The Elite macrophages (MΦs) are constructed using CRISPRa-based genome editing.
The Elite MΦs possess powerful anti-inflammatory capability.
The Elite MΦs display enhanced chemotactic characteristics.
The Elite MΦs relieve arthritis in mouse models of Rheumatoid Arthritis.
[1] | Huang, J., Fu, X., Chen, X., et al. (2021). Promising therapeutic targets for treatment of rheumatoid arthritis. Front. Immunol. 12: 686155. DOI: 10.3389/fimmu.2021.686155. |
[2] | Smolen, J.S., Aletaha, D., Barton, A., et al. (2018). Rheumatoid arthritis. Nat. Rev. Dis. Primers. 4: 18001. DOI: 10.1038/nrdp.2018.1. |
[3] | Svensson, M.N.D., Zoccheddu, M., Yang, S., et al. (2020). Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal. Sci. Adv. 6: eaba4353. DOI: 10.1126/sciadv.aba4353. |
[4] | Orecchioni, M., Ghosheh, Y., Pramod, A.B., et al. (2019). Macrophage polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front. Immunol. 10 : 1084. DOI: 10.3389/fimmu.2019.01084. |
[5] | Gordon, S. (2007). The macrophage: Past, present and future. Eur. J. Immunol. 37 Suppl 1 : S9-17. DOI: 10.1002/eji.200737638. |
[6] | Sica, A., and Mantovani, A. (2012). Macrophage plasticity and polarization: In vivo veritas. J. Clin. Invest. 122: 787−795. DOI: 10.1172/JCI59643. |
[7] | Wang, L.X., Zhang, S.X., Wu, H.J., et al. (2019). M2b macrophage polarization and its roles in diseases. J. Leukoc. Biol. 106: 345−358. DOI: 10.1002/JLB.3RU1018-378RR. |
[8] | Oshi, M., Tokumaru, Y., Asaoka, M., et al. (2020). M1 Macrophage and M1/M2 ratio defined by transcriptomic signatures resemble only part of their conventional clinical characteristics in breast cancer. Sci. Rep. 10: 16554. DOI: 10.1038/s41598-020-73624-w. |
[9] | Yang, X., Chang, Y., and Wei, W. (2020). Emerging role of targeting macrophages in rheumatoid arthritis: Focus on polarization, metabolism and apoptosis. Cell Prolif. 53: e12854. DOI: 10.1111/cpr.12854. |
[10] | Udalova, I.A., Mantovani, A., and Feldmann, M. (2016). Macrophage heterogeneity in the context of rheumatoid arthritis. Nat. Rev. Rheumatol. 12: 472−485. DOI: 10.1038/nrrheum.2016.91. |
[11] | Tardito, S., Martinelli, G., Soldano, S., et al. (2019). Macrophage M1/M2 polarization and rheumatoid arthritis: A systematic review. Autoimmun. Rev. 18: 102397. DOI: 10.1016/j.autrev.2019.102397. |
[12] | Wang, H.F., Liu, Y., Yang, G., et al. (2021). Macrophage-mediated cancer drug delivery. Materials Today Sustainability 11-12 . DOI: 10.1016/j.mtsust.2020.100055. |
[13] | Ardura, J.A., Rackov, G., Izquierdo, E., et al. (2019). Targeting macrophages: Friends or foes in disease. Front. Pharmacol. 10: 1255. DOI: 10.3389/fphar.2019.01255. |
[14] | Klichinsky, M., Ruella, M., Shestova, O., et al. (2020). Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38: 947−953. DOI: 10.1038/s41587-020-0462-y. |
[15] | Yao, Y., Xu, X.H., and Jin, L. (2019). Macrophage polarization in physiological and pathological pregnancy. Front. Immunol. 10: 792. DOI: 10.3389/fimmu.2019.00792. |
[16] | Wang, X., Wong, K., Ouyang, W., et al. (2019). Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harb Perspect. Biol. 11 : a028548. DOI: 10.1101/cshperspect.a028548. |
[17] | Behrendt, P., Feldheim, M., Preusse-Prange, A., et al. (2018). Chondrogenic potential of IL-10 in mechanically injured cartilage and cellularized collagen ACI grafts. Osteoarthritis Cartilage 26: 264−275. DOI: 10.1016/j.joca.2017.11.007. |
[18] | Minshawi, F., Lanvermann, S., McKenzie, E., et al. (2020). The generation of an engineered Interleukin-10 protein with improved stability and biological function. Front. Immunol. 11: 1794. DOI: 10.3389/fimmu.2020.01794. |
[19] | Jain, S., Tran, T.H., and Amiji, M. (2015). Macrophage repolarization with targeted alginate nanoparticles containing IL-10 plasmid DNA for the treatment of experimental arthritis. Biomaterials 61: 162−177. DOI: 10.1016/j.biomaterials.2015.05.028. |
[20] | Di Maria, V., Moindrot, M., Ryde, M., et al. (2020). Development and validation of CRISPR activator systems for overexpression of CB1 receptors in neurons. Front. Mol. Neurosci. 13: 168. DOI: 10.3389/fnmol.2020.00168. |
[21] | Hunt, C., Hartford, S.A., White, D., et al. (2021). Tissue-specific activation of gene expression by the Synergistic Activation Mediator (SAM) CRISPRa system in mice. Nat. Commun. 12: 2770. DOI: 10.1038/s41467-021-22932-4. |
[22] | Becirovic, E. (2022). Maybe you can turn me on: CRISPRa-based strategies for therapeutic applications. Cell Mol. Life Sci. 79: 130. DOI: 10.1007/s00018-022-04175-8. |
[23] | Li, P., Sanz, I., O'Keefe, R.J., et al. (2000). NF-kappa B regulates VCAM-1 expression on fibroblast-like synoviocytes. J. Immunol. 164: 5990−5997. DOI: 10.4049/jimmunol.164.11.5990. |
[24] | Phu, T.A., Ng, M., Vu, N.K., et al. (2023). ApoE expression in macrophages communicates immunometabolic signaling that controls hyperlipidemia-driven hematopoiesis & inflammation via extracellular vesicles. J. Extracell Vesicles 12: e12345−e12345. DOI: 10.1002/jev2.12345. |
[25] | Guan, M., Qu, L., Tan, W., et al. (2011). Hepatocyte nuclear factor-4 alpha regulates liver triglyceride metabolism in part through secreted phospholipase A2 GXIIB. Hepatology 53: 458−466. DOI: 10.1002/hep.24066. |
[26] | Yotsumoto, K., Sanui, T., Tanaka, U., et al. (2020). Amelogenin downregulates interferon gamma-induced major histocompatibility complex class II expression through suppression of euchromatin formation in the class II transactivator promoter IV region in macrophages. Front. Immunol. 11 : 709. DOI: 10.3389/fimmu.2020.00709. |
[27] | Mortazavi, A., Williams, B.A., McCue, K., et al. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621−628. DOI: 10.1038/nmeth.1226. |
[28] | Liang, C., Li, J., Lu, C., et al. (2019). HIF1alpha inhibition facilitates Leflunomide-AHR-CRP signaling to attenuate bone erosion in CRP-aberrant rheumatoid arthritis. Nat. Commun. 10: 4579. DOI: 10.1038/s41467-019-12163-z. |
[29] | Khachigian, L.M. (2006). Collagen antibody-induced arthritis. Nat. Protoc. 1: 2512−2516. DOI: 10.1038/nprot.2006.393. |
[30] | Miyazawa, S., Nishida, K., Komiyama, T., et al. (2006). Novel transdermal photodynamic therapy using ATX-S10 Na(II) induces apoptosis of synovial fibroblasts and ameliorates collagen antibody-induced arthritis in mice. Rheumatol. Int. 26: 717−725. DOI: 10.1007/s00296-005-0052-9. |
[31] | Williams, B., Lees, F., Tsangari, H., et al. (2020). Assessing the effects of parthenolide on inflammation, bone loss, and glial cells within a collagen antibody-induced arthritis mouse model. Mediat. Inflamm. 2020: 6245798. DOI: 10.1155/2020/6245798. |
[32] | Sajwan, S., and Mannervik, M. (2019). Gene activation by dCas9-CBP and the SAM system differ in target preference. Sci. Rep. 9: 18104. DOI: 10.1038/s41598-019-54179-x. |
[33] | Konermann, S., Brigham, M.D., Trevino, A.E., et al. (2015). Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517: 583−588. DOI: 10.1038/nature14136. |
[34] | Bogerd, H.P., Kornepati, A.V., Marshall, J.B., et al. (2015). Specific induction of endogenous viral restriction factors using CRISPR/Cas-derived transcriptional activators. Proc. Natl. Acad. Sci. U. S. A. 112: E7249−7256. DOI: 10.1073/pnas.1516305112. |
[35] | Doench, J.G., Fusi, N., Sullender, M., et al. (2016). Optimized sgRNA design to maximize activity and minimize off-target ef fects of CRISPR-Cas9. Nat. Biotechnol. 34 : 184-191. DOI: 10.1038/nbt.3437. |
[36] | Sanson, K.R., Hanna, R.E., Hegde, M., et al. (2018). Optimized libraries for CRISPR-Cas9 genetic screens with multiple moda lities. Nat. Commun. 9 : 5416. DOI: 10.1038/s41467-018-07901-8. |
[37] | Liu, M., Tong, Z., Ding, C., et al. (2020). Transcription factor c-Maf is a checkpoint that programs macrophages in lung cancer. J. Clin. Invest. 130: 2081−2096. DOI: 10.1172/JCI131335. |
[38] | Hao, J., Hu, Y., Li, Y., et al. (2017). Involvement of JNK signaling in IL4-induced M2 macrophage polarization. Exp. Cell Res. 357: 155−162. DOI: 10.1016/j.yexcr.2017.05.010. |
[39] | Mazzon, C., Zanotti, L., Wang, L., et al. (2016). CCRL2 regulates M1/M2 polarization during EAE recovery phase. J. Leukocyte Biol. 99 : 1027-1033. DOI: 10.1189/jlb.3MA0915-444RR. |
[40] | Zhong, X., Lee, H.N., Kim, S.H., et al. (2018). Myc-nick promotes efferocytosis through M2 macrophage polarization during resolution of inflammation. FASEB J. 32: 5312−5325. DOI: 10.1096/fj.201800223R. |
[41] | Sica, A., and Bronte, V. (2007). Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest. 117: 1155−1166. DOI: 10.1172/JCI31422. |
[42] | Makita, N., Hizukuri, Y., Yamashiro, K., et al. (2015). IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration. Int. Immunol. 27: 131−141. DOI: 10.1093/intimm/dxu090. |
[43] | Huang, S.C.-C., Smith, A.M., Everts, B., et al. (2016). Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45: 817−830. DOI: 10.1016/j.immuni.2016.09.016. |
[44] | Pisetsky, D.S. (2017). EULAR recommendations for disease management: guidance not guidelines. Ann. Rheum. Dis. 76: 935−938. DOI: 10.1136/annrheumdis-2016-211005. |
[45] | Scanzello, C.R., and Goldring, S.R. (2012). The role of synovitis in osteoarthritis pathogenesis. Bone 51: 249−257. DOI: 10.1016/j.bone.2012.02.012. |
[46] | Teng, M.W., Bowman, E.P., McElwee, J.J., et al. (2015). IL-12 and IL-23 cytokines: From discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 21: 719−729. DOI: 10.1038/nm.3895. |
[47] | Nurul, A.A., Azlan, M., Ahmad Mohd Zain, M.R., et al. (2021). Mesenchymal stem cells: Current concepts in the management of inflammation in osteoarthritis. Biomedicines 9: 785. DOI: 10.3390/biomedicines9070785. |
[48] | Wu, X., Lai, Y., Chen, S., et al. (2022). Kindlin-2 preserves integrity of the articular cartilage to protect against osteoarthritis. Nat. Aging 2: 332−347. DOI: 10.1038/s43587-021-00165-w. |
[49] | Masoumi, M., Bashiri, H., Khorramdelazad, H., et al. (2021). Destructive roles of fibroblast-like synoviocytes in chronic inflammation and joint damage in rheumatoid arthritis. Inflammation 44: 466−479. DOI: 10.1007/s10753-020-01371-1. |
[50] | Liu, H., Li, R., Liu, T., et al. (2020). Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front. Immunol. 11 : 1912. DOI: 10.3389/fimmu.2020.01912. |
[51] | Ruytinx, P., Proost, P., Van Damme, J., et al. (2018). Chemokine-induced macrophage polarization in inflammatory conditions. Front. Immunol. 9: 1930. DOI: 10.3389/fimmu.2018.01930. |
[52] | Mihara, M., Hashizume, M., Yoshida, H., et al. (2012). IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin. Sci. 122: 143−159. DOI: 10.1042/cs20110340. |
[53] | Qiao, W., Xie, H., Fang, J., et al. (2021). Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration. Biomaterials 276: 121038. DOI: 10.1016/j.biomaterials.2021.121038. |
[54] | Kong, J.S., Jeong, G.H., and Yoo, S.A. (2023). The use of animal models in rheumatoid arthritis research. J. Yeungnam Med. Sci. 40: 23−29. DOI: 10.12701/jyms.2022.00773. |
[55] | Jin, C.H., So, Y., Nam, B., et al. (2017). Isoegomaketone alleviates the development of collagen antibody-induced arthritis in male balb/c mice. Molecules 22 : 1209. DOI: 10.3390/molecules22071209. |
[56] | Calder, P.C. (2015). Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta. 1851: 469−484. DOI: 10.1016/j.bbalip.2014.08.010. |
[57] | Caldwell, R.D., Qiu, H., Askew, B.C., et al. (2019). Discovery of evobrutinib: An oral, potent, and highly selective, covalent bruton's tyrosine kinase (BTK) inhibitor for the treatment of immunological diseases. J. Med. Chem. 62: 7643−7655. DOI: 10.1021/acs.jmedchem.9b00794. |
[58] | Campo, G.M., Avenoso, A., Nastasi, G., et al. (2011). Hyaluronan reduces inflammation in experimental arthritis by modulating TLR-2 and TLR-4 cartilage expression. Biochim. Biophys. Acta. 1812: 1170−1181. DOI: 10.1016/j.bbadis.2011.06.006. |
[59] | Burel, J.G., Pomaznoy, M., Lindestam Arlehamn, C.S., et al. (2019). Circulating T cell-monocyte complexes are markers of immune perturbations. Elife 8 : e46045. DOI: 10.7554/eLife.46045. |
[60] | Gao, T., Shi, T., Wiesenfeld-Hallin, Z., et al. (2015). Sinomenine alleviates mechanical hypersensitivity in mice with experimentally induced rheumatoid arthritis. Scand. J. Pain. 7: 9−14. DOI: 10.1016/j.sjpain.2014.12.003. |
[61] | Abbasi, M., Mousavi, M.J., Jamalzehi, S., et al. (2019). Strategies toward rheumatoid arthritis therapy; the old and the new. J. Cell Physiol. 234: 10018−10031. DOI: 10.1002/jcp.27860. |
[62] | Aletaha, D., and Smolen, J.S. (2018). Diagnosis and management of rheumatoid arthritis: A review. JAMA 320: 1360−1372. DOI: 10.1001/jama.2018.13103. |
[63] | Sterner, R.C., and Sterner, R.M. (2021). CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11: 69. DOI: 10.1038/s41408-021-00459-7. |
[64] | Liu, M., Liu, J., Liang, Z., et al. (2022). CAR-macrophages and CAR-T cells synergistically kill tumor cells in vitro. Cells 11 : 3692. DOI: 10.3390/cells11223692. |
[65] | von Kaeppler, E.P., Wang, Q., Raghu, H., et al. (2021). Interleukin 4 promotes anti-inflammatory macrophages that clear cartilage debris and inhibits osteoclast development to protect against osteoarthritis. Clin. Immunol. 229: 108784. DOI: 10.1016/j.clim.2021.108784. |
[66] | McInnes, I.B., Illei, G.G., Danning, C.L., et al. (2001). IL-10 improves skin disease and modulates endothelial activation and leukocyte effector function in patients with psoriatic arthritis1. J. Immunol. 167: 4075−4082. DOI: 10.4049/jimmunol.167.7.4075. |
[67] | Shintani, Y., Ito, T., Fields, L., et al. (2017). IL-4 as a repurposed biological drug for myocardial infarction through augmentation of reparative cardiac macrophages: Proof-of-concept data in mice. Sci. Rep. 7: 6877. DOI: 10.1038/s41598-017-07328-z. |
[68] | Cao, S., Liu, J., Song, L., et al. (2005). The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. J. Immunol. 174: 3484−3492. DOI: 10.4049/jimmunol.174.6.3484. |
[69] | Kang, K., Park, S.H., Chen, J., et al. (2017). Interferon-gamma represses M2 gene expression in human macrophages by disassembling enhancers bound by the transcription factor MAF. Immunity 47 : 235-250 e234. DOI: 10.1016/j.immuni.2017.07.017. |
[70] | Liu, R., Zhao, P., Tan, W., et al. (2018). Cell therapies for refractory rheumatoid arthritis. Clin. Exp. Rheumatol. 36: 911−919. |
[71] | Shinoda, Y., Tatsukawa, H., Yonaga, A., et al. (2023). Tissue transglutaminase exacerbates renal fibrosis via alternative activation of monocyte-derived macrophages. Cell Death Dis. 14: 136. DOI: 10.1038/s41419-023-05622-5. |
Huang Y., Wang Z., Zhong C., et al., (2024). CRISPRa engineered Elite macrophages enable adoptive cell therapy for rheumatoid arthritis. The Innovation Medicine 2(1): 100050. https://doi.org/10.59717/j.xinn-med.2024.100050 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
Workflow of the CRISPRa-enabled construction of the Elite MΦs for RA treatment
Construction and in vitro characterization of the Elite MΦs
Effects of a M2 inducer or M1 inducers on the Elite MΦs
Biodistribution of the Elite MΦs in CIA mice
Therapeutic potential of the Elite MΦs in CIA mice
Therapeutic potential of the Elite MΦs in CAIA mice