ARTICLE   Open Access     Cite

CRISPRa engineered Elite macrophages enable adoptive cell therapy for rheumatoid arthritis

    Show all affliationsShow less
More Information
    1. The Elite macrophages (MΦs) are constructed using CRISPRa-based genome editing.

      The Elite MΦs possess powerful anti-inflammatory capability.

      The Elite MΦs display enhanced chemotactic characteristics.

      The Elite MΦs relieve arthritis in mouse models of Rheumatoid Arthritis.

  • Rheumatoid arthritis (RA) is a poly-articular systemic autoimmune disorder characterized by infiltration of immune cells, synovial hyperplasia and joint destruction. Macrophages (MΦs) can polarize into either pro-inflammatory M1 or anti-inflammatory M2 phenotype in response to different environmental signals. In RA, MΦs are prone to polarize into the M1 phenotype. Reprogramming MΦs has shown promise in treating diseases, e.g., the chimeric antigen receptor-MΦ (CAR-M)-based adoptive immunotherapy. Interleukin-10 (IL-10) is one of the pivotal factors for M2 polarization. Clustered regularly interspaced short palindromic repeats-based transcriptional activation (CRISPRa) harnesses the native machinery in cells to enable a quick and efficient increase of endogenous gene expression. Here, we combined a CRISPRa system with adoptive cell therapy to construct engineered lastingly interleukin-ten (IL-10) expressed MΦs (Elite MΦs). The Elite MΦs possessed powerful anti-inflammatory capability and represented a pre-activated state of M2 MΦs in vitro. The Elite MΦs were more susceptible to an M2 inducer while resistant to M1 inducers. The Elite MΦs displayed enhanced chemotactic characteristics, leading to accumulated in vivo distribution at inflamed sites. Systemic administration of the Elite MΦs relieved inflammation, synovial hyperplasia and joint destruction in mouse models of RA. The Elite MΦs constructed by CRISPRa hold promise for addressing the current unmet medical need in RA.
  • 加载中
  • [1] Huang, J., Fu, X., Chen, X., et al. (2021). Promising therapeutic targets for treatment of rheumatoid arthritis. Front. Immunol. 12: 686155. DOI: 10.3389/fimmu.2021.686155.

    View in Article CrossRef Google Scholar

    [2] Smolen, J.S., Aletaha, D., Barton, A., et al. (2018). Rheumatoid arthritis. Nat. Rev. Dis. Primers. 4: 18001. DOI: 10.1038/nrdp.2018.1.

    View in Article CrossRef Google Scholar

    [3] Svensson, M.N.D., Zoccheddu, M., Yang, S., et al. (2020). Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal. Sci. Adv. 6: eaba4353. DOI: 10.1126/sciadv.aba4353.

    View in Article CrossRef Google Scholar

    [4] Orecchioni, M., Ghosheh, Y., Pramod, A.B., et al. (2019). Macrophage polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front. Immunol. 10 : 1084. DOI: 10.3389/fimmu.2019.01084.

    View in Article Google Scholar

    [5] Gordon, S. (2007). The macrophage: Past, present and future. Eur. J. Immunol. 37 Suppl 1 : S9-17. DOI: 10.1002/eji.200737638.

    View in Article Google Scholar

    [6] Sica, A., and Mantovani, A. (2012). Macrophage plasticity and polarization: In vivo veritas. J. Clin. Invest. 122: 787−795. DOI: 10.1172/JCI59643.

    View in Article CrossRef Google Scholar

    [7] Wang, L.X., Zhang, S.X., Wu, H.J., et al. (2019). M2b macrophage polarization and its roles in diseases. J. Leukoc. Biol. 106: 345−358. DOI: 10.1002/JLB.3RU1018-378RR.

    View in Article CrossRef Google Scholar

    [8] Oshi, M., Tokumaru, Y., Asaoka, M., et al. (2020). M1 Macrophage and M1/M2 ratio defined by transcriptomic signatures resemble only part of their conventional clinical characteristics in breast cancer. Sci. Rep. 10: 16554. DOI: 10.1038/s41598-020-73624-w.

    View in Article CrossRef Google Scholar

    [9] Yang, X., Chang, Y., and Wei, W. (2020). Emerging role of targeting macrophages in rheumatoid arthritis: Focus on polarization, metabolism and apoptosis. Cell Prolif. 53: e12854. DOI: 10.1111/cpr.12854.

    View in Article CrossRef Google Scholar

    [10] Udalova, I.A., Mantovani, A., and Feldmann, M. (2016). Macrophage heterogeneity in the context of rheumatoid arthritis. Nat. Rev. Rheumatol. 12: 472−485. DOI: 10.1038/nrrheum.2016.91.

    View in Article CrossRef Google Scholar

    [11] Tardito, S., Martinelli, G., Soldano, S., et al. (2019). Macrophage M1/M2 polarization and rheumatoid arthritis: A systematic review. Autoimmun. Rev. 18: 102397. DOI: 10.1016/j.autrev.2019.102397.

    View in Article CrossRef Google Scholar

    [12] Wang, H.F., Liu, Y., Yang, G., et al. (2021). Macrophage-mediated cancer drug delivery. Materials Today Sustainability 11-12 . DOI: 10.1016/j.mtsust.2020.100055.

    View in Article Google Scholar

    [13] Ardura, J.A., Rackov, G., Izquierdo, E., et al. (2019). Targeting macrophages: Friends or foes in disease. Front. Pharmacol. 10: 1255. DOI: 10.3389/fphar.2019.01255.

    View in Article CrossRef Google Scholar

    [14] Klichinsky, M., Ruella, M., Shestova, O., et al. (2020). Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38: 947−953. DOI: 10.1038/s41587-020-0462-y.

    View in Article CrossRef Google Scholar

    [15] Yao, Y., Xu, X.H., and Jin, L. (2019). Macrophage polarization in physiological and pathological pregnancy. Front. Immunol. 10: 792. DOI: 10.3389/fimmu.2019.00792.

    View in Article CrossRef Google Scholar

    [16] Wang, X., Wong, K., Ouyang, W., et al. (2019). Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harb Perspect. Biol. 11 : a028548. DOI: 10.1101/cshperspect.a028548.

    View in Article Google Scholar

    [17] Behrendt, P., Feldheim, M., Preusse-Prange, A., et al. (2018). Chondrogenic potential of IL-10 in mechanically injured cartilage and cellularized collagen ACI grafts. Osteoarthritis Cartilage 26: 264−275. DOI: 10.1016/j.joca.2017.11.007.

    View in Article CrossRef Google Scholar

    [18] Minshawi, F., Lanvermann, S., McKenzie, E., et al. (2020). The generation of an engineered Interleukin-10 protein with improved stability and biological function. Front. Immunol. 11: 1794. DOI: 10.3389/fimmu.2020.01794.

    View in Article CrossRef Google Scholar

    [19] Jain, S., Tran, T.H., and Amiji, M. (2015). Macrophage repolarization with targeted alginate nanoparticles containing IL-10 plasmid DNA for the treatment of experimental arthritis. Biomaterials 61: 162−177. DOI: 10.1016/j.biomaterials.2015.05.028.

    View in Article CrossRef Google Scholar

    [20] Di Maria, V., Moindrot, M., Ryde, M., et al. (2020). Development and validation of CRISPR activator systems for overexpression of CB1 receptors in neurons. Front. Mol. Neurosci. 13: 168. DOI: 10.3389/fnmol.2020.00168.

    View in Article CrossRef Google Scholar

    [21] Hunt, C., Hartford, S.A., White, D., et al. (2021). Tissue-specific activation of gene expression by the Synergistic Activation Mediator (SAM) CRISPRa system in mice. Nat. Commun. 12: 2770. DOI: 10.1038/s41467-021-22932-4.

    View in Article CrossRef Google Scholar

    [22] Becirovic, E. (2022). Maybe you can turn me on: CRISPRa-based strategies for therapeutic applications. Cell Mol. Life Sci. 79: 130. DOI: 10.1007/s00018-022-04175-8.

    View in Article CrossRef Google Scholar

    [23] Li, P., Sanz, I., O'Keefe, R.J., et al. (2000). NF-kappa B regulates VCAM-1 expression on fibroblast-like synoviocytes. J. Immunol. 164: 5990−5997. DOI: 10.4049/jimmunol.164.11.5990.

    View in Article CrossRef Google Scholar

    [24] Phu, T.A., Ng, M., Vu, N.K., et al. (2023). ApoE expression in macrophages communicates immunometabolic signaling that controls hyperlipidemia-driven hematopoiesis & inflammation via extracellular vesicles. J. Extracell Vesicles 12: e12345−e12345. DOI: 10.1002/jev2.12345.

    View in Article CrossRef Google Scholar

    [25] Guan, M., Qu, L., Tan, W., et al. (2011). Hepatocyte nuclear factor-4 alpha regulates liver triglyceride metabolism in part through secreted phospholipase A2 GXIIB. Hepatology 53: 458−466. DOI: 10.1002/hep.24066.

    View in Article CrossRef Google Scholar

    [26] Yotsumoto, K., Sanui, T., Tanaka, U., et al. (2020). Amelogenin downregulates interferon gamma-induced major histocompatibility complex class II expression through suppression of euchromatin formation in the class II transactivator promoter IV region in macrophages. Front. Immunol. 11 : 709. DOI: 10.3389/fimmu.2020.00709.

    View in Article Google Scholar

    [27] Mortazavi, A., Williams, B.A., McCue, K., et al. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621−628. DOI: 10.1038/nmeth.1226.

    View in Article CrossRef Google Scholar

    [28] Liang, C., Li, J., Lu, C., et al. (2019). HIF1alpha inhibition facilitates Leflunomide-AHR-CRP signaling to attenuate bone erosion in CRP-aberrant rheumatoid arthritis. Nat. Commun. 10: 4579. DOI: 10.1038/s41467-019-12163-z.

    View in Article CrossRef Google Scholar

    [29] Khachigian, L.M. (2006). Collagen antibody-induced arthritis. Nat. Protoc. 1: 2512−2516. DOI: 10.1038/nprot.2006.393.

    View in Article CrossRef Google Scholar

    [30] Miyazawa, S., Nishida, K., Komiyama, T., et al. (2006). Novel transdermal photodynamic therapy using ATX-S10 Na(II) induces apoptosis of synovial fibroblasts and ameliorates collagen antibody-induced arthritis in mice. Rheumatol. Int. 26: 717−725. DOI: 10.1007/s00296-005-0052-9.

    View in Article CrossRef Google Scholar

    [31] Williams, B., Lees, F., Tsangari, H., et al. (2020). Assessing the effects of parthenolide on inflammation, bone loss, and glial cells within a collagen antibody-induced arthritis mouse model. Mediat. Inflamm. 2020: 6245798. DOI: 10.1155/2020/6245798.

    View in Article CrossRef Google Scholar

    [32] Sajwan, S., and Mannervik, M. (2019). Gene activation by dCas9-CBP and the SAM system differ in target preference. Sci. Rep. 9: 18104. DOI: 10.1038/s41598-019-54179-x.

    View in Article CrossRef Google Scholar

    [33] Konermann, S., Brigham, M.D., Trevino, A.E., et al. (2015). Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517: 583−588. DOI: 10.1038/nature14136.

    View in Article CrossRef Google Scholar

    [34] Bogerd, H.P., Kornepati, A.V., Marshall, J.B., et al. (2015). Specific induction of endogenous viral restriction factors using CRISPR/Cas-derived transcriptional activators. Proc. Natl. Acad. Sci. U. S. A. 112: E7249−7256. DOI: 10.1073/pnas.1516305112.

    View in Article CrossRef Google Scholar

    [35] Doench, J.G., Fusi, N., Sullender, M., et al. (2016). Optimized sgRNA design to maximize activity and minimize off-target ef fects of CRISPR-Cas9. Nat. Biotechnol. 34 : 184-191. DOI: 10.1038/nbt.3437.

    View in Article Google Scholar

    [36] Sanson, K.R., Hanna, R.E., Hegde, M., et al. (2018). Optimized libraries for CRISPR-Cas9 genetic screens with multiple moda lities. Nat. Commun. 9 : 5416. DOI: 10.1038/s41467-018-07901-8.

    View in Article Google Scholar

    [37] Liu, M., Tong, Z., Ding, C., et al. (2020). Transcription factor c-Maf is a checkpoint that programs macrophages in lung cancer. J. Clin. Invest. 130: 2081−2096. DOI: 10.1172/JCI131335.

    View in Article CrossRef Google Scholar

    [38] Hao, J., Hu, Y., Li, Y., et al. (2017). Involvement of JNK signaling in IL4-induced M2 macrophage polarization. Exp. Cell Res. 357: 155−162. DOI: 10.1016/j.yexcr.2017.05.010.

    View in Article CrossRef Google Scholar

    [39] Mazzon, C., Zanotti, L., Wang, L., et al. (2016). CCRL2 regulates M1/M2 polarization during EAE recovery phase. J. Leukocyte Biol. 99 : 1027-1033. DOI: 10.1189/jlb.3MA0915-444RR.

    View in Article Google Scholar

    [40] Zhong, X., Lee, H.N., Kim, S.H., et al. (2018). Myc-nick promotes efferocytosis through M2 macrophage polarization during resolution of inflammation. FASEB J. 32: 5312−5325. DOI: 10.1096/fj.201800223R.

    View in Article CrossRef Google Scholar

    [41] Sica, A., and Bronte, V. (2007). Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest. 117: 1155−1166. DOI: 10.1172/JCI31422.

    View in Article CrossRef Google Scholar

    [42] Makita, N., Hizukuri, Y., Yamashiro, K., et al. (2015). IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration. Int. Immunol. 27: 131−141. DOI: 10.1093/intimm/dxu090.

    View in Article CrossRef Google Scholar

    [43] Huang, S.C.-C., Smith, A.M., Everts, B., et al. (2016). Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45: 817−830. DOI: 10.1016/j.immuni.2016.09.016.

    View in Article CrossRef Google Scholar

    [44] Pisetsky, D.S. (2017). EULAR recommendations for disease management: guidance not guidelines. Ann. Rheum. Dis. 76: 935−938. DOI: 10.1136/annrheumdis-2016-211005.

    View in Article CrossRef Google Scholar

    [45] Scanzello, C.R., and Goldring, S.R. (2012). The role of synovitis in osteoarthritis pathogenesis. Bone 51: 249−257. DOI: 10.1016/j.bone.2012.02.012.

    View in Article CrossRef Google Scholar

    [46] Teng, M.W., Bowman, E.P., McElwee, J.J., et al. (2015). IL-12 and IL-23 cytokines: From discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 21: 719−729. DOI: 10.1038/nm.3895.

    View in Article CrossRef Google Scholar

    [47] Nurul, A.A., Azlan, M., Ahmad Mohd Zain, M.R., et al. (2021). Mesenchymal stem cells: Current concepts in the management of inflammation in osteoarthritis. Biomedicines 9: 785. DOI: 10.3390/biomedicines9070785.

    View in Article CrossRef Google Scholar

    [48] Wu, X., Lai, Y., Chen, S., et al. (2022). Kindlin-2 preserves integrity of the articular cartilage to protect against osteoarthritis. Nat. Aging 2: 332−347. DOI: 10.1038/s43587-021-00165-w.

    View in Article CrossRef Google Scholar

    [49] Masoumi, M., Bashiri, H., Khorramdelazad, H., et al. (2021). Destructive roles of fibroblast-like synoviocytes in chronic inflammation and joint damage in rheumatoid arthritis. Inflammation 44: 466−479. DOI: 10.1007/s10753-020-01371-1.

    View in Article CrossRef Google Scholar

    [50] Liu, H., Li, R., Liu, T., et al. (2020). Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front. Immunol. 11 : 1912. DOI: 10.3389/fimmu.2020.01912.

    View in Article Google Scholar

    [51] Ruytinx, P., Proost, P., Van Damme, J., et al. (2018). Chemokine-induced macrophage polarization in inflammatory conditions. Front. Immunol. 9: 1930. DOI: 10.3389/fimmu.2018.01930.

    View in Article CrossRef Google Scholar

    [52] Mihara, M., Hashizume, M., Yoshida, H., et al. (2012). IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin. Sci. 122: 143−159. DOI: 10.1042/cs20110340.

    View in Article CrossRef Google Scholar

    [53] Qiao, W., Xie, H., Fang, J., et al. (2021). Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration. Biomaterials 276: 121038. DOI: 10.1016/j.biomaterials.2021.121038.

    View in Article CrossRef Google Scholar

    [54] Kong, J.S., Jeong, G.H., and Yoo, S.A. (2023). The use of animal models in rheumatoid arthritis research. J. Yeungnam Med. Sci. 40: 23−29. DOI: 10.12701/jyms.2022.00773.

    View in Article CrossRef Google Scholar

    [55] Jin, C.H., So, Y., Nam, B., et al. (2017). Isoegomaketone alleviates the development of collagen antibody-induced arthritis in male balb/c mice. Molecules 22 : 1209. DOI: 10.3390/molecules22071209.

    View in Article Google Scholar

    [56] Calder, P.C. (2015). Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta. 1851: 469−484. DOI: 10.1016/j.bbalip.2014.08.010.

    View in Article CrossRef Google Scholar

    [57] Caldwell, R.D., Qiu, H., Askew, B.C., et al. (2019). Discovery of evobrutinib: An oral, potent, and highly selective, covalent bruton's tyrosine kinase (BTK) inhibitor for the treatment of immunological diseases. J. Med. Chem. 62: 7643−7655. DOI: 10.1021/acs.jmedchem.9b00794.

    View in Article CrossRef Google Scholar

    [58] Campo, G.M., Avenoso, A., Nastasi, G., et al. (2011). Hyaluronan reduces inflammation in experimental arthritis by modulating TLR-2 and TLR-4 cartilage expression. Biochim. Biophys. Acta. 1812: 1170−1181. DOI: 10.1016/j.bbadis.2011.06.006.

    View in Article CrossRef Google Scholar

    [59] Burel, J.G., Pomaznoy, M., Lindestam Arlehamn, C.S., et al. (2019). Circulating T cell-monocyte complexes are markers of immune perturbations. Elife 8 : e46045. DOI: 10.7554/eLife.46045.

    View in Article Google Scholar

    [60] Gao, T., Shi, T., Wiesenfeld-Hallin, Z., et al. (2015). Sinomenine alleviates mechanical hypersensitivity in mice with experimentally induced rheumatoid arthritis. Scand. J. Pain. 7: 9−14. DOI: 10.1016/j.sjpain.2014.12.003.

    View in Article CrossRef Google Scholar

    [61] Abbasi, M., Mousavi, M.J., Jamalzehi, S., et al. (2019). Strategies toward rheumatoid arthritis therapy; the old and the new. J. Cell Physiol. 234: 10018−10031. DOI: 10.1002/jcp.27860.

    View in Article CrossRef Google Scholar

    [62] Aletaha, D., and Smolen, J.S. (2018). Diagnosis and management of rheumatoid arthritis: A review. JAMA 320: 1360−1372. DOI: 10.1001/jama.2018.13103.

    View in Article CrossRef Google Scholar

    [63] Sterner, R.C., and Sterner, R.M. (2021). CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11: 69. DOI: 10.1038/s41408-021-00459-7.

    View in Article CrossRef Google Scholar

    [64] Liu, M., Liu, J., Liang, Z., et al. (2022). CAR-macrophages and CAR-T cells synergistically kill tumor cells in vitro. Cells 11 : 3692. DOI: 10.3390/cells11223692.

    View in Article Google Scholar

    [65] von Kaeppler, E.P., Wang, Q., Raghu, H., et al. (2021). Interleukin 4 promotes anti-inflammatory macrophages that clear cartilage debris and inhibits osteoclast development to protect against osteoarthritis. Clin. Immunol. 229: 108784. DOI: 10.1016/j.clim.2021.108784.

    View in Article CrossRef Google Scholar

    [66] McInnes, I.B., Illei, G.G., Danning, C.L., et al. (2001). IL-10 improves skin disease and modulates endothelial activation and leukocyte effector function in patients with psoriatic arthritis1. J. Immunol. 167: 4075−4082. DOI: 10.4049/jimmunol.167.7.4075.

    View in Article CrossRef Google Scholar

    [67] Shintani, Y., Ito, T., Fields, L., et al. (2017). IL-4 as a repurposed biological drug for myocardial infarction through augmentation of reparative cardiac macrophages: Proof-of-concept data in mice. Sci. Rep. 7: 6877. DOI: 10.1038/s41598-017-07328-z.

    View in Article CrossRef Google Scholar

    [68] Cao, S., Liu, J., Song, L., et al. (2005). The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. J. Immunol. 174: 3484−3492. DOI: 10.4049/jimmunol.174.6.3484.

    View in Article CrossRef Google Scholar

    [69] Kang, K., Park, S.H., Chen, J., et al. (2017). Interferon-gamma represses M2 gene expression in human macrophages by disassembling enhancers bound by the transcription factor MAF. Immunity 47 : 235-250 e234. DOI: 10.1016/j.immuni.2017.07.017.

    View in Article Google Scholar

    [70] Liu, R., Zhao, P., Tan, W., et al. (2018). Cell therapies for refractory rheumatoid arthritis. Clin. Exp. Rheumatol. 36: 911−919.

    View in Article Google Scholar

    [71] Shinoda, Y., Tatsukawa, H., Yonaga, A., et al. (2023). Tissue transglutaminase exacerbates renal fibrosis via alternative activation of monocyte-derived macrophages. Cell Death Dis. 14: 136. DOI: 10.1038/s41419-023-05622-5.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Huang Y., Wang Z., Zhong C., et al., (2024). CRISPRa engineered Elite macrophages enable adoptive cell therapy for rheumatoid arthritis. The Innovation Medicine 2(1): 100050. https://doi.org/10.59717/j.xinn-med.2024.100050
    Huang Y., Wang Z., Zhong C., et al., (2024). CRISPRa engineered Elite macrophages enable adoptive cell therapy for rheumatoid arthritis. The Innovation Medicine 2(1): 100050. https://doi.org/10.59717/j.xinn-med.2024.100050

Welcome!

To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.

Figures(6)    

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(3832) PDF downloads(692) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint