A streamlined Vapor-Induced Phase Separation-stretching-hot-pressing (VIPS-S-P) is firstly proposed.
A regenerated cellulose bioplastic (VSP-RCB) is produced by VIPS-S-P.
The supramolecular assembly mechanisms of cellulosic network are revealed.
This VSP-RCB showcases exceptional mechanical strength in wet and dry conditions.
| [1] | Brahney J., Hallerud M., Heim E., et al. (2020). Plastic rain in protected areas of the united states. Science 368:1257−1260. DOI:10.1126/science.aaz5819 |
| [2] | Li T., Chen C., Brozena A.H., et al. (2021). Developing fibrillated cellulose as a sustainable technological material. Nature 590:47−56. DOI:10.1038/s41586-020-03167-7 |
| [3] | Wang Z., Xu C., Qi L., et al. (2024). Chemical modification of polysaccharides for sustainable bioplastics. Trends Chem. 6:314−331. DOI:10.1016/j.trechm.2024.04.009 |
| [4] | Zeng Z., Yu L., Yang S., et al. (2024). Tuning water-cellulose interactions via copper-coordinated mercerization for hydro-actuated, shape-memory cellulosic hydroplastics. Matter 7:3036−3052. DOI:10.1016/j.matt.2024.04.033 |
| [5] | Zhang L., Chen L., Wang S., et al. (2024). Cellulose nanofiber-mediated manifold dynamic synergy enabling adhesive and photo-detachable hydrogel for self-powered E-skin. Nat. Commun. 15:3859. DOI:10.1038/s41467-024-47986-y |
| [6] | Habibi Y. (2014). Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43:1519−1542. DOI:10.1039/C3CS60204D |
| [7] | Ray U., Zhu S., Pang Z., et al. (2021). Mechanics design in cellulose-enabled high-performance functional materials. Adv. Mater. 33:2002504. DOI:10.1002/adma.202002504 |
| [8] | Menut P., Pochat-Bohatier C., Deratani A., et al. (2002). Structure formation of poly (ether-imide) films using non-solvent vapor induced phase separation: Relationship between mass transfer and relative humidity. Desalination 145:11−16. DOI:10.1016/S0011-9164(02)00323-5 |
| [9] | Mittal N., Jansson R., Widhe M., et al. (2017). Ultrastrong and bioactive nanostructured bio-based composites. ACS Nano 11:5148−5159. DOI:10.1021/acsnano.7b02305 |
| [10] | Li K., Clarkson C.M., Wang L., et al. (2021). Alignment of cellulose nanofibers: Harnessing nanoscale properties to macroscale benefits. ACS Nano 15:3646−3673. DOI:10.1021/acsnano.0c07613 |
| [11] | Lee K., Jeon Y., Kim D., et al. (2021). Double-crosslinked cellulose nanofiber based bioplastic films for practical applications. Carbohydr. Polym. 260:117817. DOI:10.1016/j.carbpol.2021.117817 |
| [12] | Wang C., Zhao J., Liu L., et al. (2021). Transformation of fibrous membranes from opaque to transparent under mechanical pressing. Engineering 19:84−92. DOI:10.1016/j.eng.2021.02.018 |
| [13] | Wang S., Li T., Chen C., et al. (2018). Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers. Adv. Funct. Mater. 28:1707491. DOI:10.1002/adfm.201707491 |
| [14] | Benitez A.J., Torres-Rendon J., Poutanen M., et al. (2013). Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Biomacromolecules 14:4497−4506. DOI:10.1021/bm401451m |
| [15] | Yuan H., Wu J., Wang D., et al. (2021). Ultra-high-strength composite films prepared from nmmo solutions of bamboo-derived dissolving pulp and chitosan. Ind. Crops Prod. 170:113747. DOI:10.1016/j.indcrop.2021.113747 |
| [16] | Su H., Wang B., Sun Z., et al. (2022). High-tensile regenerated cellulose films enabled by unexpected enhancement of cellulose dissolution in cryogenic aqueous phosphoric acid. Carbohydr. Polym. 277:118878. DOI:10.1016/j.carbpol.2021.118878 |
| [17] | Shu L., Zhang X.F., Wang Z., et al. (2022). Structure reorganization of cellulose hydrogel by green solvent exchange for potential plastic replacement. Carbohydr. Polym. 275:118695. DOI:10.1016/j.carbpol.2021.118695 |
| [18] | Gao X., Li M., Zhang H., et al. (2021). Fabrication of regenerated cellulose films by dmac dissolution using parenchyma cells via low-temperature pulping from yunnan-endemic bamboos. Ind. Crops Prod. 160:113116. DOI:10.1016/j.indcrop.2020.113116 |
| [19] | Zhang Q., Chen Y., Wei P., et al. (2021). Extremely strong and tough chitosan films mediated by unique hydrated chitosan crystal structures. Mater. Today 51:27−38. DOI:10.1016/j.mattod.2021.10.030 |
| [20] | Hu L., Zhong Y., Wu S., et al. (2021). Biocompatible and biodegradable super-toughness regenerated cellulose via water molecule-assisted molding. Chem. Eng. J. 417:129229. DOI:10.1016/j.cej.2021.129229 |
| [21] | Tu H., Zhu M., Duan B., et al. (2020). Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater. 33:2000682. DOI:10.1002/adma.202000682 |
| [22] | Ismail N., Venault A., Mikkola J.P., et al. (2020). Investigating the potential of membranes formed by the vapor induced phase separation process. J. Membr. Sci. 597:117601. DOI:10.1016/j.memsci.2019.117601 |
| [23] | Zhao Q., Xie R., Luo F., et al. (2018). Preparation of high strength poly(vinylidene fluoride) porous membranes with cellular structure via vapor-induced phase separation. J. Membr. Sci. 549:151−164. DOI:10.1016/j.memsci.2017.10.068 |
| [24] | Chae Park H., Po Kim Y., Yong Kim H., et al. (1999). Membrane formation by water vapor induced phase inversion. J. Membr. Sci. 156:169−178. DOI:10.1016/S0376-7388(98)00359-7 |
| [25] | Wang Q., Nnanna P.C., Shen F., et al. (2021). Full utilization of sweet sorghum for bacterial cellulose production: A concept of material crop. Ind. Crops Prod. 162:113256. DOI:10.1016/j.indcrop.2021.113256 |
| [26] | International A. (2013). Standard test method for intrinsic viscosity of cellulose. |
| [27] | Ye D., Lei X., Li T., et al. (2019). Ultrahigh tough, super clear, and highly anisotropic nanofiber-structured regenerated cellulose films. ACS Nano 13:4843−4853. DOI:10.1021/acsnano.9b02081 |
| [28] | Kotov N., Raus V. and Dybal J. (2018). Intermolecular interactions in N,N-dimethylacetamide without and with LiCl studied by infrared spectroscopy and quantum chemical model calculations. J. Phys. Chem. B. 122:8921−8930. DOI:10.1021/acs.jpcb.8b05569 |
| [29] | Alexowsky C., Bojarska M. and Ulbricht M. (2019). Porous poly(vinylidene fluoride) membranes with tailored properties by fast and scalable non-solvent vapor induced phase separation. J. Membr. Sci. 577:69−78. DOI:10.1016/j.memsci.2019.01.033 |
| [30] | Ripoche A., Menut P., Dupuy C., et al. (2002). Poly(ether imide) membrnae formation by water vapour induced phase inversion. Macromol. Symp. 188:37−48. DOI:3.0.CO;2-4">10.1002/1521-3900(200211)188:1<37::AID-MASY37>3.0.CO;2-4 |
| [31] | Zhang C., Liu R., Xiang J., et al. (2014). Dissolution mechanism of cellulose in N, N-dimethylacetamide/lithium chloride: Revisiting through molecular interactions. J. Phys. Chem. B. 118:9507−9514. DOI:10.1021/jp506013c |
| [32] | Wang S., Yu L., Jia X., et al. (2024). Cellulose nanofibril-guided orienting response of supramolecular network enables superstretchable, robust, and antifatigue hydrogel. Innov. Mater. 2:100092. DOI:10.59717/j.xinn-mater.2024.100092 |
| [33] | Moon R.J., Martini A., Nairn J., et al. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 40:3941−3994. DOI:10.1039/C0CS00108B |
| [34] | Sugiyama J., Vuong R. and Chanzy H. (1991). Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168−4175. DOI:10.1021/ma00014a033 |
| [35] | Nogi M., Iwamoto S., Nakagaito A.N., et al. (2009). Optically transparent nanofiber paper. Adv. Mater. 21:1595−1598. DOI:10.1002/adma.200803174 |
| [36] | Hou Y., Guan Q.F., Xia J., et al. (2021). Strengthening and toughening hierarchical nanocellulose via humidity-mediated interface. ACS Nano 15:1310−1320. DOI:10.1021/acsnano.0c08574 |
| [37] | Ritchie R.O. (2011). The conflicts between strength and toughness. Nat. Mater. 10:817−822. DOI:10.1038/nmat3115 |
| [38] | Evans A.G. (1990). Perspective on the development of high-toughness ceramics. J. Am. Ceram. Soc. 73:187−206. DOI:10.1111/j.1151-2916.1990.tb06493.x |
| [39] | Launey M.E. and Ritchie R.O. (2009). On the fracture toughness of advanced materials. Adv. Mater. 21:2103−2110. DOI:10.1002/adma.200803322 |
| [40] | Cheng J., Chen Z., Zhou J., et al. (2018). Influences of layer thickness on the compatibility and physical properties of polycarbonate/polystyrene multilayered film via nanolayer coextrusion. Appl. Surf. Sci. 440:946−954. DOI:10.1016/j.apsusc.2018.01.254 |
| [41] | Zhang X., Liu W., Liu W., et al. (2020). High performance pva/lignin nanocomposite films with excellent water vapor barrier and UV-shielding properties. Int. J. Biol. Macromol. 142:551−558. DOI:10.1016/j.ijbiomac.2019.09.129 |
| [42] | Ku H., Wang H., Pattarachaiyakoop N., et al. (2011). A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B: Eng. 42:856−873. DOI:10.1016/j.compositesb.2011.01.010 |
| [43] | Yamane C., Aoyagi T., Ago M., et al. (2006). Two different surface properties of regenerated cellulose due to structural anisotropy. Polym. J. (Tokyo, Jpn.) 38:819−826. DOI:10.1295/polymj.PJ2005187 |
| [44] | Ma Q., Wang K., Mohawk D., et al. (2021). Strong, ductile, transparent, water-resistant cellulose nanofibril composite films via UV-induced inter-cross-linked networks. ACS Sustainable Chem. Eng. 9:10749−10760. DOI:10.1021/acssuschemeng.1c01222 |
| [45] | Wei P., Huang J., Lu Y., et al. (2019). Unique stress whitening and high-toughness double-cross-linked cellulose films. ACS Sustainable Chem. Eng. 7:1707−1717. DOI:10.1021/acssuschemeng.8b05485 |
| [46] | Liu S., Zeng J., Tao D., et al. (2010). Microfiltration performance of regenerated cellulose membrane prepared at low temperature for wastewater treatment. Cellulose 17:1159−1169. DOI:10.1007/s10570-010-9450-6 |
| [47] | Martins R., Barquinha P., Pereira L., et al. (2008). Write-erase and read paper memory transistor. Appl. Phys. Lett. 93:203501. DOI:10.1063/1.3030873 |
| [48] | Zhu H., Xiao Z., Liu D., et al. (2013). Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ. Sci. 6:2105−2111. DOI:10.1039/C3EE40492G |
| [49] | Nogi M., Komoda N., Otsuka K., et al. (2013). Foldable nanopaper antennas for origami electronics. Nanoscale 5:4395−4399. DOI:10.1039/C3NR00231D |
| [50] | Zhu H., Fang Z., Preston C., et al. (2014). Transparent paper: Fabrications, properties, and device applications. Energy Environ. Sci. 7:269−287. DOI:10.1039/C3EE43024C |
| Zhao H., Hu G-C., Abraham B., et al. (2025). A sustainable cellulose bioplastic film with extraordinary mechanical performance regenerated by vapor-induced phase separation. The Innovation Materials 3:100133. https://doi.org/10.59717/j.xinn-mater.2025.100133 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
The VIPS regeneration of cellulose solution
Well-ordered and densified nanostructure of VSP-RCB
Water stability, optical property, thermal stability, and biocompatibility of VSP-RCB
The sustainability of the VSP-RCB