576. DOI: 10.1002/adma.202309576.

    View in Article CrossRef Google Scholar

    [59] Zuo, B., Hu, Y., Lu, X., et al. (2013). Surface properties of poly(vinyl alcohol) films dominated by spontaneous adsorption of ethanol and governed by hydrogen bonding. The J. Phys. Chem. C 117: 3396−3406. DOI: 10.1021/jp3113304.

    View in Article CrossRef Google Scholar

    [60] Wang, J., Wu, B., Wei, P., et al. (2022). Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh. Nat. Commun. 13: 4411. DOI: 10.1038/s41467-022-32140-3.

    View in Article CrossRef Google Scholar

    [61] Liu, L., Zhu, M., Xu, X., et al. (2021). Dynamic nanoconfinement enabled highly stretchable and supratough polymeric materials with desirable healability and biocompatibility. Adv. Mater. 33: 2105829. DOI: 10.1002/adma.202105829.

    View in Article CrossRef Google Scholar

    [62] Kobayash, M., Ando, I., Ishii, Takahiro., et al. (1995). Structural study of poly (vinyl alcohol) in the gel state by high-resolution solid-state 13C NMR spectroscopy. Macromolecules 28: 6677−6679. DOI: 10.1021/ma00123a039.

    View in Article CrossRef Google Scholar

    [63] Xu, L., Wang, C., Cui, Y., et al. (2019). Conjoined-network rendered stiff and tough hydrogels from biogenic molecules. Sci. Adv. 5: eaau3442. DOI: 10.1126/sciadv.aau3442.

    View in Article CrossRef Google Scholar

    [64] Ji, D., Park, J.M., Oh, M.S., et al. (2022). Superstrong, superstiff, and conductive alginate hydrogels. Nat. Commun. 13: 3019. DOI: 10.1038/s41467-022-30691-z.

    View in Article CrossRef Google Scholar

    [65] Bai, R., Chen, B., Yang, J., et al. (2019). Tearing a hydrogel of complex rheology. J. Mech. Phys. Solids 125: 749−761. DOI: 10.1016/j.jmps.2019.01.017.

    View in Article CrossRef Google Scholar

    [66] Bai, R., Yang, J., and Suo, Z. (2019). Fatigue of hydrogels. Eur. J. Mech. A. Solids 74: 337−370. DOI: 10.1016/j.euromechsol.2018.12.001.

    View in Article CrossRef Google Scholar

    [67] Li, W., Wang, X., Liu, Z., et al. (2024). Nanoconfined polymerization limits crack propagation in hysteresis-free gels. Nat. Mater. 23: 131−138. DOI: 10.1038/s41563-023-01697-9.

    View in Article CrossRef Google Scholar

    [68] Wang, Y., Huang, X., and Zhang, X. (2021). Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat. Commun. 12: 1291. DOI: 10.1038/s41467-021-21577-7.

    View in Article CrossRef Google Scholar

    [69] Lei, Z., Gao, W., Zhu, W., et al. (2022). Anti‐fatigue and highly conductive thermocells for continuous electricity generation. Adv. Funct. Mater. 32: 2201021. DOI: 10.1002/adfm.202201021.

    View in Article CrossRef Google Scholar

    [70] Lin, S., Liu, X., Liu, J., et al. (2019). Anti-fatigue-fracture hydrogels. Sci. Adv. 5: eaau8528. DOI: 10.1126/sciadv.aau8528.

    View in Article CrossRef Google Scholar

    [71] Zhou, Y., Chen, C., Zhang, X., et al. (2019). Decoupling ionic and electronic pathways in low-dimensional hybrid conductors. J. Am. Chem. Soc. 141: 17830−17837. DOI: 10.1021/jacs.9b09009.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Wang S., Yu L., Jia X., et al., (2024). Cellulose nanofibril-guided orienting response of supramolecular network enables superstretchable, robust, and antifatigue hydrogel. The Innovation Materials 2(4): 100092. https://doi.org/10.59717/j.xinn-mater.2024.100092
    Wang S., Yu L., Jia X., et al., (2024). Cellulose nanofibril-guided orienting response of supramolecular network enables superstretchable, robust, and antifatigue hydrogel. The Innovation Materials 2(4): 100092. https://doi.org/10.59717/j.xinn-mater.2024.100092

Figures(5)    

Supplementary Information

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(2729) PDF downloads(610) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint