Onset age of metabolic-associated fatty liver disease (MAFLD) is a key factor of cardiovascular diseases (CVD).
The incident CVD risks are the highest in the MAFLD patients who were diagnosed at a young age (<45 years).
The risks gradually declined with each decade increase in MAFLD onset age in Chinese community-based cohort.
The intensive prevention strategies of CVD and adequate therapy in young MAFLD patients are highlighted.
[1] | Eslam, M., Sanyal, A.J., and George, J. (2020). MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158: 1999−2014.e1991. DOI: 10.1053/j.gastro.2019.11.312. |
[2] | Eslam, M., Newsome, P.N., Sarin, S.K., et al. (2020). A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 73: 202−209. DOI: 10.1016/j.jhep.2020.03.039. |
[3] | Shiha, G., Korenjak, M., Eskridge, W., et al. (2021). Redefining fatty liver disease: An international patient perspective. Lancet Gastroenterol. Hepatol. 6: 73−79. DOI: 10.1016/S2468-1253(20)30294-6. |
[4] | Eslam, M., Sarin, S.K., Wong, V.W., et al. (2020). The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Hepatol. Int. 14: 889−919. DOI: 10.1007/s12072-020-10094-2. |
[5] | Eslam, M., and George, J. (2021). MAFLD: A game changer redefining fatty liver disease for adults and children. J. Hepatol. 74: 992−994. DOI: 10.1016/j.jhep.2021.01.004. |
[6] | Spearman, C.W., Desalegn, H., Ocama, P., et al. (2021). The sub-Saharan Africa position statement on the redefinition of fatty liver disease: From NAFLD to MAFLD. J. Hepatol. 74: 1256−1258. DOI: 10.1016/j.jhep.2021.01.015. |
[7] | Mendez, S.N., Arrese, M., Gadano, A., et al. (2021). The Latin American Association for the Study of the Liver (ALEH) position statement on the redefinition of fatty liver disease. Lancet Gastroenterol. Hepatol. 6: 65−72. DOI: 10.1016/S2468-1253(20)30340-X. |
[8] | Liu, J., Ayada, I., Zhang, X., et al. (2022). Estimating global prevalence of metabolic dysfunction-associated fatty liver disease in overweight or obese adults. Clin. Gastroenterol. Hepatol. 20: e573−e582. DOI: 10.1016/j.cgh.2021.02.030. |
[9] | Lim, S., Kim, J.W., and Targher, G. (2021). Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease. Trends Endocrinol. Metab. 32: 500−514. DOI: 10.1016/j.tem.2021.04.008. |
[10] | Doycheva, I., Watt, K.D., and Alkhouri, N. (2017). Nonalcoholic fatty liver disease in adolescents and young adults: The next frontier in the epidemic. Hepatology 65: 2100−2109. DOI: 10.1002/hep.29068. |
[11] | Roth, G.A., Mensah, G.A., Johnson, C.O., et al. (2020). Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GBD 2019 study. J. Am. Coll. Cardiol. 76: 2982−3021. DOI: 10.1016/j.jacc.2020.11.010. |
[12] | GBD 2017 DALYs and HALE Collaborators. (2018). Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 392 : 1859-1922. DOI: 10.1016/s0140-6736(18)32335-3. |
[13] | Andersson, C., and Vasan, R.S. (2018). Epidemiology of cardiovascular disease in young individuals. Nat. Rev. Cardiol. 15: 230−240. DOI: 10.1038/nrcardio.2017.154. |
[14] | Strong, J.P., Malcom, G.T., McMahan, C.A., et al. (1999). Prevalence and extent of atherosclerosis in adolescents and young adults: Implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA 281: 727−735. DOI: 10.1001/jama.281.8.727. |
[15] | Piepoli, M.F., Hoes, A.W., Agewall, S., et al. (2016). 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 37: 2315−2381. DOI: 10.1093/eurheartj/ehw106. |
[16] | Murthy, V.L., Reis, J.P., Pico, A.R., et al. (2020). Comprehensive metabolic phenotyping refines cardiovascular risk in young adults. Circulation 142: 2110−2127. DOI: 10.1161/circulationaha.120.047689. |
[17] | Gooding, H.C., Ning, H., Gillman, M.W., et al. (2017). Application of a lifestyle-based tool to estimate premature cardiovascular disease events in young adults: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. JAMA Intern. Med. 177: 1354−1360. DOI: 10.1001/jamainternmed.2017.2922. |
[18] | Gidding, S.S., and Robinson, J. (2019). It is now time to focus on risk before age 40. J. Am. Coll. Cardiol. 74: 342−345. DOI: 10.1016/j.jacc.2019.04.064. |
[19] | Wang, C., Yuan, Y., Zheng, M., et al. (2020). Association of age of onset of hypertension with cardiovascular diseases and mortality. J. Am. Coll. Cardiol. 75: 2921−2930. DOI: 10.1016/j.jacc.2020.04.038. |
[20] | Sattar, N., Rawshani, A., Franzén, S., et al. (2019). Age at diagnosis of type 2 diabetes mellitus and associations with cardiovascular and mortality risks. Circulation 139: 2228−2237. DOI: 10.1161/circulationaha.118.037885. |
[21] | Zhao, M., Song, L., Sun, L., et al. (2021). Associations of type 2 diabetes onset age with cardiovascular disease and mortality: The kailuan study. Diabetes Care 44: 1426−1432. DOI: 10.2337/dc20-2375. |
[22] | Rawshani, A., Sattar, N., Franzén, S., et al. (2018). Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet 392: 477−486. DOI: 10.1016/s0140-6736(18)31506-x. |
[23] | Li, L., Zhao, M., Wang, C., et al. (2021). Early onset of hyperuricemia is associated with increased cardiovascular disease and mortality risk. Clin. Res. Cardiol. 110: 1096−1105. DOI: 10.1007/s00392-021-01849-4. |
[24] | Huang, Z., Wang, X., Ding, X., et al. (2022). Association of age of metabolic syndrome onset with cardiovascular diseases: The kailuan study. Front. Endocrinol. 13: 857985. DOI: 10.3389/fendo.2022.857985. |
[25] | Armandi, A., and Bugianesi, E. (2023). Extrahepatic outcomes of nonalcoholic fatty liver disease: Cardiovascular diseases. Clin. Liver Dis. 27: 239−250. DOI: 10.1016/j.cld.2023.01.018. |
[26] | Wu, Z., Jin, C., Vaidya, A., et al. (2016). Longitudinal patterns of blood pressure, incident cardiovascular events, and all-cause mortality in normotensive diabetic people. Hypertension 68: 71−77. DOI: 10.1161/hypertensionaha.116.07381. |
[27] | Jin, C., Chen, S., Vaidya, A., et al. (2017). Longitudinal change in fasting blood glucose and myocardial infarction risk in a population without diabetes. Diabetes Care 40: 1565−1572. DOI: 10.2337/dc17-0610. |
[28] | Li, W., Jin, C., Vaidya, A., et al. (2017). Blood pressure trajectories and the risk of intracerebral hemorrhage and cerebral infarction: A prospective study. Hypertension 70: 508−514. DOI: 10.1161/HYPERTENSIONAHA.117.09479. |
[29] | Tunstall-Pedoe, H., Kuulasmaa, K., Amouyel, P., et al. (1994). Myocardial infarction and coronary deaths in the World Health Organization MONICA Project. Registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. Circulation 90 : 583-612. DOI: 10.1161/01.cir.90.1.583. |
[30] | Thygesen, K., Alpert, J.S., Jaffe, A.S., et al. (2018). Fourth universal definition of myocardial infarction (2018). Circulation 138: e618−e651. DOI: 10.1161/cir.0000000000000617. |
[31] | WHO. (1989). Recommendations on stroke prevention, diagnosis, and therapy. Report of the WHO Task Force on Stroke and other Cerebrovascular Disorders. Stroke 20 : 1407-1431. DOI: 10.1161/01.str.20.10.1407. |
[32] | Wang, Z.Y., Chen, S.H., Zhao, X.Y., et al. (2020). Application of Cox and extended regression models on modeling the effect of time-updated exposures in cohort studies. Zhonghua liu xing bing xue za zhi 41: 957−961. DOI: 10.3760/cma.j.cn112338-20200119-00046. |
[33] | Canchola, A.J., Stewart, S.L., Bernstein, L., et al. (2003). 1 COX REGRESSION USING DIFFERENT TIME-SCALES. Western Users of SAS Software. San Francisco, California. https://www.lexjansen.com/wuss/2003/DataAnalysis/i-cox_time_scales.pdf. |
[34] | Schemper, M., Wakounig, S., and Heinze, G. (2009). The estimation of average hazard ratios by weighted Cox regression. Stat. Med. 28: 2473−2489. DOI: 10.1002/sim.3623. |
[35] | Mantovani, A., Csermely, A., Petracca, G., et al. (2021). Non-alcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: an updated systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 6: 903−913. DOI: 10.1016/S2468-1253(21)00308-3. |
[36] | Targher, G., Byrne, C.D., Lonardo, A., et al. (2016). Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis. J. Hepatol. 65: 589−600. DOI: 10.1016/j.jhep.2016.05.013. |
[37] | Lee, H., Lee, Y.H., Kim, S.U., et al. (2021). Metabolic dysfunction-associated fatty liver disease and incident cardiovascular disease risk: A nationwide cohort study. Clin. Gastroenterol. Hepatol. 19: 2138−2147.e2110. DOI: 10.1016/j.cgh.2020.12.022. |
[38] | Guerreiro, G.T.S., Longo, L., Fonseca, M.A., et al. (2021). Does the risk of cardiovascular events differ between biopsy-proven NAFLD and MAFLD. Hepatol. Int. 15: 380−391. DOI: 10.1007/s12072-021-10157-y. |
[39] | Lim, G.E.H., Tang, A., Ng, C.H., et al. (2021). An observational data meta-analysis on the differences in prevalence and risk factors between MAFLD vs NAFLD. Clin. Gastroenterol. Hepatol. 21: 619−629. DOI: 10.1016/j.cgh.2021.11.038. |
[40] | Roth, G.A., Mensah, G.A., and Fuster, V. (2020). The global burden of cardiovascular diseases and risks: A compass for global action. J. Am. Coll. Cardiol. 76: 2980−2981. DOI: 10.1016/j.jacc.2020.11.021. |
[41] | Zhou, X.D., Targher, G., Byrne, C.D., et al. (2023). An international multidisciplinary consensus statement on MAFLD and the risk of CVD. Hepatol. Int. 17: 773−791. DOI: 10.1007/s12072-023-10543-8. |
[42] | Goh, G.B., Pagadala, M.R., Dasarathy, J., et al. (2015). Renin-angiotensin system and fibrosis in non-alcoholic fatty liver disease. Liver Int. 35: 979−985. DOI: 10.1111/liv.12611. |
[43] | Chew, N.W.S., Chong, B., Ng, C.H., et al. (2022). The genetic interactions between non-alcoholic fatty liver disease and cardiovascular diseases. Front. Genet. 13: 971484. DOI: 10.3389/fgene.2022.971484. |
[44] | Simons, N., Isaacs, A., Koek, G.H., et al. (2017). PNPLA3, TM6SF2, and MBOAT7 genotypes and coronary artery disease. Gastroenterology 152: 912−913. DOI: 10.1053/j.gastro.2016.12.020. |
[45] | Albillos, A., de Gottardi, A., and Rescigno, M. (2020). The gut-liver axis in liver disease: Pathophysiological basis for therapy. J. Hepatol. 72: 558−577. DOI: 10.1016/j.jhep.2019.10.003. |
[46] | Hu, H., Lin, A., Kong, M., et al. (2020). Intestinal microbiome and NAFLD: Molecular insights and therapeutic perspectives. J. Gastroenterol. 55: 142−158. DOI: 10.1007/s00535-019-01649-8. |
[47] | Bucholz, E.M., Gooding, H.C., and de Ferranti, S.D. (2018). Awareness of cardiovascular risk factors in U.S. young adults aged 18-39 years. Am. J. Prev. Med. 54 : e67-e77. DOI: 10.1016/j.amepre.2018.01.022. |
[48] | European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), and European Association for the Study of Obesity (EASO). (2016). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 64: 1388−1402. DOI: 10.1016/j.jhep.2015.11.004. |
[49] | Castera, L., Friedrich-Rust, M., and Loomba, R. (2019). Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease. Gastroenterology 156: 1264−1281.e1264. DOI: 10.1053/j.gastro.2018.12.036. |
[50] | Hernaez, R., Lazo, M., Bonekamp, S., et al. (2011). Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: A meta-analysis. Hepatology 54: 1082−1090. DOI: 10.1002/hep.24452. |
[51] | Lazarus, J.V., Mark, H.E., Anstee, Q.M., et al. (2022). Advancing the global public health agenda for NAFLD: A consensus statement. Nat. Rev. Gastroenterol. Hepatol. 19: 60−78. DOI: 10.1038/s41575-021-00523-4. |
Zheng M., Wang X., Yin Y., et al., (2024). New-onset age of metabolic-associated fatty liver disease and incident cardiovascular diseases: Findings from prospective cohort. The Innovation Medicine 2(2): 100064. https://doi.org/10.59717/j.xinn-med.2024.100064 |
Forest plot of the hazard ratios (95% confidence interval) for incident cardiovascular disease among the new-onset MAFLD participants across age groups (N = 49,544)
Forest plot of the hazard ratios (95% confidence interval) of the subtypes of cardiovascular disease of the new-onset MAFLD participants across age groups (N = 49,544)