Data, computing power, and algorithm drive artificial intelligence.
Artificial intelligence has changed the practice of medicine.
Artificial intelligence is improving the quality of life.
[1] | Schatsky, D., Muraskin, C., and Gurumurthy, R. (2014). Demystifying artificial intelligence: What business leaders need to know about cognitive technologies (Deloitte University Press). |
[2] | Castellanos, S. (2018). What exactly is artificial intelligence? The Wall Street Journal, https://www.wsj.com/articles/what-exactly-is-artificial-intelligence-1544120887. |
[3] | Koski, E., and Murphy, J. (2021). AI in Healthcare. Studies in health technology and informatics 284 : 295-299. DOI: 10.3233/shti210726. |
[4] | Frost & Sullivan (2018). Artificial intelligence in healthcare takes precision medicine to the next level. PR Newswire, https://www.prnewswire.com/news-releases/artificial-intelligence-in-healthcare-takes-precision-medicine-to-the-next-level-300712098.html. |
[5] | Ryan, S.A. (1985). An expert system for nursing practice. Clinical decision support. Comput. Nurs. 3: 77−84. |
[6] | Gao, J., Ye, X., Li, Y., et al. (2022). Application of artificial intelligence in clinical nursing: A scope review. Chinese Evidence-based Nursing 8 : 2996-3006. DOI: 10.12102/j.issn.2095-8668.2022.22.002. |
[7] | von Gerich, H., Moen, H., Block, L.J., et al. (2022). Artificial Intelligence-based technologies in nursing: A scoping literature review of the evidence. Int. J. Nurs. Stud. 127 : 104153. DOI: 10.1016/j.ijnurstu.2021.104153. |
[8] | Seibert, K., Domhoff, D., Bruch, D., et al. (2021). Application scenarios for artificial intelligence in nursing care: Rapid review. J. Med. Internet. Res. 23 : e26522. DOI: 10.2196/26522. |
[9] | Reddy, S., Allan, S., Coghlan, S., et al. (2020). A governance model for the application of AI in health care. J. Am. Med. Inform. Assoc. 27 : 491-497. DOI: 10.1093/jamia/ocz192. |
[10] | Chiu, I.M., Cheng, C.Y., Chang, P.K., et al. (2023). Utilization of personalized machine-learning to screen for dysglycemia from ambulatory ECG, toward noninvasive blood glucose monitoring. Biosensors (Basel) 13 : ARTN 23. DOI: 10.3390/bios13010023. |
[11] | Chaikijurajai, T., Laffin, L.J., and Tang, W.H.W. (2020). Artificial intelligence and hypertension: Recent advances and future outlook. Am. J. Hypertens. 33 : 967-974. DOI: 10.1093/ajh/hpaa102. |
[12] | Das, S.K., Miki, A.J., Blanchard, C.M., et al. (2022). Perspective: Opportunities and challenges of technology tools in dietary and activity assessment: Bridging stakeholder viewpoints. Adv. Nutr. 13 : 1-15. DOI: 10.1093/advances/nmab103. |
[13] | Schneider, C., Hanakam, F., Wiewelhove, T., et al. (2018). Heart rate monitoring in team sports - A conceptual framework for contextualizing heart rate measures for training and recovery prescription. Front. Physiol. 9 : ARTN 639. DOI: 10.3389/fphys.2018.00639. |
[14] | Bandyopadhyay, A., and Goldstein, C. (2023). Clinical applications of artificial intelligence in sleep medicine: A sleep clinician's perspective. Sleep Breath. 27 : 39-55. DOI: 10.1007/s11325-022-02592-4. |
[15] | Iliadou, E., Su, Q.Q., Kikidis, D., et al. (2022). Profiling hearing aid users through big data explainable artificial intelligence techniques. Front. Neurol. 13 : ARTN 933940. DOI: 10.3389/fneur.2022.933940. |
[16] | Bernauer, S.A., Zitzmann, N.U., and Joda, T. (2021). The use and performance of artificial intelligence in prosthodontics: A systematic review. Sensors (Basel) 21 : ARTN 6628. DOI: 10.3390/s21196628. |
[17] | Nahavandi, D., Alizadehsani, R., Khosravi, A., et al. (2022). Application of artificial intelligence in wearable devices: Opportunities and challenges. Comput. Meth. Prog. Bio. 213 : ARTN 106541. DOI: 10.1016/j.cmpb.2021.106541. |
[18] | Han, Y., Xu, H., Feng, G., et al. (2022). An online tool for predicting ovarian reserve based on AMH level and age: A retrospective cohort study. Front. Endocrinol. (Lausanne) 13 : 946123. DOI: 10.3389/fendo.2022.946123. |
[19] | Xu, H., Shi, L., Feng, G., et al. (2020). An ovarian reserve assessment model based on anti-mullerian hormone levels, follicle-stimulating hormone levels, and age: Retrospective cohort study. J. Med. Internet. Res. 22 : e19096. DOI: 10.2196/19096. |
[20] | Xu, H., Feng, G., Wang, H., et al. (2020). A novel mathematical model of true ovarian reserve assessment based on predicted probability of poor ovarian response: A retrospective cohort study. J. Assist. Reprod. Genet. 37 : 963-972. DOI: 10.1007/s10815-020-01700-1. |
[21] | Xu, H., Feng, G., Yang, R., et al. (2023). OvaRePred: Online tool for predicting the age of fertility milestones. The Innovation 4 : 100490. DOI: 10.1016/j.xinn.2023.100490. |
[22] | Topping, M. (2002). An overview of the development of Handy 1, a rehabilitation robot to assist the severely disabled. J. Intell. Robot. Syst. 34 : 253-263. DOI: 10.1023/A:1016355418817. |
[23] | Davies, N. (2016). Can robots handle your healthcare? Engineering & Technology 11 : 58-61. DOI: 10.1049/et.2016.0907. |
[24] | Chang, D., Chang, D., and Pourhomayoun, M. (2019). Risk prediction of critical vital signs for ICU patients using recurrent neural network. 2019 International Conference on Computational Science and Computational Intelligence (CSCI) 2019 : 1003-1006. DOI: 10.1109/CSCI49370.2019.00191. |
[25] | Stevens, N., Giannareas, A.R., Kern, V., et al. (2012). Smart alarms: Multivariate medical alarm integration for post CABG surgery patients. IHI'12 - Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium. DOI:10.1145/2110363.2110423. |
[26] | Sparks, R.S., and Okugami, C. (2016). Tele-health monitoring of patient wellness. J. Intell. Syst. 25 : 515-528. DOI: 10.1515/jisys-2014-0175. |
[27] | Nauta, J., Mahieu, C., Michiels, C., et al. (2019). Pro-active positioning of a social robot intervening upon behavioral disturbances of persons with dementia in a smart nursing home. Cogn. Syst. Res. 57 : 160-174. DOI: 10.1016/j.cogsys.2019.03.002. |
[28] | Barrera, A., Gee, C., Wood, A., et al. (2020). Introducing artificial intelligence in acute psychiatric inpatient care: Qualitative study of its use to conduct nursing observations. BMJ Mental Health 23 : 34-38. DOI: 10.1136/ebmental-2019-300136. |
[29] | Lin, J.W., Chen, W., Shen, C.P., et al. (2018). Visualization and sonification of long-term epilepsy electroencephalogram monitoring. J. Med. Biol. Eng. 38 : 943-952. DOI: 10.1007/s40846-017-0358-6. |
[30] | Yokota, S., Endo, M., and Ohe, K. (2017). Establishing a classification system for high fall-risk among inpatients using support vector machines. CIN Comput. Inform. Nurs. 35 : 408. DOI: 10.1097/cin.0000000000000332. |
[31] | Nakatani, H., Nakao, M., Uchiyama, H., et al. (2020). Predicting inpatient falls using natural language processing of nursing records obtained from Japanese electronic medical records: Case-control study. JMIR Med. Inform. 8 : e16970. DOI: 10.2196/16970. |
[32] | Lee, S.K., Ahn, J., Shin, J.H., et al. (2020). Application of machine learning methods in nursing home research. Int. J. Environ. Res. Public Health 17 : 6234. DOI: 10.3390/ijerph17176234. |
[33] | Bauer, P., Kramer, J.B., Rush, B., et al. (2017). Modeling bed exit likelihood in a camera-based automated video monitoring application. IEEE International Conference on Electro Information Technology. 2017 : 056-061. DOI: 10.1109/EIT.2017.8053330. |
[34] | Ladios-Martín, M., Fernández-de-Maya, J., Ballesta-López, F.J., et al. (2020). Predictive modeling of pressure injury risk in patients admitted to an intensive care unit. Am. J. Crit. Care 29 : e70-e80. DOI: 10.4037/ajcc2020237. |
[35] | Kim, H., Choi, J., Thompson, S., et al. (2010). Automating pressure ulcer risk assessment using documented patient data. Int. J. Med. Inform. 79 : 840-848. DOI: 10.1016/j.ijmedinf.2010.08.005. |
[36] | Cho, I., Park, I., Kim, E., et al. (2013). Using EHR data to predict hospital-acquired pressure ulcers: A prospective study of a Bayesian Network model. Int. J. Med. Inform. 82 : 1059-1067. DOI: 10.1016/j.ijmedinf.2013.06.012. |
[37] | Hu, Y.H., Lee, Y.L., Kang, M.F., et al. (2020). Constructing inpatient pressure injury prediction models using machine learning techniques. Comput. Inform. Nurs. 38 : 415-423. DOI: 10.1097/CIN.0000000000000604. |
[38] | Lotter, W., Diab, A.R., Haslam, B., et al. (2021). Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach. Nat. Med. 27 : 244-249. DOI: 10.1038/s41591-020-01174-9. |
[39] | Esteva, A., Kuprel, B., Novoa, R.A., et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature 542 : 115-118. DOI: 10.1038/nature21056. |
[40] | Van Calster, B., Timmerman, S., Geysels, A., et al. (2022). A deep-learning-enabled diagnosis of ovarian cancer. Lancet Digit. Health 4 : e630. DOI: 10.1016/S2589-7500(22)00130-3. |
[41] | Harmon, S.A., Sanford, T.H., Xu, S., et al. (2020). Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets. Nat. Commun. 11 : 4080. DOI: 10.1038/s41467-020-17971-2. |
[42] | Lu, M.Y., Chen, T.Y., Williamson, D.F.K., et al. (2021). AI-based pathology predicts origins for cancers of unknown primary. Nature 594 : 106-110. DOI: 10.1038/s41586-021-03512-4. |
[43] | Yu, K.H., Zhang, C., Berry, G.J., et al. (2016). Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun. 7 : 12474. DOI: 10.1038/ncomms12474. |
[44] | Poirion, O.B., Jing, Z., Chaudhary, K., et al. (2021). DeepProg: An ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data. Genome. Med. 13 : 112. DOI: 10.1186/s13073-021-00930-x. |
[45] | Kuenzi, B.M., Park, J., Fong, S.H., et al. (2020). Predicting drug response and synergy using a deep learning model of human cancer cells. Cancer Cell 38 : 672-684 e676. DOI: 10.1016/j.ccell.2020.09.014. |
[46] | Xu, H., Feng, G., Han, Y., et al. (2023). POvaStim: An online tool for directing individualized FSH doses in ovarian stimulation. The Innovation 4 : 100401. DOI: 10.1016/j.xinn.2023.100401. |
[47] | Hamm, C.A., Baumgartner, G.L., Biessmann, F., et al. (2023). Interactive explainable deep learning model informs prostate cancer diagnosis at MRI. Radiology 307 : e222276. DOI: 10.1148/radiol.222276. |
[48] | Wang, X., Chen, Y., Gao, Y., et al. (2021). Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning. Nat. Commun. 12 : 1637. DOI: 10.1038/s41467-021-21674-7. |
[49] | Kleppe, A., Skrede, O.J., De Raedt, S., et al. (2021). Designing deep learning studies in cancer diagnostics. Nat. Rev. Cancer 21 : 199-211. DOI: 10.1038/s41568-020-00327-9. |
[50] | Kermany, D.S., Goldbaum, M., Cai, W., et al. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172 : 1122-1131 e1129. DOI: 10.1016/j.cell.2018.02.010. |
[51] | Xu, Y., Hosny, A., Zeleznik, R., et al. (2019). Deep learning predicts lung cancer treatment response from serial medical imaging. Clin. Cancer Res. 25 : 3266-3275. DOI: 10.1158/1078-0432.CCR-18-2495. |
[52] | Murphy, K., Habib, S.S., Zaidi, S.M.A., et al. (2020). Computer aided detection of tuberculosis on chest radiographs: An evaluation of the CAD4TB v6 system. Sci. Rep. 10 : 5492. DOI: 10.1038/s41598-020-62148-y. |
[53] | Kim, J.R., Shim, W.H., Yoon, H.M., et al. (2017). Computerized bone age estimation using deep learning based program: Evaluation of the accuracy and efficiency. AJR Am. J. Roentgenol. 209 : 1374-1380. DOI: 10.2214/ajr.17.18224. |
[54] | Li, X., Pan, J., Zhou, H., et al. (2020). A multi-centre study for standardization of antinuclear antibody indirect immunofluorescence screening with automated system. J. Immunol. Methods 477 : 112701. DOI: 10.1016/j.jim.2019.112701. |
[55] | Fraser, K.C., Meltzer, J.A., and Rudzicz, F. (2016). Linguistic features identify Alzheimer's Disease in narrative speech. J. Alzheimers Dis. 49 : 407-422. DOI: 10.3233/JAD-150520. |
[56] | Diamanti-Kandarakis, E., Kouli, C.R., Bergiele, A.T., et al. (1999). A survey of the polycystic ovary syndrome in the Greek island of Lesbos: hormonal and metabolic profile. J. Clin. Endocrinol. Metab. 84 : 4006-4011. DOI: 10.1210/jcem.84.11.6148. |
[57] | Azziz, R., Woods, K.S., Reyna, R., et al. (2004). The prevalence and features of the polycystic ovary syndrome in an unselected population. J. Clin. Endocrinol. Metab. 89 : 2745-2749. DOI: 10.1210/jc.2003-032046. |
[58] | Norman, R.J., Dewailly, D., Legro, R.S., et al. (2007). Polycystic ovary syndrome. Lancet 370 : 685-697. DOI: 10.1016/S0140-6736(07)61345-2. |
[59] | Michelmore, K.F., Balen, A.H., Dunger, D.B., et al. (1999). Polycystic ovaries and associated clinical and biochemical features in young women. Clin. Endocrinol. (Oxf) 51 : 779-786. DOI: 10.1046/j.1365-2265.1999.00886.x. |
[60] | Lauritsen, M.P., Bentzen, J.G., Pinborg, A., et al. (2014). The prevalence of polycystic ovary syndrome in a normal population according to the Rotterdam criteria versus revised criteria including anti-Mullerian hormone. Hum. Reprod. 29 : 791-801. DOI: 10.1093/humrep/det469. |
[61] | Bozdag, G., Mumusoglu, S., Zengin, D., et al. (2016). The prevalence and phenotypic features of polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. 31 : 2841-2855. DOI: 10.1093/humrep/dew218. |
[62] | Xu, H., Feng, G., Shi, L., et al. (2023). PCOSt: A non-invasive and cost-effective screening tool for polycystic ovary syndrome. The Innovation 4 : 100407. DOI: 10.1016/j.xinn.2023.100407. |
[63] | Teede, H.J., Misso, M.L., Costello, M.F., et al. (2018). Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Clin. Endocrinol. (Oxf) 89 : 251-268. DOI: 10.1111/cen.13795. |
[64] | Yi, J.F., Zhang, H., Mao, J.X., et al. (2022). Review on the COVID-19 pandemic prevention and control system based on AI. Eng. Appl. Artif. Intel. 114 : ARTN 105184. DOI: 10.1016/j.engappai.2022.105184. |
[65] | Rasheed, J., Jamil, A., Hameed, A.A., et al. (2021). COVID-19 in the age of artificial intelligence: A comprehensive review. Interdiscip. Sci. 13 : 153-175. DOI: 10.1007/s12539-021-00431-w. |
[66] | Li, T., Huang, T., Guo, C., et al. (2021). Genomic variation, origin tracing and vaccine development of SARS-CoV-2: A systematic review. The Innovation 2 : 100116. DOI: 10.1016/j.xinn.2021.100116. |
[67] | Ren, H., Ling, Y., Cao, R., et al. (2023). Early warning of emerging infectious diseases based on multimodal data. Biosaf. Health 5 : 193-203. DOI: 10.1016/j.bsheal.2023.05.006. |
[68] | Fisher, S., and Rosella, L.C. (2022). Priorities for successful use of artificial intelligence by public health organizations: A literature review. BMC Public Health 22 : 2146. DOI: 10.1186/s12889-022-14422-z. |
[69] | Jungwirth, D., and Haluza, D. (2023). Artificial intelligence and public health: An exploratory study. Int. J. Environ. Res. Public Health 20 : 4541. DOI: 10.3390/ijerph20054541. |
[70] | Xu, Y., Liu, X., Cao, X., et al. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2 : 100179. DOI: 10.1016/j.xinn.2021.100179. |
[71] | de Mello, B.H., Rigo, S.J., da Costa, C.A., et al. (2022). Semantic interoperability in health records standards: A systematic literature review. Health Technol. 12: 255−272. DOI: 10.1007/s12553-022-00639-w. |
[72] | Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3: 1−9. DOI: 10.1038/sdata.2016.18. |
[73] | Ranchal, R., Bastide, P., Wang, X., et al. (2020). Disrupting healthcare silos: Addressing data volume, velocity and variety with a cloud-native healthcare data ingestion service. IEEE J. Biomed. Health Inform. 24: 3182−3188. DOI: 10.1109/JBHI.2020.3001518. |
[74] | Sambasivan, N., Kapania, S., Highfill, H., et al. (2021). “Everyone wants to do the model work, not the data work”: Data cascades in high-stakes AI. CHI '21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems 39 : 1-15. DOI: 10.1145/3411764.3445518. |
[75] | Prasser, F., Kohlbacher, O., Mansmann, U., et al. (2018). Data integration for future medicine (DIFUTURE). Methods Inf. Med. 57 : e57-e65. DOI: 10.3414/me17-02-0022. |
[76] | Frank, R., and FDG-PET/CT Working Group. (2008). Quantitative imaging biomarkers alliance FDG-PET/CT Working Group report. Mol. Imaging Biol. 10 : 305. DOI: 10.1007/s11307-008-0167-y. |
[77] | Zwanenburg, A., Vallières, M., Abdalah, M.A., et al. (2020). The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295 : 328-338. DOI: 10.1148/radiol.2020191145. |
[78] | Mullard, A. (2022). The UK Biobank at 20. Nat. Rev. Drug Discov. 21 : 628-629. DOI: 10.1038/d41573-022-00137-8. |
[79] | Clark, K., Vendt, B., Smith, K., et al. (2013). The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository. J. Digit. Imaging 26 : 1045-1057. DOI: 10.1007/s10278-013-9622-7. |
[80] | Tomczak, K., Czerwińska, P., and Wiznerowicz, M. (2015). The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol. (Pozn) 19 : A68-77. DOI: 10.5114/wo.2014.47136. |
[81] | Liang, W., Tadesse, G.A., Ho, D., et al. (2022). Advances, challenges and opportunities in creating data for trustworthy AI. Nat. Mach. Intell. 4: 669−677. DOI: 10.1038/s42256-022-00516-1. |
[82] | Lipkova, J., Chen, R.J., Chen, B., et al. (2022). Artificial intelligence for multimodal data integration in oncology. Cancer Cell 40 : 1095-1110. DOI: 10.1016/j.ccell.2022.09.012. |
[83] | Acosta, J.N., Falcone, G.J., Rajpurkar, P., et al. (2022). Multimodal biomedical AI. Nat. Med. 28 : 1773-1784. DOI: 10.1038/s41591-022-01981-2. |
[84] | Huang, S.-C., Pareek, A., Seyyedi, S., et al. (2020). Fusion of medical imaging and electronic health records using deep learning: A systematic review and implementation guidelines. NPJ Digit. Med. 3: 136. DOI: 10.1038/s41746-020-00341-z. |
[85] | Qian, S., and Wang, C. (2023). COM: Contrastive Masked-attention model for incomplete multimodal learning. Neural Netw. 162: 443−455. DOI: 10.1016/j.neunet.2023.03.003. |
[86] | Sun, Q., Chen, Y., Liang, C., et al. (2021). Biologic pathways underlying prognostic radiomics phenotypes from paired MRI and RNA sequencing in glioblastoma. Radiology 301 : 654-663. DOI: 10.1148/radiol.2021203281. |
[87] | Yan, J., Zhang, S., Li, K.K., et al. (2020). Incremental prognostic value and underlying biological pathways of radiomics patterns in medulloblastoma. EBioMedicine 61 : 103093. DOI: 10.1016/j.ebiom.2020.103093. |
[88] | Yan, J., Zhao, Y., Chen, Y., et al. (2021). Deep learning features from diffusion tensor imaging improve glioma stratification and identify risk groups with distinct molecular pathway activities. EBioMedicine 72 : 103583. DOI: 10.1016/j.ebiom.2021.103583. |
[89] | Boehm, K.M., Khosravi, P., Vanguri, R., et al. (2022). Harnessing multimodal data integration to advance precision oncology. Nat. Rev. Cancer 22 : 114-126. DOI: 10.1038/s41568-021-00408-3. |
[90] | Poon, A.I.F., and Sung, J.J.Y. (2021). Opening the black box of AI-Medicine. J. Gastroenterol. Hepatol. 36 : 581-584. DOI: 10.1111/jgh.15384. |
[91] | Linardatos, P., Papastefanopoulos, V., and Kotsiantis, S. (2020). Explainable AI: A review of machine learning interpretability methods. Entropy (Basel) 23 : 18. DOI : 10.3390/e23010018. |
[92] | Sidak, D., Schwarzerová, J., Weckwerth, W., et al. (2022). Interpretable machine learning methods for predictions in systems biology from omics data. Front. Mol. Biosci. 9 : 926623. DOI: 10.3389/fmolb.2022.926623. |
[93] | Zhang, Z., Beck, M.W., Winkler, D.A., et al. (2018). Opening the black box of neural networks: Methods for interpreting neural network models in clinical applications. Ann. Transl. Med. 6 : 216. DOI: 10.21037/atm.2018.05.32. |
[94] | Bærøe, K., Miyata-Sturm, A., and Henden, E. (2020). How to achieve trustworthy artificial intelligence for health. Bull. World Health Organ. 98 : 257-262. DOI: 10.2471/blt.19.237289. |
[95] | Rueda, J., Rodríguez, J.D., Jounou, I.P., et al. (2022). "Just" accuracy? Procedural fairness demands explainability in AI-based medical resource allocations. AI Soc. 21 : 1-12. DOI: 10.1007/s00146-022-01614-9. |
[96] | Zanca, F., Brusasco, C., Pesapane, F., et al. (2022). Regulatory aspects of the use of artificial intelligence medical software. Semin. Radiat. Oncol. 32 : 432-441. DOI: 10.1016/j.semradonc.2022.06.012. |
[97] | Zhang, J., and Zhang, Z.M. (2023). Ethics and governance of trustworthy medical artificial intelligence. BMC Med. Inform. Decis. Mak. 23 : 7. DOI: 10.1186/s12911-023-02103-9. |
[98] | Obermeyer, Z., and Emanuel, E.J. (2016). Predicting the future-big data, machine learning, and clinical medicine. N. Engl. J. Med. 375: 1216. DOI: 10.1056/NEJMp1606181. |
[99] | Wang, F., Ma, L., Moulton, G., et al. (2022). Clinician data scientists-preparing for the future of medicine in the digital world. Health Data Sci. 2022 : 9832564. DOI: 10.34133/2022/9832564. |
[100] | Acosta, J.N., Falcone, G.J., Rajpurkar, P., et al. (2022). Multimodal biomedical AI. Nat. Med. 28: 1773−1784. DOI: 10.1038/s41591-022-01981-2. |
[101] | Van Dis, E.A., Bollen, J., Zuidema, W., et al. (2023). ChatGPT: Five priorities for research. Nature 614: 224−226. DOI: 10.1038/d41586-023-00288-7. |
[102] | Moor, M., Banerjee, O., Abad, Z.S.H., et al. (2023). Foundation models for generalist medical artificial intelligence. Nature 616: 259−265. DOI: 10.1038/s41586-023-05881-4. |
[103] | Brown, T., Mann, B., Ryder, N., et al. (2020). Language models are few-shot learners. NIPS'20: Proceedings of the 34th International Conference on Neural Information Processing Systems 33: 1877−1901. DOI: 10.5555/3495724.3495883. |
[104] | Kirillov, A., Mintun, E., Ravi, N., et al. (2023). Segment anything. arXiv preprint arXiv:2304.02643. DOI: 10.48550/arXiv.2304.02643. |
[105] | Xu, J., Xiao, Y., Wang, W.H., et al. (2022). Algorithmic fairness in computational medicine. EBioMedicine 84: 104250. DOI: 10.1016/j.ebiom.2022.104250. |
[106] | LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521 : 436-444. DOI: 10.1038/nature14539. |
[107] | Zhang, C., Xie, Y., Bai, H., et al. (2021). A survey on federated learning. Knowl. Based Syst. 216: 106775. DOI: 10.1016/j.knosys.2021.106775. |
[108] | Gong, M., Xie, Y., Pan, K., et al. (2020). A survey on differentially private machine learning. IEEE Computational Intelligence Magazine 15 : 49-64. DOI: 10.1109/MCI.2020.2976185. |
[109] | Xu, J., Glicksberg, B.S., Su, C., et al. (2021). Federated learning for healthcare informatics. J. Healthc. Inform. Res. 5 : 1-19. DOI: 10.1007/s41666-020-00082-4. |
[110] | Li, L., Fan, Y., Tse, M., et al. (2020). A review of applications in federated learning. Comput. Ind. Eng. 149: 106854. DOI: 10.1016/j.cie.2020.106854. |
[111] | Rieke, N., Hancox, J., Li, W., et al. (2020). The future of digital health with federated learning. NPJ Digit. Med. 3 : 119. DOI: 10.1038/s41746-020-00323-1. |
[112] | Li, T., Sahu, A.K., Talwalkar, A., et al. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Proc. Mag. 37 : 50-60. DOI: 10.1109/MSP.2020.2975749. |
[113] | Yan, Y., Hong, S., Zhang, W., et al. (2022). Artificial intelligence in skin diseases: Fulfilling its potentials to meet the real needs in dermatology practice. Health Data Sci. 2022 : 9791467. DOI: 10.34133/2022/9791467. |
[114] | Hong, H., and Hong, S. (2023). simpleNomo: A python package of making nomograms for visualizable calculation of logistic regression models. Health Data Sci. 3 : 0023. DOI: 10.34133/hds.0023. |
Huang T., Xu H., Wang H., et al., (2023). Artificial intelligence for medicine: Progress, challenges, and perspectives. The Innovation Medicine 1(2), 100030. https://doi.org/10.59717/j.xinn-med.2023.100030 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
Applications, challenges, and perspectives of AI in medicine.
OvaRePred, an AI tool for ovarian reserve assessment
PCOSt, an AI tool for early screening of polycystic ovary syndrome (PCOS)
Eight exampled application directions of AI in global health.
Navigating the data challenge in AI for medicine
AI for uncovering correlations between different modalities data across different scales
AI related regulation and policy coverage in major entities
Challenges for large-scale real-word AI models.
Schematic of federated learning. In a multi-party collaboration, to preserve the privacy of data, federated learning only allows remote devices to exchange model gradients with a central server