[1] | Huang, T., Xu, H., Wang, H., et al. (2023). Artificial intelligence for medicine: Progress, challenges, and perspectives. The Innovation Medicine 1: 100030. DOI: 10.59717/j.xinn-med.2023.100030. |
[2] | Thirunavukarasu, A.J., Ting, D.S.J., Elangovan, K., et al. (2023). Large language models in medicine. Nat. Med. 29: 1930−1940. DOI: 10.1038/s41591-023-02448-8. |
[3] | Xu, Y., Wang, F., An, Z., et al. (2023). Artificial intelligence for science—bridging data to wisdom. The Innovation 4: 100525. DOI: 10.1016/j.xinn.2023.100525. |
[4] | Huang, H., Zheng, O., Wang, D., et al. (2023). ChatGPT for shaping the future of dentistry: the potential of multi-modal large language model. Int. J. Oral. Sci. 15: 29. DOI: 10.1038/s41368-023-00239-y. |
[5] | Wei, T., Zhao, L., Zhang, L., et al. (2023). Skywork: A more open bilingual foundation model. arXiv preprint arXiv: 2310.19341. DOI: 10.48550/arXiv.2310.19341. |
Yang J., Ding Q., Tian J., et al., (2024). Technical roadmap towards trustworthy large-scale models in medicine. The Innovation Medicine 2(1): 100058. https://doi.org/10.59717/j.xinn-med.2024.100058 |
The way to overcome the hallucination of large-scale models in medicine.