Article Contents
REPORT   Open Access     Cite

A sustainable cellulose bioplastic film with extraordinary mechanical performance regenerated by vapor-induced phase separation

    Show all affliationsShow less
More Information
  • DownLoad: Full size image
    1. A streamlined Vapor-Induced Phase Separation-stretching-hot-pressing (VIPS-S-P) is firstly proposed.

      A regenerated cellulose bioplastic (VSP-RCB) is produced by VIPS-S-P.

      The supramolecular assembly mechanisms of cellulosic network are revealed.

      This VSP-RCB showcases exceptional mechanical strength in wet and dry conditions.

  • We urgently need eco-friendly alternatives to non-biodegradable petrochemical plastics. Our study introduces a streamlined Vapor-Induced Phase Separation (VIPS) process, followed by stretching and hot-pressing (VIPS-S-P), to produce a regenerated cellulose bioplastic (VSP-RCB). This bioplastic showcases exceptional mechanical strength in wet and dry conditions, water stability, transparency, biocompatibility, biodegradability, and thermal stability. The scalable VIPS process involves cellulose dissolved in DMAc-LiCl coagulating with atmospheric water vapor to form a transparent organohydrogel (RCOH). The RCOH is aligned through stretching and densified via hot-pressing, creating a fully recyclable product from diverse cellulose sources. Molecular dynamics simulations and life-cycle assessment (LCA) explain RCOH generation mechanisms and environmental impacts. The VIPS-S-P strategy provides a sustainable approach to producing robust, transparent, water-stable, and biodegradable cellulose-based bioplastics, offering a compelling alternative to petrochemical plastics.
  • 加载中
  • [1] Brahney J., Hallerud M., Heim E., et al. (2020). Plastic rain in protected areas of the united states. Science 368:1257−1260. DOI:10.1126/science.aaz5819

    View in Article CrossRef Google Scholar

    [2] Li T., Chen C., Brozena A.H., et al. (2021). Developing fibrillated cellulose as a sustainable technological material. Nature 590:47−56. DOI:10.1038/s41586-020-03167-7

    View in Article CrossRef Google Scholar

    [3] Wang Z., Xu C., Qi L., et al. (2024). Chemical modification of polysaccharides for sustainable bioplastics. Trends Chem. 6:314−331. DOI:10.1016/j.trechm.2024.04.009

    View in Article CrossRef Google Scholar

    [4] Zeng Z., Yu L., Yang S., et al. (2024). Tuning water-cellulose interactions via copper-coordinated mercerization for hydro-actuated, shape-memory cellulosic hydroplastics. Matter 7:3036−3052. DOI:10.1016/j.matt.2024.04.033

    View in Article CrossRef Google Scholar

    [5] Zhang L., Chen L., Wang S., et al. (2024). Cellulose nanofiber-mediated manifold dynamic synergy enabling adhesive and photo-detachable hydrogel for self-powered E-skin. Nat. Commun. 15:3859. DOI:10.1038/s41467-024-47986-y

    View in Article CrossRef Google Scholar

    [6] Habibi Y. (2014). Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43:1519−1542. DOI:10.1039/C3CS60204D

    View in Article CrossRef Google Scholar

    [7] Ray U., Zhu S., Pang Z., et al. (2021). Mechanics design in cellulose-enabled high-performance functional materials. Adv. Mater. 33:2002504. DOI:10.1002/adma.202002504

    View in Article CrossRef Google Scholar

    [8] Menut P., Pochat-Bohatier C., Deratani A., et al. (2002). Structure formation of poly (ether-imide) films using non-solvent vapor induced phase separation: Relationship between mass transfer and relative humidity. Desalination 145:11−16. DOI:10.1016/S0011-9164(02)00323-5

    View in Article CrossRef Google Scholar

    [9] Mittal N., Jansson R., Widhe M., et al. (2017). Ultrastrong and bioactive nanostructured bio-based composites. ACS Nano 11:5148−5159. DOI:10.1021/acsnano.7b02305

    View in Article CrossRef Google Scholar

    [10] Li K., Clarkson C.M., Wang L., et al. (2021). Alignment of cellulose nanofibers: Harnessing nanoscale properties to macroscale benefits. ACS Nano 15:3646−3673. DOI:10.1021/acsnano.0c07613

    View in Article CrossRef Google Scholar

    [11] Lee K., Jeon Y., Kim D., et al. (2021). Double-crosslinked cellulose nanofiber based bioplastic films for practical applications. Carbohydr. Polym. 260:117817. DOI:10.1016/j.carbpol.2021.117817

    View in Article CrossRef Google Scholar

    [12] Wang C., Zhao J., Liu L., et al. (2021). Transformation of fibrous membranes from opaque to transparent under mechanical pressing. Engineering 19:84−92. DOI:10.1016/j.eng.2021.02.018

    View in Article CrossRef Google Scholar

    [13] Wang S., Li T., Chen C., et al. (2018). Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers. Adv. Funct. Mater. 28:1707491. DOI:10.1002/adfm.201707491

    View in Article CrossRef Google Scholar

    [14] Benitez A.J., Torres-Rendon J., Poutanen M., et al. (2013). Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Biomacromolecules 14:4497−4506. DOI:10.1021/bm401451m

    View in Article CrossRef Google Scholar

    [15] Yuan H., Wu J., Wang D., et al. (2021). Ultra-high-strength composite films prepared from nmmo solutions of bamboo-derived dissolving pulp and chitosan. Ind. Crops Prod. 170:113747. DOI:10.1016/j.indcrop.2021.113747

    View in Article CrossRef Google Scholar

    [16] Su H., Wang B., Sun Z., et al. (2022). High-tensile regenerated cellulose films enabled by unexpected enhancement of cellulose dissolution in cryogenic aqueous phosphoric acid. Carbohydr. Polym. 277:118878. DOI:10.1016/j.carbpol.2021.118878

    View in Article CrossRef Google Scholar

    [17] Shu L., Zhang X.F., Wang Z., et al. (2022). Structure reorganization of cellulose hydrogel by green solvent exchange for potential plastic replacement. Carbohydr. Polym. 275:118695. DOI:10.1016/j.carbpol.2021.118695

    View in Article CrossRef Google Scholar

    [18] Gao X., Li M., Zhang H., et al. (2021). Fabrication of regenerated cellulose films by dmac dissolution using parenchyma cells via low-temperature pulping from yunnan-endemic bamboos. Ind. Crops Prod. 160:113116. DOI:10.1016/j.indcrop.2020.113116

    View in Article CrossRef Google Scholar

    [19] Zhang Q., Chen Y., Wei P., et al. (2021). Extremely strong and tough chitosan films mediated by unique hydrated chitosan crystal structures. Mater. Today 51:27−38. DOI:10.1016/j.mattod.2021.10.030

    View in Article CrossRef Google Scholar

    [20] Hu L., Zhong Y., Wu S., et al. (2021). Biocompatible and biodegradable super-toughness regenerated cellulose via water molecule-assisted molding. Chem. Eng. J. 417:129229. DOI:10.1016/j.cej.2021.129229

    View in Article CrossRef Google Scholar

    [21] Tu H., Zhu M., Duan B., et al. (2020). Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater. 33:2000682. DOI:10.1002/adma.202000682

    View in Article CrossRef Google Scholar

    [22] Ismail N., Venault A., Mikkola J.P., et al. (2020). Investigating the potential of membranes formed by the vapor induced phase separation process. J. Membr. Sci. 597:117601. DOI:10.1016/j.memsci.2019.117601

    View in Article CrossRef Google Scholar

    [23] Zhao Q., Xie R., Luo F., et al. (2018). Preparation of high strength poly(vinylidene fluoride) porous membranes with cellular structure via vapor-induced phase separation. J. Membr. Sci. 549:151−164. DOI:10.1016/j.memsci.2017.10.068

    View in Article CrossRef Google Scholar

    [24] Chae Park H., Po Kim Y., Yong Kim H., et al. (1999). Membrane formation by water vapor induced phase inversion. J. Membr. Sci. 156:169−178. DOI:10.1016/S0376-7388(98)00359-7

    View in Article CrossRef Google Scholar

    [25] Wang Q., Nnanna P.C., Shen F., et al. (2021). Full utilization of sweet sorghum for bacterial cellulose production: A concept of material crop. Ind. Crops Prod. 162:113256. DOI:10.1016/j.indcrop.2021.113256

    View in Article CrossRef Google Scholar

    [26] International A. (2013). Standard test method for intrinsic viscosity of cellulose.

    View in Article Google Scholar

    [27] Ye D., Lei X., Li T., et al. (2019). Ultrahigh tough, super clear, and highly anisotropic nanofiber-structured regenerated cellulose films. ACS Nano 13:4843−4853. DOI:10.1021/acsnano.9b02081

    View in Article CrossRef Google Scholar

    [28] Kotov N., Raus V. and Dybal J. (2018). Intermolecular interactions in N,N-dimethylacetamide without and with LiCl studied by infrared spectroscopy and quantum chemical model calculations. J. Phys. Chem. B. 122:8921−8930. DOI:10.1021/acs.jpcb.8b05569

    View in Article CrossRef Google Scholar

    [29] Alexowsky C., Bojarska M. and Ulbricht M. (2019). Porous poly(vinylidene fluoride) membranes with tailored properties by fast and scalable non-solvent vapor induced phase separation. J. Membr. Sci. 577:69−78. DOI:10.1016/j.memsci.2019.01.033

    View in Article CrossRef Google Scholar

    [30] Ripoche A., Menut P., Dupuy C., et al. (2002). Poly(ether imide) membrnae formation by water vapour induced phase inversion. Macromol. Symp. 188:37−48. DOI:3.0.CO;2-4">10.1002/1521-3900(200211)188:1<37::AID-MASY37>3.0.CO;2-4

    View in Article CrossRef Google Scholar

    [31] Zhang C., Liu R., Xiang J., et al. (2014). Dissolution mechanism of cellulose in N, N-dimethylacetamide/lithium chloride: Revisiting through molecular interactions. J. Phys. Chem. B. 118:9507−9514. DOI:10.1021/jp506013c

    View in Article CrossRef Google Scholar

    [32] Wang S., Yu L., Jia X., et al. (2024). Cellulose nanofibril-guided orienting response of supramolecular network enables superstretchable, robust, and antifatigue hydrogel. Innov. Mater. 2:100092. DOI:10.59717/j.xinn-mater.2024.100092

    View in Article CrossRef Google Scholar

    [33] Moon R.J., Martini A., Nairn J., et al. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 40:3941−3994. DOI:10.1039/C0CS00108B

    View in Article CrossRef Google Scholar

    [34] Sugiyama J., Vuong R. and Chanzy H. (1991). Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168−4175. DOI:10.1021/ma00014a033

    View in Article CrossRef Google Scholar

    [35] Nogi M., Iwamoto S., Nakagaito A.N., et al. (2009). Optically transparent nanofiber paper. Adv. Mater. 21:1595−1598. DOI:10.1002/adma.200803174

    View in Article CrossRef Google Scholar

    [36] Hou Y., Guan Q.F., Xia J., et al. (2021). Strengthening and toughening hierarchical nanocellulose via humidity-mediated interface. ACS Nano 15:1310−1320. DOI:10.1021/acsnano.0c08574

    View in Article CrossRef Google Scholar

    [37] Ritchie R.O. (2011). The conflicts between strength and toughness. Nat. Mater. 10:817−822. DOI:10.1038/nmat3115

    View in Article CrossRef Google Scholar

    [38] Evans A.G. (1990). Perspective on the development of high-toughness ceramics. J. Am. Ceram. Soc. 73:187−206. DOI:10.1111/j.1151-2916.1990.tb06493.x

    View in Article CrossRef Google Scholar

    [39] Launey M.E. and Ritchie R.O. (2009). On the fracture toughness of advanced materials. Adv. Mater. 21:2103−2110. DOI:10.1002/adma.200803322

    View in Article CrossRef Google Scholar

    [40] Cheng J., Chen Z., Zhou J., et al. (2018). Influences of layer thickness on the compatibility and physical properties of polycarbonate/polystyrene multilayered film via nanolayer coextrusion. Appl. Surf. Sci. 440:946−954. DOI:10.1016/j.apsusc.2018.01.254

    View in Article CrossRef Google Scholar

    [41] Zhang X., Liu W., Liu W., et al. (2020). High performance pva/lignin nanocomposite films with excellent water vapor barrier and UV-shielding properties. Int. J. Biol. Macromol. 142:551−558. DOI:10.1016/j.ijbiomac.2019.09.129

    View in Article CrossRef Google Scholar

    [42] Ku H., Wang H., Pattarachaiyakoop N., et al. (2011). A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B: Eng. 42:856−873. DOI:10.1016/j.compositesb.2011.01.010

    View in Article CrossRef Google Scholar

    [43] Yamane C., Aoyagi T., Ago M., et al. (2006). Two different surface properties of regenerated cellulose due to structural anisotropy. Polym. J. (Tokyo, Jpn.) 38:819−826. DOI:10.1295/polymj.PJ2005187

    View in Article CrossRef Google Scholar

    [44] Ma Q., Wang K., Mohawk D., et al. (2021). Strong, ductile, transparent, water-resistant cellulose nanofibril composite films via UV-induced inter-cross-linked networks. ACS Sustainable Chem. Eng. 9:10749−10760. DOI:10.1021/acssuschemeng.1c01222

    View in Article CrossRef Google Scholar

    [45] Wei P., Huang J., Lu Y., et al. (2019). Unique stress whitening and high-toughness double-cross-linked cellulose films. ACS Sustainable Chem. Eng. 7:1707−1717. DOI:10.1021/acssuschemeng.8b05485

    View in Article CrossRef Google Scholar

    [46] Liu S., Zeng J., Tao D., et al. (2010). Microfiltration performance of regenerated cellulose membrane prepared at low temperature for wastewater treatment. Cellulose 17:1159−1169. DOI:10.1007/s10570-010-9450-6

    View in Article CrossRef Google Scholar

    [47] Martins R., Barquinha P., Pereira L., et al. (2008). Write-erase and read paper memory transistor. Appl. Phys. Lett. 93:203501. DOI:10.1063/1.3030873

    View in Article CrossRef Google Scholar

    [48] Zhu H., Xiao Z., Liu D., et al. (2013). Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ. Sci. 6:2105−2111. DOI:10.1039/C3EE40492G

    View in Article CrossRef Google Scholar

    [49] Nogi M., Komoda N., Otsuka K., et al. (2013). Foldable nanopaper antennas for origami electronics. Nanoscale 5:4395−4399. DOI:10.1039/C3NR00231D

    View in Article CrossRef Google Scholar

    [50] Zhu H., Fang Z., Preston C., et al. (2014). Transparent paper: Fabrications, properties, and device applications. Energy Environ. Sci. 7:269−287. DOI:10.1039/C3EE43024C

    View in Article CrossRef Google Scholar

  • Cite this article:

    Zhao H., Hu G-C., Abraham B., et al. (2025). A sustainable cellulose bioplastic film with extraordinary mechanical performance regenerated by vapor-induced phase separation. The Innovation Materials 3:100133. https://doi.org/10.59717/j.xinn-mater.2025.100133
    Zhao H., Hu G-C., Abraham B., et al. (2025). A sustainable cellulose bioplastic film with extraordinary mechanical performance regenerated by vapor-induced phase separation. The Innovation Materials 3:100133. https://doi.org/10.59717/j.xinn-mater.2025.100133

Welcome!

To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.

Figures(4)    

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(2837) PDF downloads(860)

Relative Articles

Cited by

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint