Categorizing the regulatory mechanisms of 2D nanomaterials toward inflammation.
Highlighting the advantages of 2D nanomaterials in anti-inflammatory applications.
Summarizing the therapeutic applications of 2D nanomaterials in inflammation-related diseases.
| [1] | Tan C., Cao X., Wu X.J., et al. (2017). Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117:6225−6331. DOI:10.1021/acs.chemrev.6b00558 |
| [2] | Novoselov K.S., Geim A.K., Morozov S.V., et al. (2004). Electric field effect in atomically thin carbon films. Science 306:666−669. DOI:10.1126/science.1102896 |
| [3] | Lim K.R.G., Shekhirev M., Wyatt B.C. et al. (2022). Fundamentals of MXene synthesis. Nat. Synth. 1:601−614. DOI:10.1038/s44160-022-00104-6 |
| [4] | Rasheed P.A., Pandey R.P., Banat F., et al. (2022). Recent advances in niobium MXenes: Synthesis, properties, and emerging applications. Matter 5:546−572. DOI:10.1016/j.matt.2021.12.021 |
| [5] | Kalantar-zadeh K., Ou J.Z., Daeneke T., et al. (2015). Two-dimensional transition metal dichalcogenides in biosystems. Adv. Funct. Mater. 25:5086−5099. DOI:10.1002/adfm.201500891 |
| [6] | Zhi C., Bando Y., Tang C., et al. (2009). Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 21:2889−2893. DOI:10.1002/adma.200900323 |
| [7] | Ong W.J., Tan L.L., Ng Y.H., et al. (2016). Graphitic carbon nitride (g-C3N4)-Based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability. Chem. Rev. 116:7159−7329. DOI:10.1021/acs.chemrev.6b00075 |
| [8] | Kang S., Fang Z., He M., et al. (2020). An instant, biocompatible and biodegradable high-performance graphitic carbon nitride. J. Colloid Interface Sci. 563:336−346. DOI:10.1016/j.jcis.2019.12.021 |
| [9] | Wang Q., and O’Hare D. (2012). Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112:4124−4155. DOI:10.1021/cr200434v |
| [10] | Liu H., Du Y., Deng Y., et al. (2015). Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44:2732−2743. DOI:10.1039/C4CS00257A |
| [11] | Ma L., Song X., Yu Y., et al. (2021). Two-dimensional silicene/silicon nanosheets: an emerging silicon-composed nanostructure in biomedicine. Adv. Mater. 33:2008226. DOI:10.1002/adma.202008226 |
| [12] | Rodenas T., Luz I., Prieto G., et al. (2015). Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14:48−55. DOI:10.1038/nmat4113 |
| [13] | Colson J.W., Woll A.R., Mukherjee A., et al. (2011). Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332:228−231. DOI:10.1126/science.1202747 |
| [14] | Kim T., Hong J., Kim J., et al. (2023). Two-dimensional peptide assembly via arene–perfluoroarene interactions for proliferation and differentiation of myoblasts. J. Am. Chem. Soc. 145:1793−1802. DOI:10.1021/jacs.2c10938 |
| [15] | Liu L., Klausen L.H., and Dong M. (2018). Two-dimensional peptide based functional nanomaterials. Nano Today 23:40−58. DOI:10.1016/j.nantod.2018.10.008 |
| [16] | Vijayakumar S., Alberstein R.G., Zhang Z., et al. (2024). Designed 2D protein crystals as dynamic molecular gatekeepers for a solid-state device. Nat. Commun. 15:6326. DOI:10.1038/s41467-024-50567-8 |
| [17] | Ben-Sasson A.J., Watson J.L., Sheffler W., et al. (2021). Design of biologically active binary protein 2D materials. Nature 589:468−473. DOI:10.1038/s41586-020-03120-8 |
| [18] | Liu Y., Dai Z., Xie X., et al. (2024). Spacer-programmed two-dimensional DNA origami assembly. J. Am. Chem. Soc. 146:5461−5469. DOI:10.1021/jacs.3c13180 |
| [19] | Jun H., Wang X., Bricker W.P., et al. (2019). Automated sequence design of 2D wireframe DNA origami with honeycomb edges. Nat. Commun. 10:5419. DOI:10.1038/s41467-019-13457-y |
| [20] | Hu T., Mei X., Wang Y., et al. (2019). Two-dimensional nanomaterials: fascinating materials in biomedical field. Sci. Bull. 64:1707−1727. DOI:10.1016/j.scib.2019.09.021 |
| [21] | Chen Z., Wu C., Yuan Y., et al. (2023). CRISPR-Cas13a-powered electrochemical biosensor for the detection of the L452R mutation in clinical samples of SARS-CoV-2 variants. J. Nanobiotechnol. 21:141. DOI:10.1186/s12951-023-01903-5 |
| [22] | Chen Z., Li J., Li T., et al. (2022). A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. Natl. Sci. Rev. 9:nwac104. DOI:10.1093/nsr/nwac104 |
| [23] | Zheng F., Chen Z., Li J., et al. (2022). A highly sensitive CRISPR-empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification. Adv. Sci. 9:2105231. DOI:10.1002/advs.202105231 |
| [24] | Chen Z., Huang H., Deng J., et al. (2024). Light-guided genetic scissors based on phosphorene quantum dot. Laser Photon. Rev. 18:2400777. DOI:10.1002/lpor.202400777 |
| [25] | Chen Z., Meng C., Wang X., et al. (2024). Ultrasensitive DNA origami plasmon sensor for accurate detection in circulating tumor DNAs. Laser Photon. Rev. 18:2400035. DOI:10.1002/lpor.202400035 |
| [26] | Libby P. (2007). Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr. Rev. 65(suppl_3):S140−S146. DOI:10.1111/j.1753-4887.2007.tb00352.x |
| [27] | Okin D. and Medzhitov, R. (2012). Evolution of inflammatory diseases. Curr. Biol. 22:R733−R740. DOI:10.1016/j.cub.2012.07.029 |
| [28] | Krishnamoorthy S. and Honn K.V. (2006). Inflammation and disease progression. Cancer Metastasis Rev. 25:481−491. DOI:10.1007/s10555-006-9016-0 |
| [29] | Hunter P. (2012). The inflammation theory of disease. EMBO Rep. 13:968−970. DOI:10.1038/embor.2012.142 |
| [30] | Nathan C. and Ding A. (2010). Nonresolving Inflammation. Cell 140:871−882. DOI:10.1016/j.cell.2010.02.029 |
| [31] | Kotas M.E. and Medzhitov R. (2015). Homeostasis, inflammation, and disease susceptibility. Cell 160:816−827. DOI:10.1016/j.cell.2015.02.010 |
| [32] | Heppner F.L., Ransohoff R.M. and Becher B. (2015). Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16:358−372. DOI:10.1038/nrn3880 |
| [33] | Lucas S.M., Rothwell N.J. and Gibson R.M. (2006). The role of inflammation in CNS injury and disease. Br. J. Pharmacol. 147:S232−S240. DOI:10.1038/sj.bjp.0706400 |
| [34] | Tansey M.G., Wallings R.L,. Houser M.C., et al. (2022). Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 22:657−673. DOI:10.1038/s41577-022-00684-6 |
| [35] | Hotamisligil G.S. (2006). Inflammation and metabolic disorders. Nature 444:860−867. DOI:10.1038/nature05485 |
| [36] | Chawla A., Nguyen K.D., and Goh Y.P.S. (2011). Macrophage-mediated inflammation in metabolic disease. Nat. Rev. Immunol. 11:738−749. DOI:10.1038/nri3071 |
| [37] | Ferrucci L., and Fabbri E. (2018). Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15:505−522. DOI:10.1038/s41569-018-0064-2 |
| [38] | Chen Z., Bozec A., Ramming A., et al. (2019). Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat. Rev. Rheumatol. 15:9−17. DOI:10.1038/s41584-018-0109-2 |
| [39] | Akchurin O.M. and Kaskel F. (2015). Update on Inflammation in Chronic Kidney Disease. Blood Purif. 39:84−92. DOI:10.1159/000368940 |
| [40] | Chen L., Deng H., Cui H., et al. (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 9:7204–7218. DOI: 10.18632/oncotarget.23208. |
| [41] | Netea M.G., Balkwill F., Chonchol M., et al. (2017). A guiding map for inflammation. Nat. Immunol. 18:826−831. DOI:10.1038/ni.3790 |
| [42] | Gong T., Liu L., Jiang W., et al. (2020). DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 20:95−112. DOI:10.1038/s41577-019-0215-7 |
| [43] | Kawai T. and Akira S. (2006). Innate immune recognition of viral infection. Nat. Immunol. 7:131−137. DOI:10.1038/ni1303 |
| [44] | Medzhitov R. (2008). Origin and physiological roles of inflammation. Nature 454:428−435. DOI:10.1038/nature07201 |
| [45] | Mariathasan S., Weiss D.S., Newton K., et al. (2006). Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228−232. DOI:10.1038/nature04515 |
| [46] | Medzhitov R. and Janeway C.A. (1997). Innate immunity: The virtues of a nonclonal system of recognition. Cell 91:295−298. DOI:10.1016/S0092-8674(00)80412-2 |
| [47] | Hofmann M.A., Drury S., Fu C., et al. (1999). RAGE mediates a novel proinflammatory axis: A central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889−901. DOI:10.1016/S0092-8674(00)80801-6 |
| [48] | Pober J.S., and Sessa W.C. (2007). Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7:803−815. DOI:10.1038/nri2171 |
| [49] | A current view on inflammation. (2017). Nat. Immunol. 18:825−825. doi:10.1038/ni.3798. |
| [50] | Simmons D.L. (2006). What makes a good anti-inflammatory drug target. Drug Discov. Today 11:210−219. DOI:10.1016/S1359-6446(05)03721-9 |
| [51] | Harris R.E. (2007). Inflammation in the pathogenesis of chronic diseases: the COX-2 controversy (Springer Science & Business Media). |
| [52] | Sun J., Zhang H., Guo L.H., et al. (2013). Two-dimensional interface engineering of a titania–graphene nanosheet composite for improved photocatalytic activity. ACS Appl. Mater. Interfaces 5:13035−13041. DOI:10.1021/am403937y |
| [53] | Gokce C., Gurcan C., Besbinar O., et al. (2022). Emerging 2D materials for antimicrobial applications in the pre- and post-pandemic era. Nanoscale 14:239−249. DOI:10.1039/D1NR06476B |
| [54] | Mei L., Zhu S., Yin W., et al. (2020). Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics 10:757−781. DOI:10.7150/thno.39701 |
| [55] | Li B., Luo Y., Zheng Y., et al. (2022). Two-dimensional antibacterial materials. Prog. Mater. Sci. 130:100976. DOI:10.1016/j.pmatsci.2022.100976 |
| [56] | Sethulekshmi A.S., Saritha A., Joseph K., et al. (2022). MoS2 based nanomaterials: Advanced antibacterial agents for future. J. Control. Release 348:158−185. DOI:10.1016/j.jconrel.2022.05.047 |
| [57] | Chen, F.; Luo, Y.; Liu, X.; et al. (2022). 2D Molybdenum sulfide-based materials for photo-excited antibacterial application. Adv. Healthc. Mater. 11:2200360. DOI:10.1002/adhm.202200360 |
| [58] | Seidi F., Arabi Shamsabadi A., Dadashi Firouzjaei M., et al. (2023). MXenes antibacterial properties and applications: A review and perspective. Small 19:2206716. DOI:10.1002/smll.202206716 |
| [59] | Hao S., Han H., Yang Z., et al. (2022). Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials. Nano-Micro Lett. 14:178. DOI:10.1007/s40820-022-00901-w |
| [60] | Ji H., Sun H., and Qu X. (2016). Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges. Adv. Drug Deliv. Rev. 105:176−189. DOI:10.1016/j.addr.2016.04.009 |
| [61] | Lee O.S., Madjet M.E., and Mahmoud, K.A. (2021). Antibacterial mechanism of multifunctional MXene nanosheets: domain formation and phase transition in lipid bilayer. Nano Lett. 21:8510−8517. DOI:10.1021/acs.nanolett.1c01986 |
| [62] | Rasool K., Helal M., Ali A., et al. (2016). Antibacterial Activity of Ti3C2Tx MXene. ACS Nano 10:3674−3684. DOI:10.1021/acsnano.6b00181 |
| [63] | Zou X., Zhang L., Wang Z., et al. (2016). Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 138:2064−2077. DOI:10.1021/jacs.5b11411 |
| [64] | Zheng H., Ma R., Gao M., et al. (2018). Antibacterial applications of graphene oxides: structure-activity relationships, molecular initiating events and biosafety. Sci. Bull. 63:133−142. DOI:10.1016/j.scib.2017.12.012 |
| [65] | Li Y., Yuan H., von dem Bussche A., et al. (2013). Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. U. S. A. 110:12295−12300. DOI:10.1073/pnas.1222276110 |
| [66] | Tang Y., Qin Z., Zhong Y., et al. (2023). Bioinspired MoS2 nanosheet-modified carbon fibers for synergetic bacterial elimination and wound disinfection. Adv. Healthc. Mater. 12:2202270. DOI:10.1002/adhm.202202270 |
| [67] | Ouyang J., Wen M., Chen W., et al. (2019). Multifunctional two dimensional Bi2Se3 nanodiscs for combined antibacterial and anti-inflammatory therapy for bacterial infections. Chem. Commun. 55:4877−4880. DOI:10.1039/C9CC01129C |
| [68] | Krishnamoorthy K., Veerapandian M., Yun K., et al. (2013). New function of molybdenum trioxide nanoplates: Toxicity towards pathogenic bacteria through membrane stress. Colloid Surf. B-Biointerfaces 112:521−524. DOI:10.1016/j.colsurfb.2013.08.026 |
| [69] | Zada S., Dai W., Kai Z., et al. (2020). Algae extraction controllable delamination of vanadium carbide nanosheets with enhanced near-infrared photothermal performance. Angew. Chem. Int. Ed. 59:6601−6606. DOI:10.1002/anie.201916748 |
| [70] | Lin H., Wang X., Yu L., et al. (2017). Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 17:384−391. DOI:10.1021/acs.nanolett.6b04339 |
| [71] | Wu F., Zheng H., Wang W., et al. (2021). Rapid eradication of antibiotic-resistant bacteria and biofilms by MXene and near-infrared light through photothermal ablation. Sci. China Mater. 64:748−758. DOI:10.1007/s40843-020-1451-7 |
| [72] | Ge M., Zong M., Xu D., et al. (2021). Freestanding germanene nanosheets for rapid degradation and photothermal conversion. Mater. Today Nano 15:100119. DOI:10.1016/j.mtnano.2021.100119 |
| [73] | Huang Y., Gao Q., Li X., et al. (2020). Ofloxacin loaded MoS2 nanoflakes for synergistic mild-temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria. Nano Res. 13:2340−2350. DOI:10.1007/s12274-020-2853-2 |
| [74] | Xu S., Bhatia S., Fan X., et al. (2022). Glycosylated MoS2 sheets for capturing and deactivating E. coli bacteria: Combined effects of multivalent binding and sheet size. Adv. Mater. Interfaces 9:2102315. DOI:10.1002/admi.202102315 |
| [75] | Yang Z., Fu X., Ma D., et al. (2021). Growth factor-decorated Ti3C2 MXene/MoS2 2D bio-heterojunctions with quad-channel photonic disinfection for effective regeneration of bacteria-invaded cutaneous tissue. Small 17:2103993. DOI:10.1002/smll.202103993 |
| [76] | Yuan H., Hong X., Ma H., et al. (2023). MXene-based dual functional nanocomposite with photothermal nanozyme catalytic activity to fight bacterial infections. ACS Mater. Lett. 5:762−774. DOI:10.1021/acsmaterialslett.2c00771 |
| [77] | Wu M.C., Deokar A.R., Liao J.H., et al. (2013). Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 7:1281−1290. DOI:10.1021/nn304782d |
| [78] | Zhang B., He J., Shi M., et al. (2020). Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration. Chem Eng. J. 400:125994. DOI:10.1016/j.cej.2020.125994 |
| [79] | Fan X., Yang F., Huang J., et al. (2019). Metal–organic-framework-derived 2D carbon nanosheets for localized multiple bacterial eradication and augmented anti-infective therapy. Nano Lett. 19:5885−5896. DOI:10.1021/acs.nanolett.9b01400 |
| [80] | Zhang C., Hu D.F., Xu J.W., et al. (2018). Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity. ACS Nano 12:12347−12356. DOI:10.1021/acsnano.8b06321 |
| [81] | Guan X., Kumar P., Li Z., et al. (2023). Borophene embedded cellulose paper for enhanced photothermal water evaporation and prompt bacterial killing. Adv. Sci. 10:2205809. DOI:10.1002/advs.202205809 |
| [82] | Aksoy İ., Küçükkeçeci H., Sevgi F., et al. (2020). Photothermal antibacterial and antibiofilm activity of black phosphorus/gold nanocomposites against pathogenic bacteria. ACS Appl. Mater. Interfaces 12:26822−26831. DOI:10.1021/acsami.0c02524 |
| [83] | Zeng J., Gu C., Geng X., et al. (2023). Combined photothermal and sonodynamic therapy using a 2D black phosphorus nanosheets loaded coating for efficient bacterial inhibition and bone-implant integration. Biomaterials 297:122122. DOI:10.1016/j.biomaterials.2023.122122 |
| [84] | Ma S., Luo X., Ran G., et al. (2022). Defect engineering of ultrathin 2D nanosheet BiOI/Bi for enhanced photothermal-catalytic synergistic bacteria-killing. Chem. Eng. J. 435:134810. DOI:10.1016/j.cej.2022.134810 |
| [85] | Liu G., Wang L., He Y., et al. (2021). Polydopamine nanosheets doped injectable hydrogel with nitric oxide release and photothermal effects for bacterial ablation and wound healing. Adv. Healthc. Mater. 10:2101476. DOI:10.1002/adhm.202101476 |
| [86] | Liu Y., Xiao Y., Cao Y., et al. (2020). Construction of chitosan-based hydrogel incorporated with antimonene nanosheets for rapid capture and elimination of bacteria. Adv. Funct. Mater. 30:2003196. DOI:10.1002/adfm.202003196 |
| [87] | Hou J., and Xianyu Y. (2023). Tailoring the surface and composition of nanozymes for enhanced bacterial binding and antibacterial activity. Small 19:2302640. DOI:10.1002/smll.202302640 |
| [88] | Li L., Cao L., Xiang X., et al. (2022). Ros-catalytic transition-metal-based enzymatic nanoagents for tumor and bacterial eradication. Adv. Funct. Mater. 32:2107530. DOI:10.1002/adfm.202107530 |
| [89] | Mei L., Zhu S., Liu Y., et al. (2021). An overview of the use of nanozymes in antibacterial applications. Chem. Eng. J. 418:129431. DOI:10.1016/j.cej.2021.129431 |
| [90] | Zhang X., Min Y., Zhang Q., et al. (2022). Functionalized Mn3O4 nanosheets with photothermal, photodynamic, and oxidase-like activities triggered by low-powered near-infrared light for synergetic combating multidrug-resistant bacterial infections. Adv. Healthc. Mater. 11:2200121. DOI:10.1002/adhm.202200121 |
| [91] | Hu W.C., Younis M.R., Zhou Y., et al. (2020). In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial therapy. Small 16:2000553. DOI:10.1002/smll.202000553 |
| [92] | Zeng J., Li Z., Jiang H., et al. (2021). Progress on photocatalytic semiconductor hybrids for bacterial inactivation. Mater. Horizons 8:2964−3008. DOI:10.1039/D1MH00773D |
| [93] | Yang Z., Chen C., Li B., et al. (2023). A core–shell 2D-MoS2@MOF heterostructure for rapid therapy of bacteria-infected wounds by enhanced photocatalysis. Chem. Eng. J. 451:139127. DOI:10.1016/j.cej.2022.139127 |
| [94] | Zhu W., Liu X., Tan L., et al. (2019). AgBr nanoparticles in situ growth on 2D MoS2 nanosheets for rapid bacteria-killing and photodisinfection. ACS Appl. Mater. Interfaces 11:34364−34375. DOI:10.1021/acsami.9b12629 |
| [95] | Wang W., Feng H., Liu J., et al. (2020). A photo catalyst of cuprous oxide anchored MXene nanosheet for dramatic enhancement of synergistic antibacterial ability. Chem. Eng. J. 386:124116. DOI:10.1016/j.cej.2020.124116 |
| [96] | Liu Y., Tian Y., Han Q., et al. (2021). Synergism of 2D/1D MXene/cobalt nanowire heterojunctions for boosted photo-activated antibacterial application. Chem. Eng. J. 410:128209. DOI:10.1016/j.cej.2020.128209 |
| [97] | Yuan Y., Niu B., Yu Q., et al. (2020). Photoinduced multiple effects to enhance uranium extraction from natural seawater by black phosphorus nanosheets. Angew. Chem. Int. Ed. 59:1220–1227. DOI:10.1002/anie.201913644 |
| [98] | Tao N., Zeng Z., Deng Y., et al. (2023). Stanene nanosheets-based hydrogel for sonodynamic treatment of drug-resistant bacterial infection. Chem. Eng. J. 456:141109. DOI:10.1016/j.cej.2022.141109 |
| [99] | Andrades M.É., Morina A., Spasić S., et al. (2011). Bench-to-bedside review: Sepsis-from the redox point of view. Crit. Care 15:230. DOI:10.1186/cc10334 |
| [100] | He X., Xue J., Shi L., et al. (2022). Recent antioxidative nanomaterials toward wound dressing and disease treatment via ROS scavenging. Mater. Today Nano 17:100149. DOI:10.1016/j.mtnano.2021.100149 |
| [101] | Wang L., Zhu B., Deng Y., et al. (2021). Biocatalytic and antioxidant nanostructures for ROS scavenging and biotherapeutics. Adv. Funct. Mater. 31:2101804. DOI:10.1002/adfm.202101804 |
| [102] | Zhang C., Wang X., Du J., et al. (2021). Reactive oxygen species-regulating strategies based on nanomaterials for disease treatment. Adv. Sci. 8:2002797. DOI:10.1002/advs.202002797 |
| [103] | Huang X., He D., Pan Z., et al. (2021). Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater. Today Bio 11:100124. DOI:10.1016/j.mtbio.2021.100124 |
| [104] | Yoshitomi T., and Nagasaki Y. (2014). Reactive oxygen species-scavenging nanomedicines for the treatment of oxidative stress injuries. Adv. Healthc. Mater. 3:1149−1161. DOI:10.1002/adhm.201300576 |
| [105] | Wang L., Li Y., Zhao L., et al. (2020). Recent advances in ultrathin two-dimensional materials and biomedical applications for reactive oxygen species generation and scavenging. Nanoscale 12:19516−19535. DOI:10.1039/D0NR05746K |
| [106] | Qiu Y., Wang Z., Owens A.C.E., et al. (2014). Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale 6:11744−11755. DOI:10.1039/C4NR03275F |
| [107] | Zhang X., You Y., Sun Y., et al. (2022). Catalytic anti-oxidative stress for osteoarthritis treatment by few-layered phosphorene. Mater. Today Bio 17:100462. DOI:10.1016/j.mtbio.2022.100462 |
| [108] | Lu H., Wei J., Liu K., et al. (2023). Radical-scavenging and subchondral bone-regenerating nanomedicine for osteoarthritis treatment. ACS Nano 17:6131−6146. DOI:10.1021/acsnano.3c01789 |
| [109] | Zhao X., Wang L.Y., Li J.M., et al. (2021). Redox-mediated artificial non-enzymatic antioxidant MXene nanoplatforms for acute kidney injury alleviation. Adv. Sci. 8:2101498. DOI:10.1002/advs.202101498 |
| [110] | Yim D., Lee D.E., So Y., et al. (2020). Sustainable nanosheet antioxidants for sepsis therapy via scavenging intracellular reactive oxygen and nitrogen species. ACS Nano 14:10324−10336. DOI:10.1021/acsnano.0c03807 |
| [111] | Yim D., Kim J.E., Kim H.I., et al. (2018). Adjustable intermolecular interactions allowing 2D transition metal dichalcogenides with prolonged scavenging activity for reactive oxygen species. Small 14:1800026. DOI:10.1002/smll.201800026 |
| [112] | Lin Z., Chen Z., Chen Y., et al. (2023). Hydrogenated silicene nanosheet functionalized scaffold enables immuno-bone remodeling. Exploration 3:20220149. DOI:10.1002/EXP.20220149 |
| [113] | Chen Z., Qi F., Qiu W., et al. (2022). Hydrogenated germanene nanosheets as an antioxidative defense agent for acute kidney injury treatment. Adv. Sci. 9:2202933. DOI:10.1002/advs.202202933 |
| [114] | Wang S., Huang J., Zhu H., et al. (2023). Nanomodulators capable of timely scavenging ROS for inflammation and prognosis control following photothermal tumor therapy. Adv. Funct. Mater. 33:2213151. DOI:10.1002/adfm.202213151 |
| [115] | Ai Y., Hu Z.N., Liang X., et al. (2022). Recent advances in nanozymes: from matters to bioapplications. Adv. Funct. Mater. 32:2110432. DOI:10.1002/adfm.202110432 |
| [116] | Yang B., Chen Y., and Shi J. (2019). Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 119:4881−4985. DOI:10.1021/acs.chemrev.8b00626 |
| [117] | Yang B., Chen Y., and Shi J. (2019). Nanocatalytic medicine. Adv. Mater. 31:1901778. DOI:10.1002/adma.201901778 |
| [118] | Lyu Z., Ding S., Du D., et al. (2022). Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Adv. Drug Deliv. Rev. 185:114269. DOI:10.1016/j.addr.2022.114269 |
| [119] | Zeng W., Zhang H., Yuan X., et al. (2022). Two-dimensional nanomaterial-based catalytic medicine: Theories, advanced catalyst and system design. Adv. Drug Deliv. Rev. 184:114241. DOI:10.1016/j.addr.2022.114241 |
| [120] | Guo Y., Ding S., Shang C., et al. (2023). Multifunctional PtCuTe nanosheets with strong ROS scavenging and ROS-independent antibacterial properties promote diabetic wound healing. Adv. Mater. 36:2306292. DOI:10.1002/adma.202306292 |
| [121] | Feng W., Han X., Hu H., et al. (2021). 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat. Commun. 12:2203. DOI:10.1038/s41467-021-22278-x |
| [122] | Liu J., Lu W., Lu X., et al. (2022). Versatile Ti3C2Tx MXene for free-radical scavenging. Nano Res. 15:2558−2566. DOI:10.1007/s12274-021-3751-y |
| [123] | Jiang S., Hu D., Qi Z., et al. (2023). V2CTx MXene nanosheets as enhanced free-radical scavengers for alleviating oxidative stress. ACS Appl. Nano Mater. 6:3121−3127. DOI:10.1021/acsanm.3c00391 |
| [124] | Du C., Feng W., Dai X., et al. (2022). Cu2+-chelatable and ros-scavenging MXenzyme as nir-ii-triggered blood–brain barrier-crossing nanocatalyst against Alzheimer's disease. Small 18:2203031. DOI:10.1002/smll.202203031 |
| [125] | Ming J., Zhu T., Li J., et al. (2021). A novel cascade nanoreactor integrating two-dimensional Pd-Ru Nanozyme, uricase and red blood cell membrane for highly efficient hyperuricemia treatment. Small 17:2103645. DOI:10.1002/smll.202103645 |
| [126] | Zhang L., Xie P., Wu H., et al. (2022). 2D MoSe2@PVP nanosheets with multi-enzyme activity alleviate the acute pancreatitis via scavenging the reactive oxygen and nitrogen species. Chem. Eng. J. 446:136792. DOI:10.1016/j.cej.2022.136792 |
| [127] | Zhang X., Zhang S., Yang Z., et al. (2021). Self-cascade MoS2 nanozymes for efficient intracellular antioxidation and hepatic fibrosis therapy. Nanoscale 13:12613−12622. DOI:10.1039/D1NR02366G |
| [128] | Chen T., Zou H., Wu X., et al. (2018). Nanozymatic antioxidant system based on MoS2 nanosheets. ACS Appl. Mater. Interfaces 10:12453−12462. DOI:10.1021/acsami.8b01245 |
| [129] | Yu Y., Lu L., Yang Q., et al. (2021). Using MoS2 nanomaterials to generate or remove reactive oxygen species: a review. ACS Appl. Nano Mater. 4:7523−7537. DOI:10.1021/acsanm.1c00751 |
| [130] | Cao X.N., Lian S., Tong Y., et al. (2020). Fluorescent Se-modified carbon nitride nanosheets as biomimetic catalases for free-radical scavenging. Chem. Commun. 56:916−919. DOI:10.1039/C9CC08665J |
| [131] | Yang B., Yao H., Yang J., et al. (2022). Construction of a two-dimensional artificial antioxidase for nanocatalytic rheumatoid arthritis treatment. Nat. Commun. 13:1988. DOI:10.1038/s41467-022-29735-1 |
| [132] | Sun Y., Mu S., Xing Z., et al. (2022). Catalase-mimetic artificial biocatalysts with Ru catalytic centers for ROS elimination and stem-cell protection. Adv. Mater. 34:2206208. DOI:10.1002/adma.202206208 |
| [133] | Lin S., Cheng Y., Zhang H., et al. (2020). Copper tannic acid coordination nanosheet: a potent nanozyme for scavenging ROS from cigarette smoke. Small 16:1902123. DOI:10.1002/smll.201902123 |
| [134] | Yang C., Ma H., Wang Z., et al. (2021). 3D printed wesselsite nanosheets functionalized scaffold facilitates NIR-II photothermal therapy and vascularized bone regeneration. Adv. Sci. 8:2100894. DOI:10.1002/advs.202100894 |
| [135] | Zhao Y., Wei C., Chen X., et al. (2019). Drug delivery system based on near-infrared light-responsive molybdenum disulfide nanosheets controls the high-efficiency release of dexamethasone to inhibit inflammation and treat osteoarthritis. ACS Appl. Mater. Interfaces 11:11587−11601. DOI:10.1021/acsami.8b20372 |
| [136] | Chae S.Y., Park R., and Hong S.W. (2022). Surface-mediated high antioxidant and anti-inflammatory effects of astaxanthin-loaded ultrathin graphene oxide film that inhibits the overproduction of intracellular reactive oxygen species. Biomater. Res. 26:30. DOI:10.1186/s40824-022-00276-4 |
| [137] | Li B.L., Luo J.J., Zou H.L., et al. (2022). Chiral nanocrystals grown from MoS2 nanosheets enable photothermally modulated enantioselective release of antimicrobial drugs. Nat. Commun. 13:7289. DOI:10.1038/s41467-022-35016-8 |
| [138] | Chen F., Ma X., Cao X., et al. (2023). An effective antioxidant to mitigate reperfusion injury by tailoring CeO2 electronic structure on layered double hydroxide nanosheets. Chem. Eng. J. 475:146190. DOI:10.1016/j.cej.2023.146190 |
| [139] | Mei X., Hu T., Wang Y., et al. (2020). Recent advancements in two-dimensional nanomaterials for drug delivery. Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol. 12:e1596. DOI:10.1002/wnan.1596 |
| [140] | Zhang H., Fan T., Chen W., et al. (2020). Recent advances of two-dimensional materials in smart drug delivery nano-systems. Bioact. Mater. 5:1071−1086. DOI:10.1016/j.bioactmat.2020.06.012 |
| [141] | Yu L., Hu P., and Chen Y. (2018). Gas-generating nanoplatforms: material chemistry, multifunctionality, and gas therapy. Adv. Mater. 30:1801964. DOI:10.1002/adma.201801964 |
| [142] | Zhou G., Goshi E., and He Q. (2019). Micro/nanomaterials-augmented hydrogen therapy. Adv. Healthc. Mater. 8:1900463. DOI:10.1002/adhm.201900463 |
| [143] | Wang Y., Yang T., and He Q. (2020). Strategies for engineering advanced nanomedicines for gas therapy of cancer. Natl. Sci. Rev. 7:1485−1512. DOI:10.1093/nsr/nwaa034 |
| [144] | Li G., Lei H., Yang Y., et al. (2022). Titanium sulfide nanosheets serve as cascade bioreactors for H2S-mediated programmed gas–sonodynamic cancer therapy. Adv. Sci. 9:2201069. DOI:10.1002/advs.202201069 |
| [145] | Wang S.B., Zhang C., Ye J.J., et al. (2020). Near-infrared light responsive nanoreactor for simultaneous tumor photothermal therapy and carbon monoxide-mediated anti-inflammation. ACS Central Sci. 6:555−565. DOI:10.1021/acscentsci.9b01342 |
| [146] | Wang S.B., Zhang C., Chen Z.X., et al. (2019). A versatile carbon monoxide nanogenerator for enhanced tumor therapy and anti-inflammation. ACS Nano 13:5523−5532. DOI:10.1021/acsnano.9b00345 |
| [147] | Zhu Y., Wu Y., Li S., et al. (2022). Photocatalytic and photothermal bismuthene nanosheets as drug carrier capable of generating CO to improve drug sensitivity and reduce inflammation for enhanced cancer therapy. Chem. Eng. J. 446:137321. DOI:10.1016/j.cej.2022.137321 |
| [148] | Zhou B., Sun X., Dong B., et al. (2022). Antibacterial PDT nanoplatform capable of releasing therapeutic gas for synergistic and enhanced treatment against deep infections. Theranostics 12:2580−2597. DOI:10.7150/thno.70277 |
| [149] | Liu J., Li R.S., He M., et al. (2021). Multifunctional SGQDs-CORM@HA nanosheets for bacterial eradication through cascade-activated “nanoknife” effect and photodynamic/CO gas therapy. Biomaterials 277:121084. DOI:10.1016/j.biomaterials.2021.121084 |
| [150] | Wu J., Williams G.R., Zhu Y., et al. (2021). Ultrathin chalcogenide nanosheets for photoacoustic imaging-guided synergistic photothermal/gas therapy. Biomaterials 273:120807. DOI:10.1016/j.biomaterials.2021.120807 |
| [151] | Ling P., Qian C., Gao F.,et al. (2018). Enzyme-immobilized metal–organic framework nanosheets as tandem catalysts for the generation of nitric oxide. Chem. Commun. 54:11176−11179. DOI:10.1039/C8CC05068F |
| [152] | Gao Q., Zhang X., Yin W., et al. (2018). Functionalized MoS2 nanovehicle with near-infrared laser-mediated nitric oxide release and photothermal activities for advanced bacteria-infected wound therapy. Small 14:1802290. DOI:10.1002/smll.201802290 |
| [153] | Zhu Y.X., You Y., Chen Z., et al. (2023). Inorganic nanosheet-shielded probiotics: a self-adaptable oral delivery system for intestinal disease treatment. Nano Lett. 23:4683−4692. DOI:10.1021/acs.nanolett.3c00118 |
| [154] | Su F., Zhang C., Zhang Q., et al. (2024). Multifaceted immunomodulatory nanocomplexes target neutrophilic-ROS inflammation in acute lung injury. Adv. Sci. 12:2411823. DOI:10.1002/advs.202411823 |
| [155] | You Y., Zhu Y.X., Jiang J., et al. (2022). Water-enabled H2 generation from hydrogenated silicon nanosheets for efficient anti-inflammation. J. Am. Chem. Soc. 144:14195−14206. DOI:10.1021/jacs.2c04412 |
| [156] | Zhu Y., Jiang Q., Jin Z., et al. (2023). Two-dimensional Mg2Si nanosheet-enabled sustained hydrogen generation for improved repair and regeneration of deeply burned skin. Adv. Healthc. Mater. 12:2201705. DOI:10.1002/adhm.202201705 |
| [157] | Zhang W., Zeng L., Yu H., et al. (2023). Injectable spontaneous hydrogen-releasing hydrogel for long-lasting alleviation of osteoarthritis. Acta Biomaterialia 158:163−177. DOI:10.1016/j.actbio.2022.12.056 |
| [158] | He J., Wang W., Yan J., et al. (2024). Stabilizing electron transport of 2D materials. Adv. Mater. 37:2411941. DOI:10.1002/adma.202411941 |
| [159] | Li R., Fan Y., Liu L., et al. (2022). Ultrathin hafnium disulfide atomic crystals with ros-scavenging and colon-targeting capabilities for inflammatory bowel disease treatment. ACS Nano 16:15026−15041. DOI:10.1021/acsnano.2c06151 |
| [160] | Song J.H., Yoon T., Lee S.M., et al. (2022). GeTe nanosheets as theranostic agents for multimodal imaging and therapy of inflammatory bowel disease. Adv. Funct. Mater. 32:2107433. DOI:10.1002/adfm.202107433 |
| [161] | Liu S., Xu A., Gao Y., et al. (2021). Graphene oxide exacerbates dextran sodium sulfate-induced colitis via ROS/AMPK/p53 signaling to mediate apoptosis. J. Nanobiotechnol. 19:85. DOI:10.1186/s12951-021-00832-5 |
| [162] | Zhang C., Li Q., Shan J., et al. (2023). Multifunctional two-dimensional Bi2Se3 nanodiscs for anti-inflammatory therapy of inflammatory bowel diseases. Acta Biomaterialia 160:252−264. DOI:10.1016/j.actbio.2023.02.016 |
| [163] | Hou L., Gong F., Liu B., et al. (2022). Orally administered titanium carbide nanosheets as anti-inflammatory therapy for colitis. Theranostics 12:3834−3846. DOI:10.7150/thno.70668 |
| [164] | Deng J., Xian D., Cai X., et al. (2023). Surface-engineered vanadium carbide MXenzyme for anti-inflammation and photoenhanced antitumor therapy of colon diseases. Adv. Funct. Mater. 33:2211846. DOI:10.1002/adfm.202211846 |
| [165] | Zhao S., Li Y., Liu Q., et al. (2020). An orally administered CeO2@montmorillonite nanozyme targets inflammation for inflammatory bowel disease therapy. Adv. Funct. Mater. 30:2004692. DOI:10.1002/adfm.202004692 |
| [166] | Song X., Huang Q., Yang Y., et al. (2023). Efficient therapy of inflammatory bowel disease (IBD) with highly specific and durable targeted Ta2C modified with chondroitin sulfate (TACS). Adv. Mater. 35:2301585. DOI:10.1002/adma.202301585 |
| [167] | Alfaddagh A., Martin S.S., Leucker T.M., et al. (2020). Inflammation and cardiovascular disease: From mechanisms to therapeutics. Am. J. Prev. Cardiol. 4:100130. DOI:10.1016/j.ajpc.2020.100130 |
| [168] | Mangge H., Becker K., Fuchs D., et al. (2014). Antioxidants, inflammation and cardiovascular disease. World J. Cardiol. 6:462−477. DOI:10.4330/wjc.v6.i6.462 |
| [169] | Cao Z., Yuan G., Zeng L., et al. (2022). Macrophage-targeted sonodynamic/photothermal synergistic therapy for preventing atherosclerotic plaque progression using CuS/TiO2 heterostructured nanosheets. ACS Nano 16:10608−10622. DOI:10.1021/acsnano.2c02177 |
| [170] | Han J., Kim Y.S., Lim M.Y., et al. (2018). Dual roles of graphene oxide to attenuate inflammation and elicit timely polarization of macrophage phenotypes for cardiac repair. ACS Nano 12:1959−1977. DOI:10.1021/acsnano.7b09107 |
| [171] | Paul A., Hasan A., Kindi H.A., et al. (2014). Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8:8050−8062. DOI:10.1021/nn5020787 |
| [172] | Xiang K., Wu H., Liu Y., et al. (2023). MOF-derived bimetallic nanozyme to catalyze ROS scavenging for protection of myocardial injury. Theranostics 13:2721−2733. DOI:10.7150/thno.83543 |
| [173] | Wang D., Zhao Q., Qin J., et al. (2022). Urokinase loaded black phosphorus nanosheets for sequential thrombolysis and reactive oxygen species scavenging in ischemic stroke treatment. Biomater. Sci. 10:4656−4666. DOI:10.1039/D2BM00746K |
| [174] | Ding X., Hong C., Zhang G., et al. (2019). A champagne inspired dual chain-responsive thrombolytic drug release platform based on black phosphorus nanosheets for accelerated thrombolysis. Nanoscale Horiz. 4:1277−1285. DOI:10.1039/C9NH00344D |
| [175] | Kang X., Li Y., Duan Z., et al. (2023). A Mxene@TA/Fe dual-nanozyme composited antifouling hydrogel for burn wound repair. Chem. Eng. J. 476:146420. DOI: https://doi.org/10.1016/j.cej.2023.146420. |
| [176] | Meng Y., Chen L., Chen Y., et al. (2022). Reactive metal boride nanoparticles trap lipopolysaccharide and peptidoglycan for bacteria-infected wound healing. Nat. Commun. 13:7353. DOI:10.1038/s41467-022-35050-6 |
| [177] | Zhou L., Zheng H., Liu Z., et al. (2021). Conductive antibacterial hemostatic multifunctional scaffolds based on Ti3C2Tx MXene nanosheets for promoting multidrug-resistant bacteria-infected wound healing. ACS Nano 15:2468−2480. DOI:10.1021/acsnano.0c06287 |
| [178] | Li Y., Yu P., Wen J., et al. (2022). Nanozyme-based stretchable hydrogel of low hysteresis with antibacterial and antioxidant dual functions for closely fitting and wound healing in movable parts. Adv. Funct. Mater. 32:2110720. DOI:10.1002/adfm.202110720 |
| [179] | Wang X., Li Q., Miao Y., et al. (2023). A 0D-2D heterojunction bismuth molybdate-anchored multifunctional hydrogel for highly efficient eradication of drug-resistant bacteria. ACS Nano 17:15568−15589. DOI:10.1021/acsnano.3c02304 |
| [180] | Chen J., Liu Y., Cheng G., et al. (2022). Tailored hydrogel delivering niobium carbide boosts ros-scavenging and antimicrobial activities for diabetic wound healing. Small 18:2201300. DOI:10.1002/smll.202201300 |
| [181] | Li Y., Fu R., Duan Z., et al. (2022). Artificial nonenzymatic antioxidant MXene nanosheet-anchored injectable hydrogel as a mild photothermal-controlled oxygen release platform for diabetic wound healing. ACS Nano 16:7486−7502. DOI:10.1021/acsnano.1c10575 |
| [182] | Ding Q., Sun T., Su W., et al. (2022). Bioinspired multifunctional black phosphorus hydrogel with antibacterial and antioxidant properties: A stepwise countermeasure for diabetic skin wound healing. Adv. Healthc. Mater. 11:2102791. DOI:10.1002/adhm.202102791 |
| [183] | Ding X., Yu Y., Li W., et al. (2023). In situ 3D-bioprinting MoS2 accelerated gelling hydrogel scaffold for promoting chronic diabetic wound healing. Matter 6:1000−1014. DOI:10.1016/j.matt.2023.01.001 |
| [184] | Tu,C., Lu H., Zhou T., et al. (2022). Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials 286:121597. DOI:10.1016/j.biomaterials.2022.121597 |
| [185] | Iantomasi T., Romagnoli C., Palmini G., et al. (2023). Oxidative stress and inflammation in osteoporosis: molecular mechanisms involved and the relationship with microRNAs. Int. J. Mol. Sci. 24:3772. DOI:10.3390/ijms24043772 |
| [186] | Zhang S., Cai J., Yao Y., et al. (2023). Mitochondrial-targeting Mn3O4/UIO-TPP nanozyme scavenge ROS to restore mitochondrial function for osteoarthritis therapy. Regen. Biomater. 10:rbad078. DOI:10.1093/rb/rbad078 |
| [187] | Li B., Yang C., Guo M., et al. (2023). Ultrasound-remote selected activation mitophagy for precise treatment of rheumatoid arthritis by two-dimensional piezoelectric nanosheets. ACS Nano 17:621−635. DOI:10.1021/acsnano.2c09834 |
| [188] | Chen X., Zhu X., Xu T., et al. (2019). Targeted hexagonal Pd nanosheet combination therapy for rheumatoid arthritis via the photothermal controlled release of MTX. J. Mater. Chem. B 7:112−122. DOI:10.1039/C8TB02302F |
| [189] | Zhang D., Cheng S., Tan J., et al. (2022). Black Mn-containing layered double hydroxide coated magnesium alloy for osteosarcoma therapy, bacteria killing, and bone regeneration. Bioact. Mater. 17:394−405. DOI:10.1016/j.bioactmat.2022.01.032 |
| [190] | Xiang J., Yang X., Tan M., et al. (2024). NIR-enhanced Pt single atom/g-C3N4 nanozymes as SOD/CAT mimics to rescue ATP energy crisis by regulating oxidative phosphorylation pathway for delaying osteoarthritis progression. Bioact. Mater. 36:1−13. DOI:10.1016/j.bioactmat.2024.02.018 |
| [191] | Wu Y., Liao Q., Wu L., et al. (2021). ZnL2-BPs integrated bone scaffold under sequential photothermal mediation: A win–win strategy delivering antibacterial therapy and fostering osteogenesis thereafter. ACS Nano 15:17854−17869. DOI:10.1021/acsnano.1c06062 |
| [192] | Yang C., Luo Y., Shen H., et al. (2022). Inorganic nanosheets facilitate humoral immunity against medical implant infections by modulating immune co-stimulatory pathways. Nat. Commun. 13:4866. DOI:10.1038/s41467-022-32405-x |
| [193] | Yang C., Luo Y., Lin H., et al. (2021). Niobium carbide MXene augmented medical implant elicits bacterial infection elimination and tissue regeneration. ACS Nano 15:1086−1099. DOI:10.1021/acsnano.0c08045 |
| [194] | Hu H., Huang H., Xia L., et al. (2022). Engineering vanadium carbide MXene as multienzyme mimetics for efficient in vivo ischemic stroke treatment. Chem. Eng. J. 440:135810. DOI:10.1016/j.cej.2022.135810 |
| [195] | Lei L., Tu Q., Jiao L., et al. (2022). Reactive oxygen species scavenging by hemin-based nanosheets reduces Parkinson’s disease symptoms in an animal model. Chem. Eng. J. 432:134356. DOI:10.1016/j.cej.2021.134356 |
| [196] | He F., Liu Z., Xu J., et al. (2023). Black phosphorus nanosheets suppress oxidative damage of stem cells for improved neurological recovery. Chem. Eng. J. 451:138737. DOI:10.1016/j.cej.2022.138737 |
| [197] | Chen W., Ouyang J., Yi X., et al. (2018). Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv. Mater. 30:1703458. DOI:10.1002/adma.201703458 |
| [198] | Qian Y., Xu Y., Yan Z., et al. (2021). Boron nitride nanosheets functionalized channel scaffold favors microenvironment rebalance cocktail therapy for piezocatalytic neuronal repair. Nano Energy 83:105779. DOI:10.1016/j.nanoen.2021.105779 |
| [199] | Hou J., Wang H., Ge Z., et al. (2020). Treating acute kidney injury with antioxidative black phosphorus nanosheets. Nano Lett. 20:1447−1454. DOI:10.1021/acs.nanolett.9b05218 |
| Zhu Y., Lei L., Zhang Z., et al. (2025). Two-dimensional nanomaterials for inflammation-related disease treatments. The Innovation Materials 3:100128. https://doi.org/10.59717/j.xinn-mater.2025.100128 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
Schematic illustrating the mechanisms of 2D materials for combating inflammation-related diseases.
Schematic illustration of the anti-bacterial mechanisms of 2D nanomaterials
ROS-scavenging mechanisms of 2D nanomaterials
2D nanomaterial-based gas delivery applications
Hydrogen generation mediated by H-silicene nanosheets
Applications of 2D nanomaterials in IBD treatments
Cardiovascular disease treatments by 2D nanomaterials
Applications of 2D nanomaterials in wound healing, bone disease, and nervous system disease