Article Contents
REVIEW   Open Access     Cite

Two-dimensional nanomaterials for inflammation-related disease treatments

More Information
  • DownLoad: Full size image
    1. Categorizing the regulatory mechanisms of 2D nanomaterials toward inflammation.

      Highlighting the advantages of 2D nanomaterials in anti-inflammatory applications.

      Summarizing the therapeutic applications of 2D nanomaterials in inflammation-related diseases.

  • Two-dimensional (2D) nanomaterials are an emerging class of materials with sheet-like morphology, open and flat lateral surface, and atomic thickness, presenting unique properties over other nanomaterials, such as extra-large surface area, compelling electronic properties, easy surface modification, and good mechanical strength. In recent years, 2D nanomaterials have emerged as versatile platforms for modulating inflammatory pathways, offering novel mechanisms to complement conventional anti-inflammatory therapies. Their unique physiochemical properties enable precise intervention in pathological processes through three distinct modalities: (i) eliminating pathogen invasion and infection through their morphology, photothermal, or catalytic effects to temper inflammation; (ii) serving as antioxidants or catalysts to scavenge excessive reactive oxygen species generated during inflammatory responses; (iii) delivering therapeutic agents, such as anti-inflammation drugs or therapeutic gases, to synergistically regulate inflammatory responses. In this review, we first introduce the biological process of inflammatory responses and their relationship to diseases; next the mechanism of 2D nanomaterials for inflammation regulation will be discussed; and finally, the recent applications of 2D nanomaterials for the treatments of inflammation-related disease will be presented and summarized. It is expected that this review may inspire the rational designs and constructions of next generation 2D material-based functional systems for inflammation-related disease treatments.
  • 加载中
  • [1] Tan C., Cao X., Wu X.J., et al. (2017). Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117:6225−6331. DOI:10.1021/acs.chemrev.6b00558

    View in Article CrossRef Google Scholar

    [2] Novoselov K.S., Geim A.K., Morozov S.V., et al. (2004). Electric field effect in atomically thin carbon films. Science 306:666−669. DOI:10.1126/science.1102896

    View in Article CrossRef Google Scholar

    [3] Lim K.R.G., Shekhirev M., Wyatt B.C. et al. (2022). Fundamentals of MXene synthesis. Nat. Synth. 1:601−614. DOI:10.1038/s44160-022-00104-6

    View in Article CrossRef Google Scholar

    [4] Rasheed P.A., Pandey R.P., Banat F., et al. (2022). Recent advances in niobium MXenes: Synthesis, properties, and emerging applications. Matter 5:546−572. DOI:10.1016/j.matt.2021.12.021

    View in Article CrossRef Google Scholar

    [5] Kalantar-zadeh K., Ou J.Z., Daeneke T., et al. (2015). Two-dimensional transition metal dichalcogenides in biosystems. Adv. Funct. Mater. 25:5086−5099. DOI:10.1002/adfm.201500891

    View in Article CrossRef Google Scholar

    [6] Zhi C., Bando Y., Tang C., et al. (2009). Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 21:2889−2893. DOI:10.1002/adma.200900323

    View in Article CrossRef Google Scholar

    [7] Ong W.J., Tan L.L., Ng Y.H., et al. (2016). Graphitic carbon nitride (g-C3N4)-Based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability. Chem. Rev. 116:7159−7329. DOI:10.1021/acs.chemrev.6b00075

    View in Article CrossRef Google Scholar

    [8] Kang S., Fang Z., He M., et al. (2020). An instant, biocompatible and biodegradable high-performance graphitic carbon nitride. J. Colloid Interface Sci. 563:336−346. DOI:10.1016/j.jcis.2019.12.021

    View in Article CrossRef Google Scholar

    [9] Wang Q., and O’Hare D. (2012). Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112:4124−4155. DOI:10.1021/cr200434v

    View in Article CrossRef Google Scholar

    [10] Liu H., Du Y., Deng Y., et al. (2015). Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44:2732−2743. DOI:10.1039/C4CS00257A

    View in Article CrossRef Google Scholar

    [11] Ma L., Song X., Yu Y., et al. (2021). Two-dimensional silicene/silicon nanosheets: an emerging silicon-composed nanostructure in biomedicine. Adv. Mater. 33:2008226. DOI:10.1002/adma.202008226

    View in Article CrossRef Google Scholar

    [12] Rodenas T., Luz I., Prieto G., et al. (2015). Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14:48−55. DOI:10.1038/nmat4113

    View in Article CrossRef Google Scholar

    [13] Colson J.W., Woll A.R., Mukherjee A., et al. (2011). Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332:228−231. DOI:10.1126/science.1202747

    View in Article CrossRef Google Scholar

    [14] Kim T., Hong J., Kim J., et al. (2023). Two-dimensional peptide assembly via arene–perfluoroarene interactions for proliferation and differentiation of myoblasts. J. Am. Chem. Soc. 145:1793−1802. DOI:10.1021/jacs.2c10938

    View in Article CrossRef Google Scholar

    [15] Liu L., Klausen L.H., and Dong M. (2018). Two-dimensional peptide based functional nanomaterials. Nano Today 23:40−58. DOI:10.1016/j.nantod.2018.10.008

    View in Article CrossRef Google Scholar

    [16] Vijayakumar S., Alberstein R.G., Zhang Z., et al. (2024). Designed 2D protein crystals as dynamic molecular gatekeepers for a solid-state device. Nat. Commun. 15:6326. DOI:10.1038/s41467-024-50567-8

    View in Article CrossRef Google Scholar

    [17] Ben-Sasson A.J., Watson J.L., Sheffler W., et al. (2021). Design of biologically active binary protein 2D materials. Nature 589:468−473. DOI:10.1038/s41586-020-03120-8

    View in Article CrossRef Google Scholar

    [18] Liu Y., Dai Z., Xie X., et al. (2024). Spacer-programmed two-dimensional DNA origami assembly. J. Am. Chem. Soc. 146:5461−5469. DOI:10.1021/jacs.3c13180

    View in Article CrossRef Google Scholar

    [19] Jun H., Wang X., Bricker W.P., et al. (2019). Automated sequence design of 2D wireframe DNA origami with honeycomb edges. Nat. Commun. 10:5419. DOI:10.1038/s41467-019-13457-y

    View in Article CrossRef Google Scholar

    [20] Hu T., Mei X., Wang Y., et al. (2019). Two-dimensional nanomaterials: fascinating materials in biomedical field. Sci. Bull. 64:1707−1727. DOI:10.1016/j.scib.2019.09.021

    View in Article CrossRef Google Scholar

    [21] Chen Z., Wu C., Yuan Y., et al. (2023). CRISPR-Cas13a-powered electrochemical biosensor for the detection of the L452R mutation in clinical samples of SARS-CoV-2 variants. J. Nanobiotechnol. 21:141. DOI:10.1186/s12951-023-01903-5

    View in Article CrossRef Google Scholar

    [22] Chen Z., Li J., Li T., et al. (2022). A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. Natl. Sci. Rev. 9:nwac104. DOI:10.1093/nsr/nwac104

    View in Article CrossRef Google Scholar

    [23] Zheng F., Chen Z., Li J., et al. (2022). A highly sensitive CRISPR-empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification. Adv. Sci. 9:2105231. DOI:10.1002/advs.202105231

    View in Article CrossRef Google Scholar

    [24] Chen Z., Huang H., Deng J., et al. (2024). Light-guided genetic scissors based on phosphorene quantum dot. Laser Photon. Rev. 18:2400777. DOI:10.1002/lpor.202400777

    View in Article CrossRef Google Scholar

    [25] Chen Z., Meng C., Wang X., et al. (2024). Ultrasensitive DNA origami plasmon sensor for accurate detection in circulating tumor DNAs. Laser Photon. Rev. 18:2400035. DOI:10.1002/lpor.202400035

    View in Article CrossRef Google Scholar

    [26] Libby P. (2007). Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr. Rev. 65(suppl_3):S140−S146. DOI:10.1111/j.1753-4887.2007.tb00352.x

    View in Article CrossRef Google Scholar

    [27] Okin D. and Medzhitov, R. (2012). Evolution of inflammatory diseases. Curr. Biol. 22:R733−R740. DOI:10.1016/j.cub.2012.07.029

    View in Article CrossRef Google Scholar

    [28] Krishnamoorthy S. and Honn K.V. (2006). Inflammation and disease progression. Cancer Metastasis Rev. 25:481−491. DOI:10.1007/s10555-006-9016-0

    View in Article CrossRef Google Scholar

    [29] Hunter P. (2012). The inflammation theory of disease. EMBO Rep. 13:968−970. DOI:10.1038/embor.2012.142

    View in Article CrossRef Google Scholar

    [30] Nathan C. and Ding A. (2010). Nonresolving Inflammation. Cell 140:871−882. DOI:10.1016/j.cell.2010.02.029

    View in Article CrossRef Google Scholar

    [31] Kotas M.E. and Medzhitov R. (2015). Homeostasis, inflammation, and disease susceptibility. Cell 160:816−827. DOI:10.1016/j.cell.2015.02.010

    View in Article CrossRef Google Scholar

    [32] Heppner F.L., Ransohoff R.M. and Becher B. (2015). Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16:358−372. DOI:10.1038/nrn3880

    View in Article CrossRef Google Scholar

    [33] Lucas S.M., Rothwell N.J. and Gibson R.M. (2006). The role of inflammation in CNS injury and disease. Br. J. Pharmacol. 147:S232−S240. DOI:10.1038/sj.bjp.0706400

    View in Article CrossRef Google Scholar

    [34] Tansey M.G., Wallings R.L,. Houser M.C., et al. (2022). Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 22:657−673. DOI:10.1038/s41577-022-00684-6

    View in Article CrossRef Google Scholar

    [35] Hotamisligil G.S. (2006). Inflammation and metabolic disorders. Nature 444:860−867. DOI:10.1038/nature05485

    View in Article CrossRef Google Scholar

    [36] Chawla A., Nguyen K.D., and Goh Y.P.S. (2011). Macrophage-mediated inflammation in metabolic disease. Nat. Rev. Immunol. 11:738−749. DOI:10.1038/nri3071

    View in Article CrossRef Google Scholar

    [37] Ferrucci L., and Fabbri E. (2018). Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15:505−522. DOI:10.1038/s41569-018-0064-2

    View in Article CrossRef Google Scholar

    [38] Chen Z., Bozec A., Ramming A., et al. (2019). Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat. Rev. Rheumatol. 15:9−17. DOI:10.1038/s41584-018-0109-2

    View in Article CrossRef Google Scholar

    [39] Akchurin O.M. and Kaskel F. (2015). Update on Inflammation in Chronic Kidney Disease. Blood Purif. 39:84−92. DOI:10.1159/000368940

    View in Article CrossRef Google Scholar

    [40] Chen L., Deng H., Cui H., et al. (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 9:7204–7218. DOI: 10.18632/oncotarget.23208.

    View in Article Google Scholar

    [41] Netea M.G., Balkwill F., Chonchol M., et al. (2017). A guiding map for inflammation. Nat. Immunol. 18:826−831. DOI:10.1038/ni.3790

    View in Article CrossRef Google Scholar

    [42] Gong T., Liu L., Jiang W., et al. (2020). DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 20:95−112. DOI:10.1038/s41577-019-0215-7

    View in Article CrossRef Google Scholar

    [43] Kawai T. and Akira S. (2006). Innate immune recognition of viral infection. Nat. Immunol. 7:131−137. DOI:10.1038/ni1303

    View in Article CrossRef Google Scholar

    [44] Medzhitov R. (2008). Origin and physiological roles of inflammation. Nature 454:428−435. DOI:10.1038/nature07201

    View in Article CrossRef Google Scholar

    [45] Mariathasan S., Weiss D.S., Newton K., et al. (2006). Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228−232. DOI:10.1038/nature04515

    View in Article CrossRef Google Scholar

    [46] Medzhitov R. and Janeway C.A. (1997). Innate immunity: The virtues of a nonclonal system of recognition. Cell 91:295−298. DOI:10.1016/S0092-8674(00)80412-2

    View in Article CrossRef Google Scholar

    [47] Hofmann M.A., Drury S., Fu C., et al. (1999). RAGE mediates a novel proinflammatory axis: A central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889−901. DOI:10.1016/S0092-8674(00)80801-6

    View in Article CrossRef Google Scholar

    [48] Pober J.S., and Sessa W.C. (2007). Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7:803−815. DOI:10.1038/nri2171

    View in Article CrossRef Google Scholar

    [49] A current view on inflammation. (2017). Nat. Immunol. 18:825−825. doi:10.1038/ni.3798.

    View in Article Google Scholar

    [50] Simmons D.L. (2006). What makes a good anti-inflammatory drug target. Drug Discov. Today 11:210−219. DOI:10.1016/S1359-6446(05)03721-9

    View in Article CrossRef Google Scholar

    [51] Harris R.E. (2007). Inflammation in the pathogenesis of chronic diseases: the COX-2 controversy (Springer Science & Business Media).

    View in Article Google Scholar

    [52] Sun J., Zhang H., Guo L.H., et al. (2013). Two-dimensional interface engineering of a titania–graphene nanosheet composite for improved photocatalytic activity. ACS Appl. Mater. Interfaces 5:13035−13041. DOI:10.1021/am403937y

    View in Article CrossRef Google Scholar

    [53] Gokce C., Gurcan C., Besbinar O., et al. (2022). Emerging 2D materials for antimicrobial applications in the pre- and post-pandemic era. Nanoscale 14:239−249. DOI:10.1039/D1NR06476B

    View in Article CrossRef Google Scholar

    [54] Mei L., Zhu S., Yin W., et al. (2020). Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics 10:757−781. DOI:10.7150/thno.39701

    View in Article CrossRef Google Scholar

    [55] Li B., Luo Y., Zheng Y., et al. (2022). Two-dimensional antibacterial materials. Prog. Mater. Sci. 130:100976. DOI:10.1016/j.pmatsci.2022.100976

    View in Article CrossRef Google Scholar

    [56] Sethulekshmi A.S., Saritha A., Joseph K., et al. (2022). MoS2 based nanomaterials: Advanced antibacterial agents for future. J. Control. Release 348:158−185. DOI:10.1016/j.jconrel.2022.05.047

    View in Article CrossRef Google Scholar

    [57] Chen, F.; Luo, Y.; Liu, X.; et al. (2022). 2D Molybdenum sulfide-based materials for photo-excited antibacterial application. Adv. Healthc. Mater. 11:2200360. DOI:10.1002/adhm.202200360

    View in Article CrossRef Google Scholar

    [58] Seidi F., Arabi Shamsabadi A., Dadashi Firouzjaei M., et al. (2023). MXenes antibacterial properties and applications: A review and perspective. Small 19:2206716. DOI:10.1002/smll.202206716

    View in Article CrossRef Google Scholar

    [59] Hao S., Han H., Yang Z., et al. (2022). Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials. Nano-Micro Lett. 14:178. DOI:10.1007/s40820-022-00901-w

    View in Article CrossRef Google Scholar

    [60] Ji H., Sun H., and Qu X. (2016). Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges. Adv. Drug Deliv. Rev. 105:176−189. DOI:10.1016/j.addr.2016.04.009

    View in Article CrossRef Google Scholar

    [61] Lee O.S., Madjet M.E., and Mahmoud, K.A. (2021). Antibacterial mechanism of multifunctional MXene nanosheets: domain formation and phase transition in lipid bilayer. Nano Lett. 21:8510−8517. DOI:10.1021/acs.nanolett.1c01986

    View in Article CrossRef Google Scholar

    [62] Rasool K., Helal M., Ali A., et al. (2016). Antibacterial Activity of Ti3C2Tx MXene. ACS Nano 10:3674−3684. DOI:10.1021/acsnano.6b00181

    View in Article CrossRef Google Scholar

    [63] Zou X., Zhang L., Wang Z., et al. (2016). Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 138:2064−2077. DOI:10.1021/jacs.5b11411

    View in Article CrossRef Google Scholar

    [64] Zheng H., Ma R., Gao M., et al. (2018). Antibacterial applications of graphene oxides: structure-activity relationships, molecular initiating events and biosafety. Sci. Bull. 63:133−142. DOI:10.1016/j.scib.2017.12.012

    View in Article CrossRef Google Scholar

    [65] Li Y., Yuan H., von dem Bussche A., et al. (2013). Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. U. S. A. 110:12295−12300. DOI:10.1073/pnas.1222276110

    View in Article CrossRef Google Scholar

    [66] Tang Y., Qin Z., Zhong Y., et al. (2023). Bioinspired MoS2 nanosheet-modified carbon fibers for synergetic bacterial elimination and wound disinfection. Adv. Healthc. Mater. 12:2202270. DOI:10.1002/adhm.202202270

    View in Article CrossRef Google Scholar

    [67] Ouyang J., Wen M., Chen W., et al. (2019). Multifunctional two dimensional Bi2Se3 nanodiscs for combined antibacterial and anti-inflammatory therapy for bacterial infections. Chem. Commun. 55:4877−4880. DOI:10.1039/C9CC01129C

    View in Article CrossRef Google Scholar

    [68] Krishnamoorthy K., Veerapandian M., Yun K., et al. (2013). New function of molybdenum trioxide nanoplates: Toxicity towards pathogenic bacteria through membrane stress. Colloid Surf. B-Biointerfaces 112:521−524. DOI:10.1016/j.colsurfb.2013.08.026

    View in Article CrossRef Google Scholar

    [69] Zada S., Dai W., Kai Z., et al. (2020). Algae extraction controllable delamination of vanadium carbide nanosheets with enhanced near-infrared photothermal performance. Angew. Chem. Int. Ed. 59:6601−6606. DOI:10.1002/anie.201916748

    View in Article CrossRef Google Scholar

    [70] Lin H., Wang X., Yu L., et al. (2017). Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 17:384−391. DOI:10.1021/acs.nanolett.6b04339

    View in Article CrossRef Google Scholar

    [71] Wu F., Zheng H., Wang W., et al. (2021). Rapid eradication of antibiotic-resistant bacteria and biofilms by MXene and near-infrared light through photothermal ablation. Sci. China Mater. 64:748−758. DOI:10.1007/s40843-020-1451-7

    View in Article CrossRef Google Scholar

    [72] Ge M., Zong M., Xu D., et al. (2021). Freestanding germanene nanosheets for rapid degradation and photothermal conversion. Mater. Today Nano 15:100119. DOI:10.1016/j.mtnano.2021.100119

    View in Article CrossRef Google Scholar

    [73] Huang Y., Gao Q., Li X., et al. (2020). Ofloxacin loaded MoS2 nanoflakes for synergistic mild-temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria. Nano Res. 13:2340−2350. DOI:10.1007/s12274-020-2853-2

    View in Article CrossRef Google Scholar

    [74] Xu S., Bhatia S., Fan X., et al. (2022). Glycosylated MoS2 sheets for capturing and deactivating E. coli bacteria: Combined effects of multivalent binding and sheet size. Adv. Mater. Interfaces 9:2102315. DOI:10.1002/admi.202102315

    View in Article CrossRef Google Scholar

    [75] Yang Z., Fu X., Ma D., et al. (2021). Growth factor-decorated Ti3C2 MXene/MoS2 2D bio-heterojunctions with quad-channel photonic disinfection for effective regeneration of bacteria-invaded cutaneous tissue. Small 17:2103993. DOI:10.1002/smll.202103993

    View in Article CrossRef Google Scholar

    [76] Yuan H., Hong X., Ma H., et al. (2023). MXene-based dual functional nanocomposite with photothermal nanozyme catalytic activity to fight bacterial infections. ACS Mater. Lett. 5:762−774. DOI:10.1021/acsmaterialslett.2c00771

    View in Article CrossRef Google Scholar

    [77] Wu M.C., Deokar A.R., Liao J.H., et al. (2013). Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 7:1281−1290. DOI:10.1021/nn304782d

    View in Article CrossRef Google Scholar

    [78] Zhang B., He J., Shi M., et al. (2020). Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration. Chem Eng. J. 400:125994. DOI:10.1016/j.cej.2020.125994

    View in Article CrossRef Google Scholar

    [79] Fan X., Yang F., Huang J., et al. (2019). Metal–organic-framework-derived 2D carbon nanosheets for localized multiple bacterial eradication and augmented anti-infective therapy. Nano Lett. 19:5885−5896. DOI:10.1021/acs.nanolett.9b01400

    View in Article CrossRef Google Scholar

    [80] Zhang C., Hu D.F., Xu J.W., et al. (2018). Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity. ACS Nano 12:12347−12356. DOI:10.1021/acsnano.8b06321

    View in Article CrossRef Google Scholar

    [81] Guan X., Kumar P., Li Z., et al. (2023). Borophene embedded cellulose paper for enhanced photothermal water evaporation and prompt bacterial killing. Adv. Sci. 10:2205809. DOI:10.1002/advs.202205809

    View in Article CrossRef Google Scholar

    [82] Aksoy İ., Küçükkeçeci H., Sevgi F., et al. (2020). Photothermal antibacterial and antibiofilm activity of black phosphorus/gold nanocomposites against pathogenic bacteria. ACS Appl. Mater. Interfaces 12:26822−26831. DOI:10.1021/acsami.0c02524

    View in Article CrossRef Google Scholar

    [83] Zeng J., Gu C., Geng X., et al. (2023). Combined photothermal and sonodynamic therapy using a 2D black phosphorus nanosheets loaded coating for efficient bacterial inhibition and bone-implant integration. Biomaterials 297:122122. DOI:10.1016/j.biomaterials.2023.122122

    View in Article CrossRef Google Scholar

    [84] Ma S., Luo X., Ran G., et al. (2022). Defect engineering of ultrathin 2D nanosheet BiOI/Bi for enhanced photothermal-catalytic synergistic bacteria-killing. Chem. Eng. J. 435:134810. DOI:10.1016/j.cej.2022.134810

    View in Article CrossRef Google Scholar

    [85] Liu G., Wang L., He Y., et al. (2021). Polydopamine nanosheets doped injectable hydrogel with nitric oxide release and photothermal effects for bacterial ablation and wound healing. Adv. Healthc. Mater. 10:2101476. DOI:10.1002/adhm.202101476

    View in Article CrossRef Google Scholar

    [86] Liu Y., Xiao Y., Cao Y., et al. (2020). Construction of chitosan-based hydrogel incorporated with antimonene nanosheets for rapid capture and elimination of bacteria. Adv. Funct. Mater. 30:2003196. DOI:10.1002/adfm.202003196

    View in Article CrossRef Google Scholar

    [87] Hou J., and Xianyu Y. (2023). Tailoring the surface and composition of nanozymes for enhanced bacterial binding and antibacterial activity. Small 19:2302640. DOI:10.1002/smll.202302640

    View in Article CrossRef Google Scholar

    [88] Li L., Cao L., Xiang X., et al. (2022). Ros-catalytic transition-metal-based enzymatic nanoagents for tumor and bacterial eradication. Adv. Funct. Mater. 32:2107530. DOI:10.1002/adfm.202107530

    View in Article CrossRef Google Scholar

    [89] Mei L., Zhu S., Liu Y., et al. (2021). An overview of the use of nanozymes in antibacterial applications. Chem. Eng. J. 418:129431. DOI:10.1016/j.cej.2021.129431

    View in Article CrossRef Google Scholar

    [90] Zhang X., Min Y., Zhang Q., et al. (2022). Functionalized Mn3O4 nanosheets with photothermal, photodynamic, and oxidase-like activities triggered by low-powered near-infrared light for synergetic combating multidrug-resistant bacterial infections. Adv. Healthc. Mater. 11:2200121. DOI:10.1002/adhm.202200121

    View in Article CrossRef Google Scholar

    [91] Hu W.C., Younis M.R., Zhou Y., et al. (2020). In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial therapy. Small 16:2000553. DOI:10.1002/smll.202000553

    View in Article CrossRef Google Scholar

    [92] Zeng J., Li Z., Jiang H., et al. (2021). Progress on photocatalytic semiconductor hybrids for bacterial inactivation. Mater. Horizons 8:2964−3008. DOI:10.1039/D1MH00773D

    View in Article CrossRef Google Scholar

    [93] Yang Z., Chen C., Li B., et al. (2023). A core–shell 2D-MoS2@MOF heterostructure for rapid therapy of bacteria-infected wounds by enhanced photocatalysis. Chem. Eng. J. 451:139127. DOI:10.1016/j.cej.2022.139127

    View in Article CrossRef Google Scholar

    [94] Zhu W., Liu X., Tan L., et al. (2019). AgBr nanoparticles in situ growth on 2D MoS2 nanosheets for rapid bacteria-killing and photodisinfection. ACS Appl. Mater. Interfaces 11:34364−34375. DOI:10.1021/acsami.9b12629

    View in Article CrossRef Google Scholar

    [95] Wang W., Feng H., Liu J., et al. (2020). A photo catalyst of cuprous oxide anchored MXene nanosheet for dramatic enhancement of synergistic antibacterial ability. Chem. Eng. J. 386:124116. DOI:10.1016/j.cej.2020.124116

    View in Article CrossRef Google Scholar

    [96] Liu Y., Tian Y., Han Q., et al. (2021). Synergism of 2D/1D MXene/cobalt nanowire heterojunctions for boosted photo-activated antibacterial application. Chem. Eng. J. 410:128209. DOI:10.1016/j.cej.2020.128209

    View in Article CrossRef Google Scholar

    [97] Yuan Y., Niu B., Yu Q., et al. (2020). Photoinduced multiple effects to enhance uranium extraction from natural seawater by black phosphorus nanosheets. Angew. Chem. Int. Ed. 59:1220–1227. DOI:10.1002/anie.201913644

    View in Article CrossRef Google Scholar

    [98] Tao N., Zeng Z., Deng Y., et al. (2023). Stanene nanosheets-based hydrogel for sonodynamic treatment of drug-resistant bacterial infection. Chem. Eng. J. 456:141109. DOI:10.1016/j.cej.2022.141109

    View in Article CrossRef Google Scholar

    [99] Andrades M.É., Morina A., Spasić S., et al. (2011). Bench-to-bedside review: Sepsis-from the redox point of view. Crit. Care 15:230. DOI:10.1186/cc10334

    View in Article CrossRef Google Scholar

    [100] He X., Xue J., Shi L., et al. (2022). Recent antioxidative nanomaterials toward wound dressing and disease treatment via ROS scavenging. Mater. Today Nano 17:100149. DOI:10.1016/j.mtnano.2021.100149

    View in Article CrossRef Google Scholar

    [101] Wang L., Zhu B., Deng Y., et al. (2021). Biocatalytic and antioxidant nanostructures for ROS scavenging and biotherapeutics. Adv. Funct. Mater. 31:2101804. DOI:10.1002/adfm.202101804

    View in Article CrossRef Google Scholar

    [102] Zhang C., Wang X., Du J., et al. (2021). Reactive oxygen species-regulating strategies based on nanomaterials for disease treatment. Adv. Sci. 8:2002797. DOI:10.1002/advs.202002797

    View in Article CrossRef Google Scholar

    [103] Huang X., He D., Pan Z., et al. (2021). Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater. Today Bio 11:100124. DOI:10.1016/j.mtbio.2021.100124

    View in Article CrossRef Google Scholar

    [104] Yoshitomi T., and Nagasaki Y. (2014). Reactive oxygen species-scavenging nanomedicines for the treatment of oxidative stress injuries. Adv. Healthc. Mater. 3:1149−1161. DOI:10.1002/adhm.201300576

    View in Article CrossRef Google Scholar

    [105] Wang L., Li Y., Zhao L., et al. (2020). Recent advances in ultrathin two-dimensional materials and biomedical applications for reactive oxygen species generation and scavenging. Nanoscale 12:19516−19535. DOI:10.1039/D0NR05746K

    View in Article CrossRef Google Scholar

    [106] Qiu Y., Wang Z., Owens A.C.E., et al. (2014). Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale 6:11744−11755. DOI:10.1039/C4NR03275F

    View in Article CrossRef Google Scholar

    [107] Zhang X., You Y., Sun Y., et al. (2022). Catalytic anti-oxidative stress for osteoarthritis treatment by few-layered phosphorene. Mater. Today Bio 17:100462. DOI:10.1016/j.mtbio.2022.100462

    View in Article CrossRef Google Scholar

    [108] Lu H., Wei J., Liu K., et al. (2023). Radical-scavenging and subchondral bone-regenerating nanomedicine for osteoarthritis treatment. ACS Nano 17:6131−6146. DOI:10.1021/acsnano.3c01789

    View in Article CrossRef Google Scholar

    [109] Zhao X., Wang L.Y., Li J.M., et al. (2021). Redox-mediated artificial non-enzymatic antioxidant MXene nanoplatforms for acute kidney injury alleviation. Adv. Sci. 8:2101498. DOI:10.1002/advs.202101498

    View in Article CrossRef Google Scholar

    [110] Yim D., Lee D.E., So Y., et al. (2020). Sustainable nanosheet antioxidants for sepsis therapy via scavenging intracellular reactive oxygen and nitrogen species. ACS Nano 14:10324−10336. DOI:10.1021/acsnano.0c03807

    View in Article CrossRef Google Scholar

    [111] Yim D., Kim J.E., Kim H.I., et al. (2018). Adjustable intermolecular interactions allowing 2D transition metal dichalcogenides with prolonged scavenging activity for reactive oxygen species. Small 14:1800026. DOI:10.1002/smll.201800026

    View in Article CrossRef Google Scholar

    [112] Lin Z., Chen Z., Chen Y., et al. (2023). Hydrogenated silicene nanosheet functionalized scaffold enables immuno-bone remodeling. Exploration 3:20220149. DOI:10.1002/EXP.20220149

    View in Article CrossRef Google Scholar

    [113] Chen Z., Qi F., Qiu W., et al. (2022). Hydrogenated germanene nanosheets as an antioxidative defense agent for acute kidney injury treatment. Adv. Sci. 9:2202933. DOI:10.1002/advs.202202933

    View in Article CrossRef Google Scholar

    [114] Wang S., Huang J., Zhu H., et al. (2023). Nanomodulators capable of timely scavenging ROS for inflammation and prognosis control following photothermal tumor therapy. Adv. Funct. Mater. 33:2213151. DOI:10.1002/adfm.202213151

    View in Article CrossRef Google Scholar

    [115] Ai Y., Hu Z.N., Liang X., et al. (2022). Recent advances in nanozymes: from matters to bioapplications. Adv. Funct. Mater. 32:2110432. DOI:10.1002/adfm.202110432

    View in Article CrossRef Google Scholar

    [116] Yang B., Chen Y., and Shi J. (2019). Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 119:4881−4985. DOI:10.1021/acs.chemrev.8b00626

    View in Article CrossRef Google Scholar

    [117] Yang B., Chen Y., and Shi J. (2019). Nanocatalytic medicine. Adv. Mater. 31:1901778. DOI:10.1002/adma.201901778

    View in Article CrossRef Google Scholar

    [118] Lyu Z., Ding S., Du D., et al. (2022). Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Adv. Drug Deliv. Rev. 185:114269. DOI:10.1016/j.addr.2022.114269

    View in Article CrossRef Google Scholar

    [119] Zeng W., Zhang H., Yuan X., et al. (2022). Two-dimensional nanomaterial-based catalytic medicine: Theories, advanced catalyst and system design. Adv. Drug Deliv. Rev. 184:114241. DOI:10.1016/j.addr.2022.114241

    View in Article CrossRef Google Scholar

    [120] Guo Y., Ding S., Shang C., et al. (2023). Multifunctional PtCuTe nanosheets with strong ROS scavenging and ROS-independent antibacterial properties promote diabetic wound healing. Adv. Mater. 36:2306292. DOI:10.1002/adma.202306292

    View in Article CrossRef Google Scholar

    [121] Feng W., Han X., Hu H., et al. (2021). 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat. Commun. 12:2203. DOI:10.1038/s41467-021-22278-x

    View in Article CrossRef Google Scholar

    [122] Liu J., Lu W., Lu X., et al. (2022). Versatile Ti3C2Tx MXene for free-radical scavenging. Nano Res. 15:2558−2566. DOI:10.1007/s12274-021-3751-y

    View in Article CrossRef Google Scholar

    [123] Jiang S., Hu D., Qi Z., et al. (2023). V2CTx MXene nanosheets as enhanced free-radical scavengers for alleviating oxidative stress. ACS Appl. Nano Mater. 6:3121−3127. DOI:10.1021/acsanm.3c00391

    View in Article CrossRef Google Scholar

    [124] Du C., Feng W., Dai X., et al. (2022). Cu2+-chelatable and ros-scavenging MXenzyme as nir-ii-triggered blood–brain barrier-crossing nanocatalyst against Alzheimer's disease. Small 18:2203031. DOI:10.1002/smll.202203031

    View in Article CrossRef Google Scholar

    [125] Ming J., Zhu T., Li J., et al. (2021). A novel cascade nanoreactor integrating two-dimensional Pd-Ru Nanozyme, uricase and red blood cell membrane for highly efficient hyperuricemia treatment. Small 17:2103645. DOI:10.1002/smll.202103645

    View in Article CrossRef Google Scholar

    [126] Zhang L., Xie P., Wu H., et al. (2022). 2D MoSe2@PVP nanosheets with multi-enzyme activity alleviate the acute pancreatitis via scavenging the reactive oxygen and nitrogen species. Chem. Eng. J. 446:136792. DOI:10.1016/j.cej.2022.136792

    View in Article CrossRef Google Scholar

    [127] Zhang X., Zhang S., Yang Z., et al. (2021). Self-cascade MoS2 nanozymes for efficient intracellular antioxidation and hepatic fibrosis therapy. Nanoscale 13:12613−12622. DOI:10.1039/D1NR02366G

    View in Article CrossRef Google Scholar

    [128] Chen T., Zou H., Wu X., et al. (2018). Nanozymatic antioxidant system based on MoS2 nanosheets. ACS Appl. Mater. Interfaces 10:12453−12462. DOI:10.1021/acsami.8b01245

    View in Article CrossRef Google Scholar

    [129] Yu Y., Lu L., Yang Q., et al. (2021). Using MoS2 nanomaterials to generate or remove reactive oxygen species: a review. ACS Appl. Nano Mater. 4:7523−7537. DOI:10.1021/acsanm.1c00751

    View in Article CrossRef Google Scholar

    [130] Cao X.N., Lian S., Tong Y., et al. (2020). Fluorescent Se-modified carbon nitride nanosheets as biomimetic catalases for free-radical scavenging. Chem. Commun. 56:916−919. DOI:10.1039/C9CC08665J

    View in Article CrossRef Google Scholar

    [131] Yang B., Yao H., Yang J., et al. (2022). Construction of a two-dimensional artificial antioxidase for nanocatalytic rheumatoid arthritis treatment. Nat. Commun. 13:1988. DOI:10.1038/s41467-022-29735-1

    View in Article CrossRef Google Scholar

    [132] Sun Y., Mu S., Xing Z., et al. (2022). Catalase-mimetic artificial biocatalysts with Ru catalytic centers for ROS elimination and stem-cell protection. Adv. Mater. 34:2206208. DOI:10.1002/adma.202206208

    View in Article CrossRef Google Scholar

    [133] Lin S., Cheng Y., Zhang H., et al. (2020). Copper tannic acid coordination nanosheet: a potent nanozyme for scavenging ROS from cigarette smoke. Small 16:1902123. DOI:10.1002/smll.201902123

    View in Article CrossRef Google Scholar

    [134] Yang C., Ma H., Wang Z., et al. (2021). 3D printed wesselsite nanosheets functionalized scaffold facilitates NIR-II photothermal therapy and vascularized bone regeneration. Adv. Sci. 8:2100894. DOI:10.1002/advs.202100894

    View in Article CrossRef Google Scholar

    [135] Zhao Y., Wei C., Chen X., et al. (2019). Drug delivery system based on near-infrared light-responsive molybdenum disulfide nanosheets controls the high-efficiency release of dexamethasone to inhibit inflammation and treat osteoarthritis. ACS Appl. Mater. Interfaces 11:11587−11601. DOI:10.1021/acsami.8b20372

    View in Article CrossRef Google Scholar

    [136] Chae S.Y., Park R., and Hong S.W. (2022). Surface-mediated high antioxidant and anti-inflammatory effects of astaxanthin-loaded ultrathin graphene oxide film that inhibits the overproduction of intracellular reactive oxygen species. Biomater. Res. 26:30. DOI:10.1186/s40824-022-00276-4

    View in Article CrossRef Google Scholar

    [137] Li B.L., Luo J.J., Zou H.L., et al. (2022). Chiral nanocrystals grown from MoS2 nanosheets enable photothermally modulated enantioselective release of antimicrobial drugs. Nat. Commun. 13:7289. DOI:10.1038/s41467-022-35016-8

    View in Article CrossRef Google Scholar

    [138] Chen F., Ma X., Cao X., et al. (2023). An effective antioxidant to mitigate reperfusion injury by tailoring CeO2 electronic structure on layered double hydroxide nanosheets. Chem. Eng. J. 475:146190. DOI:10.1016/j.cej.2023.146190

    View in Article CrossRef Google Scholar

    [139] Mei X., Hu T., Wang Y., et al. (2020). Recent advancements in two-dimensional nanomaterials for drug delivery. Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol. 12:e1596. DOI:10.1002/wnan.1596

    View in Article CrossRef Google Scholar

    [140] Zhang H., Fan T., Chen W., et al. (2020). Recent advances of two-dimensional materials in smart drug delivery nano-systems. Bioact. Mater. 5:1071−1086. DOI:10.1016/j.bioactmat.2020.06.012

    View in Article CrossRef Google Scholar

    [141] Yu L., Hu P., and Chen Y. (2018). Gas-generating nanoplatforms: material chemistry, multifunctionality, and gas therapy. Adv. Mater. 30:1801964. DOI:10.1002/adma.201801964

    View in Article CrossRef Google Scholar

    [142] Zhou G., Goshi E., and He Q. (2019). Micro/nanomaterials-augmented hydrogen therapy. Adv. Healthc. Mater. 8:1900463. DOI:10.1002/adhm.201900463

    View in Article CrossRef Google Scholar

    [143] Wang Y., Yang T., and He Q. (2020). Strategies for engineering advanced nanomedicines for gas therapy of cancer. Natl. Sci. Rev. 7:1485−1512. DOI:10.1093/nsr/nwaa034

    View in Article CrossRef Google Scholar

    [144] Li G., Lei H., Yang Y., et al. (2022). Titanium sulfide nanosheets serve as cascade bioreactors for H2S-mediated programmed gas–sonodynamic cancer therapy. Adv. Sci. 9:2201069. DOI:10.1002/advs.202201069

    View in Article CrossRef Google Scholar

    [145] Wang S.B., Zhang C., Ye J.J., et al. (2020). Near-infrared light responsive nanoreactor for simultaneous tumor photothermal therapy and carbon monoxide-mediated anti-inflammation. ACS Central Sci. 6:555−565. DOI:10.1021/acscentsci.9b01342

    View in Article CrossRef Google Scholar

    [146] Wang S.B., Zhang C., Chen Z.X., et al. (2019). A versatile carbon monoxide nanogenerator for enhanced tumor therapy and anti-inflammation. ACS Nano 13:5523−5532. DOI:10.1021/acsnano.9b00345

    View in Article CrossRef Google Scholar

    [147] Zhu Y., Wu Y., Li S., et al. (2022). Photocatalytic and photothermal bismuthene nanosheets as drug carrier capable of generating CO to improve drug sensitivity and reduce inflammation for enhanced cancer therapy. Chem. Eng. J. 446:137321. DOI:10.1016/j.cej.2022.137321

    View in Article CrossRef Google Scholar

    [148] Zhou B., Sun X., Dong B., et al. (2022). Antibacterial PDT nanoplatform capable of releasing therapeutic gas for synergistic and enhanced treatment against deep infections. Theranostics 12:2580−2597. DOI:10.7150/thno.70277

    View in Article CrossRef Google Scholar

    [149] Liu J., Li R.S., He M., et al. (2021). Multifunctional SGQDs-CORM@HA nanosheets for bacterial eradication through cascade-activated “nanoknife” effect and photodynamic/CO gas therapy. Biomaterials 277:121084. DOI:10.1016/j.biomaterials.2021.121084

    View in Article CrossRef Google Scholar

    [150] Wu J., Williams G.R., Zhu Y., et al. (2021). Ultrathin chalcogenide nanosheets for photoacoustic imaging-guided synergistic photothermal/gas therapy. Biomaterials 273:120807. DOI:10.1016/j.biomaterials.2021.120807

    View in Article CrossRef Google Scholar

    [151] Ling P., Qian C., Gao F.,et al. (2018). Enzyme-immobilized metal–organic framework nanosheets as tandem catalysts for the generation of nitric oxide. Chem. Commun. 54:11176−11179. DOI:10.1039/C8CC05068F

    View in Article CrossRef Google Scholar

    [152] Gao Q., Zhang X., Yin W., et al. (2018). Functionalized MoS2 nanovehicle with near-infrared laser-mediated nitric oxide release and photothermal activities for advanced bacteria-infected wound therapy. Small 14:1802290. DOI:10.1002/smll.201802290

    View in Article CrossRef Google Scholar

    [153] Zhu Y.X., You Y., Chen Z., et al. (2023). Inorganic nanosheet-shielded probiotics: a self-adaptable oral delivery system for intestinal disease treatment. Nano Lett. 23:4683−4692. DOI:10.1021/acs.nanolett.3c00118

    View in Article CrossRef Google Scholar

    [154] Su F., Zhang C., Zhang Q., et al. (2024). Multifaceted immunomodulatory nanocomplexes target neutrophilic-ROS inflammation in acute lung injury. Adv. Sci. 12:2411823. DOI:10.1002/advs.202411823

    View in Article CrossRef Google Scholar

    [155] You Y., Zhu Y.X., Jiang J., et al. (2022). Water-enabled H2 generation from hydrogenated silicon nanosheets for efficient anti-inflammation. J. Am. Chem. Soc. 144:14195−14206. DOI:10.1021/jacs.2c04412

    View in Article CrossRef Google Scholar

    [156] Zhu Y., Jiang Q., Jin Z., et al. (2023). Two-dimensional Mg2Si nanosheet-enabled sustained hydrogen generation for improved repair and regeneration of deeply burned skin. Adv. Healthc. Mater. 12:2201705. DOI:10.1002/adhm.202201705

    View in Article CrossRef Google Scholar

    [157] Zhang W., Zeng L., Yu H., et al. (2023). Injectable spontaneous hydrogen-releasing hydrogel for long-lasting alleviation of osteoarthritis. Acta Biomaterialia 158:163−177. DOI:10.1016/j.actbio.2022.12.056

    View in Article CrossRef Google Scholar

    [158] He J., Wang W., Yan J., et al. (2024). Stabilizing electron transport of 2D materials. Adv. Mater. 37:2411941. DOI:10.1002/adma.202411941

    View in Article CrossRef Google Scholar

    [159] Li R., Fan Y., Liu L., et al. (2022). Ultrathin hafnium disulfide atomic crystals with ros-scavenging and colon-targeting capabilities for inflammatory bowel disease treatment. ACS Nano 16:15026−15041. DOI:10.1021/acsnano.2c06151

    View in Article CrossRef Google Scholar

    [160] Song J.H., Yoon T., Lee S.M., et al. (2022). GeTe nanosheets as theranostic agents for multimodal imaging and therapy of inflammatory bowel disease. Adv. Funct. Mater. 32:2107433. DOI:10.1002/adfm.202107433

    View in Article CrossRef Google Scholar

    [161] Liu S., Xu A., Gao Y., et al. (2021). Graphene oxide exacerbates dextran sodium sulfate-induced colitis via ROS/AMPK/p53 signaling to mediate apoptosis. J. Nanobiotechnol. 19:85. DOI:10.1186/s12951-021-00832-5

    View in Article CrossRef Google Scholar

    [162] Zhang C., Li Q., Shan J., et al. (2023). Multifunctional two-dimensional Bi2Se3 nanodiscs for anti-inflammatory therapy of inflammatory bowel diseases. Acta Biomaterialia 160:252−264. DOI:10.1016/j.actbio.2023.02.016

    View in Article CrossRef Google Scholar

    [163] Hou L., Gong F., Liu B., et al. (2022). Orally administered titanium carbide nanosheets as anti-inflammatory therapy for colitis. Theranostics 12:3834−3846. DOI:10.7150/thno.70668

    View in Article CrossRef Google Scholar

    [164] Deng J., Xian D., Cai X., et al. (2023). Surface-engineered vanadium carbide MXenzyme for anti-inflammation and photoenhanced antitumor therapy of colon diseases. Adv. Funct. Mater. 33:2211846. DOI:10.1002/adfm.202211846

    View in Article CrossRef Google Scholar

    [165] Zhao S., Li Y., Liu Q., et al. (2020). An orally administered CeO2@montmorillonite nanozyme targets inflammation for inflammatory bowel disease therapy. Adv. Funct. Mater. 30:2004692. DOI:10.1002/adfm.202004692

    View in Article CrossRef Google Scholar

    [166] Song X., Huang Q., Yang Y., et al. (2023). Efficient therapy of inflammatory bowel disease (IBD) with highly specific and durable targeted Ta2C modified with chondroitin sulfate (TACS). Adv. Mater. 35:2301585. DOI:10.1002/adma.202301585

    View in Article CrossRef Google Scholar

    [167] Alfaddagh A., Martin S.S., Leucker T.M., et al. (2020). Inflammation and cardiovascular disease: From mechanisms to therapeutics. Am. J. Prev. Cardiol. 4:100130. DOI:10.1016/j.ajpc.2020.100130

    View in Article CrossRef Google Scholar

    [168] Mangge H., Becker K., Fuchs D., et al. (2014). Antioxidants, inflammation and cardiovascular disease. World J. Cardiol. 6:462−477. DOI:10.4330/wjc.v6.i6.462

    View in Article CrossRef Google Scholar

    [169] Cao Z., Yuan G., Zeng L., et al. (2022). Macrophage-targeted sonodynamic/photothermal synergistic therapy for preventing atherosclerotic plaque progression using CuS/TiO2 heterostructured nanosheets. ACS Nano 16:10608−10622. DOI:10.1021/acsnano.2c02177

    View in Article CrossRef Google Scholar

    [170] Han J., Kim Y.S., Lim M.Y., et al. (2018). Dual roles of graphene oxide to attenuate inflammation and elicit timely polarization of macrophage phenotypes for cardiac repair. ACS Nano 12:1959−1977. DOI:10.1021/acsnano.7b09107

    View in Article CrossRef Google Scholar

    [171] Paul A., Hasan A., Kindi H.A., et al. (2014). Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8:8050−8062. DOI:10.1021/nn5020787

    View in Article CrossRef Google Scholar

    [172] Xiang K., Wu H., Liu Y., et al. (2023). MOF-derived bimetallic nanozyme to catalyze ROS scavenging for protection of myocardial injury. Theranostics 13:2721−2733. DOI:10.7150/thno.83543

    View in Article CrossRef Google Scholar

    [173] Wang D., Zhao Q., Qin J., et al. (2022). Urokinase loaded black phosphorus nanosheets for sequential thrombolysis and reactive oxygen species scavenging in ischemic stroke treatment. Biomater. Sci. 10:4656−4666. DOI:10.1039/D2BM00746K

    View in Article CrossRef Google Scholar

    [174] Ding X., Hong C., Zhang G., et al. (2019). A champagne inspired dual chain-responsive thrombolytic drug release platform based on black phosphorus nanosheets for accelerated thrombolysis. Nanoscale Horiz. 4:1277−1285. DOI:10.1039/C9NH00344D

    View in Article CrossRef Google Scholar

    [175] Kang X., Li Y., Duan Z., et al. (2023). A Mxene@TA/Fe dual-nanozyme composited antifouling hydrogel for burn wound repair. Chem. Eng. J. 476:146420. DOI: https://doi.org/10.1016/j.cej.2023.146420.

    View in Article Google Scholar

    [176] Meng Y., Chen L., Chen Y., et al. (2022). Reactive metal boride nanoparticles trap lipopolysaccharide and peptidoglycan for bacteria-infected wound healing. Nat. Commun. 13:7353. DOI:10.1038/s41467-022-35050-6

    View in Article CrossRef Google Scholar

    [177] Zhou L., Zheng H., Liu Z., et al. (2021). Conductive antibacterial hemostatic multifunctional scaffolds based on Ti3C2Tx MXene nanosheets for promoting multidrug-resistant bacteria-infected wound healing. ACS Nano 15:2468−2480. DOI:10.1021/acsnano.0c06287

    View in Article CrossRef Google Scholar

    [178] Li Y., Yu P., Wen J., et al. (2022). Nanozyme-based stretchable hydrogel of low hysteresis with antibacterial and antioxidant dual functions for closely fitting and wound healing in movable parts. Adv. Funct. Mater. 32:2110720. DOI:10.1002/adfm.202110720

    View in Article CrossRef Google Scholar

    [179] Wang X., Li Q., Miao Y., et al. (2023). A 0D-2D heterojunction bismuth molybdate-anchored multifunctional hydrogel for highly efficient eradication of drug-resistant bacteria. ACS Nano 17:15568−15589. DOI:10.1021/acsnano.3c02304

    View in Article CrossRef Google Scholar

    [180] Chen J., Liu Y., Cheng G., et al. (2022). Tailored hydrogel delivering niobium carbide boosts ros-scavenging and antimicrobial activities for diabetic wound healing. Small 18:2201300. DOI:10.1002/smll.202201300

    View in Article CrossRef Google Scholar

    [181] Li Y., Fu R., Duan Z., et al. (2022). Artificial nonenzymatic antioxidant MXene nanosheet-anchored injectable hydrogel as a mild photothermal-controlled oxygen release platform for diabetic wound healing. ACS Nano 16:7486−7502. DOI:10.1021/acsnano.1c10575

    View in Article CrossRef Google Scholar

    [182] Ding Q., Sun T., Su W., et al. (2022). Bioinspired multifunctional black phosphorus hydrogel with antibacterial and antioxidant properties: A stepwise countermeasure for diabetic skin wound healing. Adv. Healthc. Mater. 11:2102791. DOI:10.1002/adhm.202102791

    View in Article CrossRef Google Scholar

    [183] Ding X., Yu Y., Li W., et al. (2023). In situ 3D-bioprinting MoS2 accelerated gelling hydrogel scaffold for promoting chronic diabetic wound healing. Matter 6:1000−1014. DOI:10.1016/j.matt.2023.01.001

    View in Article CrossRef Google Scholar

    [184] Tu,C., Lu H., Zhou T., et al. (2022). Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials 286:121597. DOI:10.1016/j.biomaterials.2022.121597

    View in Article CrossRef Google Scholar

    [185] Iantomasi T., Romagnoli C., Palmini G., et al. (2023). Oxidative stress and inflammation in osteoporosis: molecular mechanisms involved and the relationship with microRNAs. Int. J. Mol. Sci. 24:3772. DOI:10.3390/ijms24043772

    View in Article CrossRef Google Scholar

    [186] Zhang S., Cai J., Yao Y., et al. (2023). Mitochondrial-targeting Mn3O4/UIO-TPP nanozyme scavenge ROS to restore mitochondrial function for osteoarthritis therapy. Regen. Biomater. 10:rbad078. DOI:10.1093/rb/rbad078

    View in Article CrossRef Google Scholar

    [187] Li B., Yang C., Guo M., et al. (2023). Ultrasound-remote selected activation mitophagy for precise treatment of rheumatoid arthritis by two-dimensional piezoelectric nanosheets. ACS Nano 17:621−635. DOI:10.1021/acsnano.2c09834

    View in Article CrossRef Google Scholar

    [188] Chen X., Zhu X., Xu T., et al. (2019). Targeted hexagonal Pd nanosheet combination therapy for rheumatoid arthritis via the photothermal controlled release of MTX. J. Mater. Chem. B 7:112−122. DOI:10.1039/C8TB02302F

    View in Article CrossRef Google Scholar

    [189] Zhang D., Cheng S., Tan J., et al. (2022). Black Mn-containing layered double hydroxide coated magnesium alloy for osteosarcoma therapy, bacteria killing, and bone regeneration. Bioact. Mater. 17:394−405. DOI:10.1016/j.bioactmat.2022.01.032

    View in Article CrossRef Google Scholar

    [190] Xiang J., Yang X., Tan M., et al. (2024). NIR-enhanced Pt single atom/g-C3N4 nanozymes as SOD/CAT mimics to rescue ATP energy crisis by regulating oxidative phosphorylation pathway for delaying osteoarthritis progression. Bioact. Mater. 36:1−13. DOI:10.1016/j.bioactmat.2024.02.018

    View in Article CrossRef Google Scholar

    [191] Wu Y., Liao Q., Wu L., et al. (2021). ZnL2-BPs integrated bone scaffold under sequential photothermal mediation: A win–win strategy delivering antibacterial therapy and fostering osteogenesis thereafter. ACS Nano 15:17854−17869. DOI:10.1021/acsnano.1c06062

    View in Article CrossRef Google Scholar

    [192] Yang C., Luo Y., Shen H., et al. (2022). Inorganic nanosheets facilitate humoral immunity against medical implant infections by modulating immune co-stimulatory pathways. Nat. Commun. 13:4866. DOI:10.1038/s41467-022-32405-x

    View in Article CrossRef Google Scholar

    [193] Yang C., Luo Y., Lin H., et al. (2021). Niobium carbide MXene augmented medical implant elicits bacterial infection elimination and tissue regeneration. ACS Nano 15:1086−1099. DOI:10.1021/acsnano.0c08045

    View in Article CrossRef Google Scholar

    [194] Hu H., Huang H., Xia L., et al. (2022). Engineering vanadium carbide MXene as multienzyme mimetics for efficient in vivo ischemic stroke treatment. Chem. Eng. J. 440:135810. DOI:10.1016/j.cej.2022.135810

    View in Article CrossRef Google Scholar

    [195] Lei L., Tu Q., Jiao L., et al. (2022). Reactive oxygen species scavenging by hemin-based nanosheets reduces Parkinson’s disease symptoms in an animal model. Chem. Eng. J. 432:134356. DOI:10.1016/j.cej.2021.134356

    View in Article CrossRef Google Scholar

    [196] He F., Liu Z., Xu J., et al. (2023). Black phosphorus nanosheets suppress oxidative damage of stem cells for improved neurological recovery. Chem. Eng. J. 451:138737. DOI:10.1016/j.cej.2022.138737

    View in Article CrossRef Google Scholar

    [197] Chen W., Ouyang J., Yi X., et al. (2018). Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv. Mater. 30:1703458. DOI:10.1002/adma.201703458

    View in Article CrossRef Google Scholar

    [198] Qian Y., Xu Y., Yan Z., et al. (2021). Boron nitride nanosheets functionalized channel scaffold favors microenvironment rebalance cocktail therapy for piezocatalytic neuronal repair. Nano Energy 83:105779. DOI:10.1016/j.nanoen.2021.105779

    View in Article CrossRef Google Scholar

    [199] Hou J., Wang H., Ge Z., et al. (2020). Treating acute kidney injury with antioxidative black phosphorus nanosheets. Nano Lett. 20:1447−1454. DOI:10.1021/acs.nanolett.9b05218

    View in Article CrossRef Google Scholar

  • Cite this article:

    Zhu Y., Lei L., Zhang Z., et al. (2025). Two-dimensional nanomaterials for inflammation-related disease treatments. The Innovation Materials 3:100128. https://doi.org/10.59717/j.xinn-mater.2025.100128
    Zhu Y., Lei L., Zhang Z., et al. (2025). Two-dimensional nanomaterials for inflammation-related disease treatments. The Innovation Materials 3:100128. https://doi.org/10.59717/j.xinn-mater.2025.100128

Welcome!

To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.

Figures(8)     Tables(1)

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(2209) PDF downloads(754)

Relative Articles

Cited by

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint