Lifestyle interventions are the preferred method for obesity intervention and treatment.
Advancements in digital technology and wearable devices provide a new pathway for obesity management.
Interdisciplinary collaboration is crucial for obesity intervention.
[1] | W.H.O. (2020). Obesity and overweight fact sheet. WHO. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. |
[2] | Collaborators, G.B.D.O., Afshin, A., Forouzanfar, M.H., et al. (2017). Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 377: 13−27. DOI: 10.1056/NEJMoa1614362. |
[3] | Collaboration NCDRF. (2016). Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387 : 1377–1396. DOI: 10.1016/S0140-6736(16)30054-X. |
[4] | Locke, A.E., Kahali, B., Berndt, S.I., et al. (2015). Genetic studies of body mass index yield new insights for obesity biology. Nature 518: 197−206. DOI: 10.1038/nature14177. |
[5] | Berrington de Gonzalez, A., Hartge, P., Cerhan, J.R., et al. (2010). Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med. 363 :2211-2219. DOI: 10.1056/NEJMoa1000367. |
[6] | Pan, X.F., Wang, L., and Pan, A. (2021). Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol. 9: 373−392. DOI: 10.1016/S2213-8587(21)00045-0. |
[7] | Trandafir, L.M., Dodi, G., Frasinariu, O., et al. (2022). Tackling dyslipidemia in obesity from a nanotechnology perspective. Nutrients 14 : 3774. DOI: 10.3390/nu14183774. |
[8] | Behl, T., Gupta, A., Chigurupati, S., et al. (2022). Natural and synthetic agents targeting reactive carbonyl species against metabolic syndrome. Molecules 27 : 1583. DOI: 10.3390/molecules27051583. |
[9] | Ortega, F.B., Lavie, C.J., and Blair, S.N. (2016). Obesity and cardiovascular disease. Circ. Res. 118: 1752−1770. DOI: 10.1161/CIRCRESAHA.115.306883. |
[10] | Phelps, N.H., Singleton, R.K., Zhou, B., et al. (2024). Worldwide trends in underweight and obesity from 1990 to 2022: A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 403 : 1027-1050. DOI: 10.1016/S0140-6736(23)02750-2. |
[11] | Federation, W.O. (2024). World obesity atlas 2024. London: World obesity federation. https://data.worldobesity.org/publications/?cat=22. |
[12] | Ma, G., Meyer, C.L., Jackson-Morris, A., et al. (2024). The return on investment for the prevention and treatment of childhood and adolescent overweight and obesity in china: A modelling study. Lancet Reg. Health West. Pac. 43 : 100977. DOI: 10.1016/j.lanwpc.2023.100977. |
[13] | Peng, W., Chen, S., Chen, X., et al. (2024). Trends in major non-communicable diseases and related risk factors in china 2002–2019: An analysis of nationally representative survey data. Lancet Reg. Health West. Pac. 43 : 100809. DOI: 10.1016/j.lanwpc.2023.100809. |
[14] | Aris, I.M., and Block, J.P. (2022). Childhood obesity interventions—going beyond the individual. JAMA pediatrics 176: e214388−e214388. |
[15] | Perdomo, C.M., Cohen, R.V., Sumithran, P., et al. (2023). Contemporary medical, device, and surgical therapies for obesity in adults. Lancet 401: 1116−1130. DOI: 10.1016/S0140-6736(22)02403-5. |
[16] | Wang, Y., Zhao, L., Gao, L., et al. (2021). Health policy and public health implications of obesity in China. Lancet Diabetes Endocrinol. 9: 446−461. DOI: 10.1016/S2213-8587(21)00118-2. |
[17] | Beal, T., Ortenzi, F., and Fanzo, J. (2023). Estimated micronutrient shortfalls of the eat–lancet planetary health diet. Lancet Planet. Health 7: e233−e237. DOI: 10.1016/S2542-5196(23)00006-2. |
[18] | Katzmarzyk, P.T. (2023). Expanding our understanding of the global impact of physical inactivity. The Lancet Global Health 11: e2−e3. DOI: 10.1016/S2214-109X(22)00482-X. |
[19] | Jiwani, S.S., Carrillo-Larco, R.M., Hernández-Vásquez, A., et al. (2019). The shift of obesity burden by socioeconomic status between 1998 and 2017 in latin america and the caribbean: A cross-sectional series study. Lancet Glob. Health 7 e1644-e1654. DOI: 10.1016/S2214-109X(20)30021-8. |
[20] | Bouchard, C. (2021). Genetics of obesity: What we have learned over decades of research. Obesity (Silver Spring) . 29: 802−820. DOI: 10.1002/oby.23116. |
[21] | Loos, R.J.F., and Yeo, G.S.H. (2022). The genetics of obesity: From discovery to biology. Nat. Rev. Genet. 23: 120−133. DOI: 10.1038/s41576-021-00414-z. |
[22] | Khera, A.V., Chaffin, M., Wade, K.H., et al. (2019). Polygenic prediction of weight and obesity trajectories from birth to adulthood. Cell 177: 587−596.e589. DOI: 10.1016/j.cell.2019.03.028. |
[23] | Zhang, X., Ha, S., Lau, H.C.-H., et al. (2023). Excess body weight: Novel insights into its roles in obesity comorbidities. Semin. Cancer Biol. 92: 16−27. DOI: 10.1016/j.semcancer.2023.03.008. |
[24] | Yeo, G.S., and Heisler, L.K. (2012). Unraveling the brain regulation of appetite: Lessons from genetics. Nat. Neurosci. 15: 1343−1349. DOI: 10.1038/nn.3211. |
[25] | Richard, D. (2015). Cognitive and autonomic determinants of energy homeostasis in obesity. Nat. Rev. Endocrinol. 11: 489−501. DOI: 10.1038/nrendo.2015.103. |
[26] | Pan, W.W., and Myers, M.G., Jr. (2018). Leptin and the maintenance of elevated body weight. Nat. Rev. Neurosci. 19: 95−105. DOI: 10.1038/nrn.2017.168. |
[27] | Hill, J.O., Wyatt, H.R., Reed, G.W., et al. (2003). Obesity and the environment: Where do we go from here. Science 299: 853−855. DOI: 10.1126/science.1079857. |
[28] | Heymsfield, S.B., and Wadden, T.A. (2017). Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 376: 1492. DOI: 10.1056/NEJMc1701944. |
[29] | DeFronzo, R.A., and Tripathy, D. (2009). Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32 Suppl 2 : S157-163. DOI: 10.2337/dc09-S302. |
[30] | Samuel, V.T., and Shulman, G.I. (2016). The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. J. Clin. Invest. 126: 12−22. DOI: 10.1172/jci77812. |
[31] | Savage, D.B., Petersen, K.F., and Shulman, G.I. (2007). Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol. Rev. 87: 507−520. DOI: 10.1152/physrev.00024.2006. |
[32] | Newgard, C.B., An, J., Bain, J.R., et al. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9: 311−326. DOI: 10.1016/j.cmet.2009.02.002. |
[33] | Jang, C., Oh, S.F., Wada, S., et al. (2016). A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat. Med. 22: 421−426. DOI: 10.1038/nm.4057. |
[34] | Zhang, Y., Yang, J., Hou, W., et al. (2021). Obesity trends and associations with types of physical activity and sedentary behavior in us adults: National health and nutrition examination survey, 2007-2016. Obesity (Silver Spring) 29: 240−250. DOI: 10.1002/oby.23043. |
[35] | Fitzgerald, M.P., Hennigan, K., O’Gorman, C.S., et al. (2019). Obesity, diet and lifestyle in 9-year-old children with parentally reported chronic diseases: Findings from the growing up in ireland longitudinal child cohort study. Ir. J. Med. Sci. (1971-) 188 : 29-34. DOI:10.1007/s11845-018-1814-1. |
[36] | Romero-Ibarguengoitia, M.E., Vadillo-Ortega, F., Caballero, A.E., et al. (2018). Family history and obesity in youth, their effect on acylcarnitine/aminoacids metabolomics and non-alcoholic fatty liver disease (nafld). Structural equation modeling approach. PloS. One. 13: e0193138. DOI: 10.1371/journal.pone.0193138. |
[37] | Chen, L., Qin, Y., Zhang, Y., et al. (2024). Association of the external environmental exposome and obesity: A comprehensive nationwide study in 2019 among chinese children and adolescents. Sci. Total. Enviro. 927: 172233. DOI: 10.1016/j.scitotenv.2024.172233. |
[38] | Aris, I.M., Perng, W., Dabelea, D., et al. (2022). Associations of neighborhood opportunity and social vulnerability with trajectories of childhood body mass index and obesity among us children. JAMA Netw. Open. 5: e2247957. DOI: 10.1001/jamanetworkopen.2022.47957. |
[39] | Powell-Wiley, T.M., Poirier, P., Burke, L.E., et al. (2021). Obesity and cardiovascular disease: A scientific statement from the american heart association. Circulation 143: e984−e1010. DOI: 10.1161/CIR.0000000000000973. |
[40] | Piche, M.E., Poirier, P., Lemieux, I., et al. (2018). Overview of epidemiology and contribution of obesity and body fat distribution to cardiovascular disease: An update. Prog.Cardiovasc. Dis. 61: 103−113. DOI: 10.1016/j.pcad.2018.06.004. |
[41] | Si, S., Tewara, M.A., Ji, X., et al. (2020). Body surface area, height, and body fat percentage as more sensitive risk factors of cancer and cardiovascular disease. Cancer Med. 9: 4433−4446. DOI: 10.1002/cam4.3076. |
[42] | Huang, Y., Hu, Y., and Bao, B. (2023). Relationship of body mass index and visceral fat area combination with arterial stiffness and cardiovascular risk in cardiovascular disease-free people: Nhanes (2011-2018). Endocr. Connect. 12 : e230219. DOI: 10.1530/EC-23-0291. |
[43] | Myint, P.K., Kwok, C.S., Luben, R.N., et al. (2014). Body fat percentage, body mass index and waist-to-hip ratio as predictors of mortality and cardiovascular disease. Heart. 100: 1613−1619. DOI: 10.1136/heartjnl-2014-305816. |
[44] | Hall, M.E., Cohen, J.B., Ard, J.D., et al. (2021). Weight-loss strategies for prevention and treatment of hypertension: A scientific statement from the american heart association. Hypertension 78: e38−e50. DOI: 10.1161/HYP.0000000000000202. |
[45] | Jayedi, A., Rashidy-Pour, A., Khorshidi, M., et al. (2018). Body mass index, abdominal adiposity, weight gain and risk of developing hypertension: A systematic review and dose-response meta-analysis of more than 2.3 million participants. Obes. Rev. 19 :654-667. DOI: 10.1111/obr.12656. |
[46] | Arnett, D.K., Blumenthal, R.S., Albert, M.A., et al. (2019). 2019 acc/aha guideline on the primary prevention of cardiovascular disease: A report of the american college of cardiology/american heart association task force on clinical practice guidelines. Circulation 140: e596−e646. DOI: 10.1161/CIR.0000000000000678. |
[47] | Terada, T., Forhan, M., Norris, C.M., et al. (2017). Differences in short- and long-term mortality associated with bmi following coronary revascularization. J. Am. Heart Assoc. 6 : e005335. DOI: 10.1161/JAHA.116.005335. |
[48] | Csige, I., Ujvarosy, D., Szabo, Z., et al. (2018). The impact of obesity on the cardiovascular system. J. Diabetes Res. 2018: 3407306. DOI: 10.1155/2018/3407306. |
[49] | Koliaki, C., Liatis, S., and Kokkinos, A. (2019). Obesity and cardiovascular disease: Revisiting an old relationship. Metabolism. 92: 98−107. DOI: 10.1016/j.metabol.2018.10.011. |
[50] | Ortega-Loubon, C., Fernandez-Molina, M., Singh, G., et al. (2019). Obesity and its cardiovascular effects. Diabetes Metab. Res. Rev. 35: e3135. DOI: 10.1002/dmrr.3135. |
[51] | Van Gaal, L.F., Mertens, I.L., and De Block, C.E. (2006). Mechanisms linking obesity with cardiovascular disease. Natur. 444: 875−880. DOI: 10.1038/nature05487. |
[52] | Rocha, V.Z., and Libby, P. (2009). Obesity, inflammation, and atherosclerosis. Nat. Rev. Cardiol. 6: 399−409. DOI: 10.1038/nrcardio.2009.55. |
[53] | Couillard, C., Ruel, G., Archer, W.R., et al. (2005). Circulating levels of oxidative stress markers and endothelial adhesion molecules in men with abdominal obesity. J. Clin. Endocrinol. Metab. 90: 6454−6459. DOI: 10.1210/jc.2004-2438. |
[54] | Csige, I., Ujvarosy, D., Szabo, Z., et al. (2018). The impact of obesity on the cardiovascular system. J. Diabetes Res. 2018 : 3407306. DOI: 10.1155/2018/3407306. |
[55] | Alpert, M.A., Lavie, C.J., Agrawal, H., et al. (2014). Obesity and heart failure: Epidemiology, pathophysiology, clinical manifestations, and management. Transl. Res. 164: 345−356. DOI: 10.1016/j.trsl.2014.04.010. |
[56] | Bozkurt, B., Aguilar, D., Deswal, A., et al. (2016). Contributory risk and management of comorbidities of hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic syndrome in chronic heart failure: A scientific statement from the american heart association. Circulation 134: e535−e578. DOI: 10.1161/CIR.0000000000000450. |
[57] | Aune, D., Schlesinger, S., Norat, T., et al. (2018). Body mass index, abdominal fatness, and the risk of sudden cardiac death: A systematic review and dose-response meta-analysis of prospective studies. Eur. J. Epidemiol. 33: 711−722. DOI: 10.1007/s10654-017-0353-9. |
[58] | Wong, C.X., Brooks, A.G., Lau, D.H., et al. (2012). Factors associated with the epidemic of hospitalizations due to atrial fibrillation. Am. J. Cardiol. 110: 1496−1499. DOI: 10.1016/j.amjcard.2012.07.011. |
[59] | Lu, Y., Hajifathalian, K., Ezzati, M., et al. (2014). Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: A pooled analysis of 97 prospective cohorts with 1·8 million participants. Lancet 383: 970−983. DOI: 10.1016/S0140-6736(13)61836-X. |
[60] | Liu, S., Gao, Z., Dai, Y., et al. (2020). Association of general and abdominal obesity and their changes with stroke in chinese adults: Results from an 11.8-year follow-up study. Nutr. Metab. Cardiovasc. Dis. 30 :2001-2007. DOI: 10.1016/j.numecd.2020.06.011. |
[61] | Sui, S.X., and Pasco, J.A. (2020). Obesity and brain function: The brain-body crosstalk. Medicina (Kaunas). 56 : 499. DOI: 10.3390/medicina56100499. |
[62] | Morton, G.J., Meek, T.H., and Schwartz, M.W. (2014). Neurobiology of food intake in health and disease. Nat. Rev. Neurosci. 15: 367−378. DOI: 10.1038/nrn3745. |
[63] | Sanborn, V., Preis, S.R., Ang, A., et al. (2020). Association between leptin, cognition, and structural brain measures among "early" middle-aged adults: Results from the framingham heart study third generation cohort. J. Alzheimers Dis. 77: 1279−1289. DOI: 10.3233/JAD-191247. |
[64] | Salas-Venegas, V., Flores-Torres, R.P., Rodríguez-Cortés, Y.M., et al. (2022). The obese brain: Mechanisms of systemic and local inflammation, and interventions to reverse the cognitive deficit. Front. Integr. Neurosci. 16: 798995. DOI: 10.3389/fnint.2022.798995. |
[65] | Castanon, N., Luheshi, G., and Layé, S. (2015). Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity. Front. Neurosci. 9: 229. DOI: 10.3389/fnins.2015.00229. |
[66] | Tomiyama, A.J. (2019). Stress and obesity. Annu. Rev. Psychol. 70: 703−718. DOI: 10.1146/annurev-psych-010418-102936. |
[67] | van Strien, T. (2018). Causes of emotional eating and matched treatment of obesity. Curr. Diab. Rep. 18: 35. DOI: 10.1007/s11892-018-1000-x. |
[68] | Rubino, F., Puhl, R.M., Cummings, D.E., et al. (2020). Joint international consensus statement for ending stigma of obesity. Nat. Med. 26: 485−497. DOI: 10.1038/s41591-020-0803-x. |
[69] | van Hulsteijn, L.T., Pasquali, R., Casanueva, F., et al. (2020). Prevalence of endocrine disorders in obese patients: Systematic review and meta-analysis. Eur. J. Endocrinol. 182: 11−21. DOI: 10.1530/EJE-19-0666. |
[70] | Stefan, N. (2020). Causes, consequences, and treatment of metabolically unhealthy fat distribution. Lancet Diabetes Endocrinol. 8: 616−627. DOI: 10.1016/S2213-8587(20)30110-8. |
[71] | Flegal, K.M., Graubard, B.I., Williamson, D.F., et al. (2007). Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA 298: 2028−2037. DOI: 10.1001/jama.298.17.2028. |
[72] | Malone, J.I., and Hansen, B.C. (2019). Does obesity cause type 2 diabetes mellitus (t2dm)? Or is it the opposite? Pediatr. Diabetes 20: 5−9. DOI: 10.1111/pedi.12787. |
[73] | Garvey, W.T., Mechanick, J.I., Brett, E.M., et al. (2016). American association of clinical endocrinologists and american college of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr. Pract. 22 Suppl 3 :1-203. DOI: 10.4158/EP161365.GL. |
[74] | Hofland, J., Refardt, J.C., Feelders, R.A., et al. (2024). Approach to the patient: Insulinoma. J. Clin. Endocrinol. Metab. 109: 1109−1118. DOI: 10.1210/clinem/dgad641. |
[75] | Duvillie, B., Kourdoughli, R., Druillennec, S., et al. (2020). Interplay between diabetes and pancreatic ductal adenocarcinoma and insulinoma: The role of aging, genetic factors, and obesity. Front. Endocrinol (Lausanne). 11: 563267. DOI: 10.3389/fendo.2020.563267. |
[76] | Chaker, L., Bianco, A.C., Jonklaas, J., et al. (2017). Hypothyroidism. Lancet 390: 1550−1562. DOI: 10.1016/S0140-6736(17)30703-1. |
[77] | Mullur, R., Liu, Y.Y., and Brent, G.A. (2014). Thyroid hormone regulation of metabolism. Physiol. Rev. 94: 355−382. DOI: 10.1152/physrev.00030.2013. |
[78] | Brenta, G. (2021). The association between obesity and the thyroid: Is the "chicken or the egg" conundrum finally solved. J. Clin. Endocrinol. Metab. 106: e4281−e4283. DOI: 10.1210/clinem/dgab291. |
[79] | Pasquali, R., Casanueva, F., Haluzik, M., et al. (2020). European society of endocrinology clinical practice guideline: Endocrine work-up in obesity. Eur. J. Endocrinol. 182: G1−G32. DOI: 10.1530/EJE-19-0893. |
[80] | Lacroix, A., Feelders, R.A., Stratakis, C.A., et al. (2015). Cushing's syndrome. Lancet 386: 913−927. DOI: 10.1016/S0140-6736(14)61375-1. |
[81] | Reincke, M., and Fleseriu, M. (2023). Cushing syndrome: A review. JAMA 330: 170−181. DOI: 10.1001/jama.2023.11305. |
[82] | Pivonello, R., Isidori, A.M., De Martino, M.C., et al. (2016). Complications of cushing's syndrome: State of the art. Lancet Diabetes Endocrinol. 4: 611−629. DOI: 10.1016/S2213-8587(16)00086-3. |
[83] | Nieman, L.K. (2018). Diagnosis of cushing's syndrome in the modern era. Endocrinol Metab. Clin. North. Am. 47: 259−273. DOI: 10.1016/j.ecl.2018.02.001. |
[84] | Fleseriu, M., Auchus, R., Bancos, I., et al. (2021). Consensus on diagnosis and management of cushing's disease: A guideline update. Lancet Diabetes Endocrinol. 9: 847−875. DOI: 10.1016/S2213-8587(21)00235-7. |
[85] | Raatz, S., and Gross, A.C. (2021). Clinical assessment and treatment of early-onset severe obesity. Curr. Obes. Rep. 10: 31−38. DOI: 10.1007/s13679-020-00418-6. |
[86] | Huvenne, H., Dubern, B., Clement, K., et al. (2016). Rare genetic forms of obesity: Clinical approach and current treatments in 2016. Obes. Facts. 9: 158−173. DOI: 10.1159/000445061. |
[87] | Fairbrother, U., Kidd, E., Malagamuwa, T., et al. (2018). Genetics of severe obesity. Curr. Diab. Rep. 18: 85. DOI: 10.1007/s11892-018-1053-x. |
[88] | Wilding, J.P.H. (2020). Endocrine testing in obesity. Eur. J. Endocrinol. 182: C13−C15. DOI: 10.1530/EJE-20-0099. |
[89] | Kokkoris, P., and Pi-Sunyer, F.X. (2003). Obesity and endocrine disease. Endocrinol. Metab. Clin. North. Am. 32: 895−914. DOI: 10.1016/s0889-8529(03)00078-1. |
[90] | Thomas, R.M., Ruel, E., Shantavasinkul, P.C., et al. (2015). Endocrine hypertension: An overview on the current etiopathogenesis and management options. World J. Hypertens. 5: 14−27. DOI: 10.5494/wjh.v5.i2.14. |
[91] | Park, S.S., Ahn, C.H., Kim, S.W., et al. (2024). Subtype-specific body composition and metabolic risk in patients with primary aldosteronism. J. Clin. Endocrinol. Metab. 109: e788−e798. DOI: 10.1210/clinem/dgad520. |
[92] | Ruiz-Sanchez, J.G., Paja-Fano, M., Gonzalez Boillos, M., et al. (2023). Effect of obesity on clinical characteristics of primary aldosteronism patients at diagnosis and postsurgical response. J. Clin. Endocrinol. Metab. 109: e379−e388. DOI: 10.1210/clinem/dgad400. |
[93] | Wang, M.-L., McCabe, L., Petsonk, E.L., et al. (1997). Weight gain and longitudinal changes in lung function in steel workers. Chest 111: 1526−1532. DOI: 10.1378/chest.111.6.1526. |
[94] | Nishimura, Y., Tsutsumi, M., Nakata, H., et al. (1995). Relationship between respiratory muscle strength and lean body mass in men with copd. Chest 107: 1232−1236. DOI: 10.1378/chest.107.5.1232. |
[95] | Biring, M.S., Lewis, M.I., Liu, J.T., et al. (1999). Pulmonary physiologic changes of morbid obesity. Am. J. Med. Sci 318: 293−297. DOI: 10.1097/00000441-199911000-00002. |
[96] | Jones, R.L., and Nzekwu, M.M. (2006). The effects of body mass index on lung volumes. Chest 130: 827−833. DOI: 10.1378/chest.130.3.827. |
[97] | Pelosi, P., Croci, M., Ravagnan, I., et al. (1998) The effects of body mass on lung volumes, respiratory mechanics, and gas exchange during general anesthesia. Anesth. Analg. 87 :654-660. DOI: 10.1097/00000539-199809000-00031. |
[98] | Naimark, A., and Cherniack, R.M. (1960). Compliance of the respiratory system and its components in health and obesity. J. Appl. Physiol. 15: 377−382. DOI: 10.1152/jappl.1960.15.3.377. |
[99] | Stanchina, M.L., Malhotra, A., Fogel, R.B., et al. (2003). The influence of lung volume on pharyngeal mechanics, collapsibility, and genioglossus muscle activation during sleep. Sleep 26: 851−856. DOI: 10.1093/sleep/26.7.851. |
[100] | Tagaito, Y., Isono, S., Remmers, J.E., et al. (2007). Lung volume and collapsibility of the passive pharynx in patients with sleep-disordered breathing. J. Appl. physiol. (Bethesda, Md.: 1985) 103 :1379-1385. DOI: 10.1152/japplphysiol.00026.2007. |
[101] | Nicolacakis, K., Skowronski, M.E., Coreno, A.J., et al. (2008). Observations on the physiological interactions between obesity and asthma. J. Appl. Physiol. (Bethesda, Md.: 1985) 105: 1533-1541. DOI: 10.1152/japplphysiol.01260.2007. |
[102] | Sutherland, T.J., Cowan, J.O., Young, S., et al. (2008). The association between obesity and asthma: Interactions between systemic and airway inflammation. Am. J. Respir. Crit. Care. Med. 178: 469−475. DOI: 10.1164/rccm.200802-301OC. |
[103] | Resta, O., Foschino-Barbaro, M.P., Legari, G., et al. (2001). Sleep-related breathing disorders, loud snoring and excessive daytime sleepiness in obese subjects. Int. J. Obes. Relat. Metab. Disord. 25: 669−675. DOI: 10.1038/sj.ijo.0801603. |
[104] | Sériès, F. (2002). Upper airway muscles awake and asleep. Sleep Med. Rev. 6: 229−242. DOI: 10.1053/smrv.2001.0163. |
[105] | Mokhlesi, B., and Tulaimat, A. (2007). Recent advances in obesity hypoventilation syndrome. Chest 132: 1322−1336. DOI: 10.1378/chest.07-0027. |
[106] | Goyal, A., Pakhare, A., Tiwari, I.R., et al. (2020). Diagnosing obstructive sleep apnea patients with isolated nocturnal hypoventilation and defining obesity hypoventilation syndrome using new european respiratory society classification criteria: An indian perspective. Sleep Med. 66: 85−91. DOI: 10.1016/j.sleep.2019.08.009. |
[107] | Shah, N.M., Shrimanker, S., and Kaltsakas, G. (2021). Defining obesity hypoventilation syndrome. Breathe (Sheffield, England) 17: 210089. DOI: 10.1183/20734735.0089-2021. |
[108] | Peters, U., Dixon, A.E., and Forno, E. (2018). Obesity and asthma. J. Allergy Clin. Immunol. 141: 1169−1179. DOI: 10.1016/j.jaci.2018.02.004. |
[109] | Carpaij, O.A., and van den Berge, M. (2018). The asthma-obesity relationship: Underlying mechanisms and treatment implications. Curr. Opin. Pulm. Med. 24: 42−49. DOI: 10.1097/mcp.0000000000000446. |
[110] | Desai, D., Newby, C., Symon, F.A., et al. (2013). Elevated sputum interleukin-5 and submucosal eosinophilia in obese individuals with severe asthma. Am. J. Respir. Crit. Care. Med. 188: 657−663. DOI: 10.1164/rccm.201208-1470OC. |
[111] | van der Wiel, E., Ten Hacken, N.H., van den Berge, M., et al. (2014). Eosinophilic inflammation in subjects with mild-to-moderate asthma with and without obesity: Disparity between sputum and biopsies. Am. J. Respir. Crit. Care. Med. 189: 1281−1284. DOI: 10.1164/rccm.201310-1841LE. |
[112] | Chaaban, T.A. (2019). Bariatric surgery: A potential cure for asthma. Eur. Respir. Rev. 28: 190003. DOI: 10.1183/16000617.0003-2019. |
[113] | Fuller-Thomson, E., Howden, K.E.N., Fuller-Thomson, L.R., et al. (2018). A strong graded relationship between level of obesity and copd: Findings from a national population-based study of lifelong nonsmokers. J. Obes. 2018: 6149263. DOI: 10.1155/2018/6149263. |
[114] | Zewari, S., Vos, P., van den Elshout, F., et al. (2017). Obesity in copd: Revealed and unrevealed issues. COPD 14: 663−673. DOI: 10.1080/15412555.2017.1383978. |
[115] | Schokker, D.F., Visscher, T.L., Nooyens, A.C., et al. (2007). Prevalence of overweight and obesity in the netherlands. Obes. Rev. 8: 101−108. DOI: 10.1111/j.1467-789X.2006.00273.x. |
[116] | Ran, P.X., Wang, C., Yao, W.Z., et al. (2007). [A study on the correlation of body mass index with chronic obstructive pulmonary disease and quality of life]. Zhonghua jie he he hu xi za zhi 30: 18−22. https://rs.yiigle.com/cmaid/1465786. |
[117] | Franssen, F.M., O'Donnell, D.E., Goossens, G.H., et al. (2008). Obesity and the lung: 5. Obesity and COPD. Thorax. 63: 1110−1117. DOI: 10.1136/thx.2007.086827. |
[118] | Sacco, V., Rauch, B., Gar, C., et al. (2020). Overweight/obesity as the potentially most important lifestyle factor associated with signs of pneumonia in covid-19. PLoS One 15 : e0 237799. DOI: 10.1371/journal.pone.0237799. |
[119] | Kwok, S., Adam, S., Ho, J.H., et al. (2020). Obesity: A critical risk factor in the covid-19 pandemic. Clin. Obes. 10: e12403. DOI: 10.1111/cob.12403. |
[120] | Mojtabavi, H., Saghazadeh, A., and Rezaei, N. (2020). Interleukin-6 and severe covid-19: A systematic review and meta-analysis. Eur. Cytokine. Netw. 31: 44−49. DOI: 10.1684/ecn.2020.0448. |
[121] | Sindhu, S., Thomas, R., Shihab, P., et al. (2015). Obesity is a positive modulator of il-6r and il-6 expression in the subcutaneous adipose tissue: Significance for metabolic inflammation. PLoS One 10: e0133494. DOI: 10.1371/journal.pone.0133494. |
[122] | Behl, T., Kumar, S., Singh, S., et al. (2022). Reviving the mutual impact of sars-cov-2 and obesity on patients: From morbidity to mortality. Biomed. Pharmacother. 151: 113178. DOI: 10.1016/j.biopha.2022.113178. |
[123] | Clark, A., Jit, M., Warren-Gash, C., et al. (2020). Global, regional, and national estimates of the population at increased risk of severe covid-19 due to underlying health conditions in 2020: A modelling study. Lancet Glob. Health 8: e1003−e1017. DOI: 10.1016/s2214-109x(20)30264-3. |
[124] | Mintziori, G., Nigdelis, M.P., Mathew, H., et al. (2020). The effect of excess body fat on female and male reproduction. Metabolism: Clinical and Experimental 107: 154193. DOI: 10.1016/j.metabol.2020.154193. |
[125] | Broughton, D.E., and Moley, K.H. (2017). Obesity and female infertility: Potential mediators of obesity's impact. Fertil. Steril. 107: 840−847. DOI: 10.1016/j.fertnstert.2017.01.017. |
[126] | Gautam, D., Purandare, N., Maxwell, C.V., et al. (2023). The challenges of obesity for fertility: A figo literature review. Int. J. Gynaecol. Obstet. 160 Suppl. 1 :50-55. DOI: 10.1002/ijgo.14538. |
[127] | Sarwer, D.B., Hanson, A.J., Voeller, J., et al. (2018). Obesity and sexual functioning. Curr. Obes. Rep. 7: 301−307. DOI: 10.1007/s13679-018-0319-6. |
[128] | Bernardi, O., Estienne, A., Reverchon, M., et al. (2021). Adipokines in metabolic and reproductive functions in birds: An overview of current knowns and unknowns. Mol. Cell. Endocrinol. 534: 111370. DOI: 10.1016/j.mce.2021.111370. |
[129] | Kahn, D., Macias, E., Zarini, S., et al. (2022). Exploring visceral and subcutaneous adipose tissue secretomes in human obesity: Implications for metabolic disease. Endocrinology 163: bqac140. DOI: 10.1210/endocr/bqac140. |
[130] | Wadden, K.P., Hollohan, N., Furneaux, T., et al. (2024). Pro-fit-care study: The feasibility assessment of a pilot online exercise intervention for persons living with obesity and female infertility. Front. Sports Act. Living 6: 1332376. DOI: 10.3389/fspor.2024.1332376. |
[131] | Fabris de Souza, S.A., Faintuch, J., Valezi, A.C., et al. (2005). Postural changes in morbidly obese patients. Obes. Surg. 15: 1013−1016. DOI: 10.1381/0960892054621224. |
[132] | Guo, J.-M., Zhang, G.-Q., and Alimujiang (2008). [effect of bmi and whr on lumbar lordosis and sacrum slant angle in middle and elderly women]. Zhongguo Gu Shang 21 :30-31. http://www.zggszz.com/zggszzcn/ch/reader/view_abstract.aspx?flag=1&file_no=20080112&journal_id=zggszzcn. |
[133] | Wearing, S.C., Hennig, E.M., Byrne, N.M., et al. (2006). Musculoskeletal disorders associated with obesity: A biomechanical perspective. Obes. Rev. 7: 239−250. DOI: 10.1111/j.1467-789X.2006.00251.x. |
[134] | Cooper, C., Inskip, H., Croft, P., et al. (1998). Individual risk factors for hip osteoarthritis: Obesity, hip injury, and physical activity. Am. J. Epidemiol. 147: 516−522. DOI: 10.1093/oxfordjournals.aje.a009482. |
[135] | Davis, M.A., Ettinger, W.H., Neuhaus, J.M., et al. (1989). The association of knee injury and obesity with unilateral and bilateral osteoarthritis of the knee. Am. J. Epidemiol. 130: 278−288. DOI: 10.1093/oxfordjournals.aje.a115334. |
[136] | Lievense, A.M., Bierma-Zeinstra, S.M.A., Verhagen, A.P., et al. (2002). Influence of obesity on the development of osteoarthritis of the hip: A systematic review. Rheumatology (Oxford) . 41: 1155−1162. DOI: 10.1093/rheumatology/41.10.1155. |
[137] | Vismara, L., Menegoni, F., Zaina, F., et al. (2010). Effect of obesity and low back pain on spinal mobility: A cross sectional study in women. J. Neuroeng. Rehabil. 7: 3. DOI: 10.1186/1743-0003-7-3. |
[138] | Lui, P.P.Y., and Yung, P.S.H. (2021). Inflammatory mechanisms linking obesity and tendinopathy. J. Orthop. Translat. 31: 80−90. DOI: 10.1016/j.jot.2021.10.003. |
[139] | Ugwoke, C.K., Cvetko, E., and Umek, N. (2022). Pathophysiological and therapeutic roles of fascial hyaluronan in obesity-related myofascial disease. Int. J. Mo. Sci. 23 . DOI: 10.3390/ijms231911843. |
[140] | Wendelboe, A.M., Hegmann, K.T., Gren, L.H., et al. (2004). Associations between body-mass index and surgery for rotator cuff tendinitis. J. Bone. Joint Surg. Am. 86: 743−747. DOI: 10.2106/00004623-200404000-00011. |
[141] | Goff, J.D., and Crawford, R. (2011). Diagnosis and treatment of plantar fasciitis. Am. Fam. Physician. 84: 676−682. |
[142] | Riddle, D.L., Pulisic, M., Pidcoe, P., et al. (2003). Risk factors for plantar fasciitis: A matched case-control study. J. Bone. Joint Surg. Am. 85: 872−877. DOI: 10.2106/00004623-200305000-00015. |
[143] | Ringel, A.E., Drijvers, J.M., Baker, G.J., et al. (2020). Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell 183: 1848−+. DOI: 10.1016/j.cell.2020.11.009. |
[144] | Recalde, M., Davila-Batista, V., Díaz, Y., et al. (2021). Body mass index and waist circumference in relation to the risk of 26 types of cancer: A prospective cohort study of 3.5 million adults in spain. BMC Med. 19 : 10. DOI: ARTN 1010.1186/s12916-020-01877-3. |
[145] | Recalde, M., Pistillo, A., Davila-Batista, V., et al. (2023). Longitudinal body mass index and cancer risk: A cohort study of 2.6 million catalan adults. Nat. Commun. 14. DOI: ARTN 381610.1038/s41467-023-39282-y. |
[146] | Onerup, A., Mehlig, K., Af Geijerstam, A., et al. (2024). Associations between bmi in youth and site-specific cancer in men-a cohort study with register linkage. Obesity (Silver Spring). 32: 376−389. DOI: 10.1002/oby.23942. |
[147] | Fontvieille, E., Viallon, V., Recalde, M., et al. (2023). Body mass index and cancer risk among adults with and without cardiometabolic diseases: Evidence from the epic and uk biobank prospective cohort studies. Bmc. Med. 21. DOI: ARTN 41810.1186/s12916-023-03114-z. |
[148] | Onerup, A., Mehlig, K., Ekblom-Bak, E., et al. (2023). Cardiorespiratory fitness and bmi measured in youth and 5-year mortality after site-specific cancer diagnoses in men-a population-based cohort study with register linkage. Cancer Med. 12: 20000−20014. DOI: 10.1002/cam4.6553. |
[149] | Li, Z., Weng, H., Su, R., et al. (2017). FTO plays an oncogenic role in acute myeloid leukemia as a n(6)-methyladenosine RNA demethylase. Cancer cell 31: 127−141. DOI: 10.1016/j.ccell.2016.11.017. |
[150] | Lee, M., Hamilton, J.A.G., Talekar, G.R., et al. (2022). Obesity-induced galectin-9 is a therapeutic target in b-cell acute lymphoblastic leukemia. Nat. Commun. 13 : 1157. DOI: ARTN 115710.1038/s41467-022-28839-y. |
[151] | de Candia, P., Prattichizzo, F., Garavelli, S., et al. (2021). The pleiotropic roles of leptin in metabolism, immunity, and cancer. J. Exp. Med. 218 . DOI: ARTN e2019159310.1084/jem.20191593. |
[152] | Matarese, G. (2023). The link between obesity and autoimmunity overnutrition could lead to loss of self-tolerance by impinging on immune regulation. Science 379: 1298−1300. DOI: 10.1126/science.ade0113. |
[153] | Bapat, S.P., Whitty, C., Mowery, C.T., et al. (2022). Obesity alters pathology and treatment response in inflammatory disease. Nature 604: 337−342. DOI: 10.1038/s41586-022-04536-0. |
[154] | Schwartz, C., Schmidt, V., Deinzer, A., et al. (2022). Innate pd-l1 limits t cell-mediated adipose tissue inflammation and ameliorates diet-induced obesity. Eur. J. Immunol. 52: 179−180. DOI: 10.1126/scitranslmed.abj6879. |
[155] | Hata, M., Andriessen, E.M.M.A., Hata, M., et al. (2023). Past history of obesity triggers persistent epigenetic changes in innate immunity and exacerbates neuroinflammation. Science 379: 45−61. DOI: 10.1126/science.abj8894. |
[156] | Zou, J.H., Lai, B.B., Zheng, M.Z., et al. (2018). Cd4+t cells memorize obesity and promote weight regain. Cell. Mol. Immunol. 15: 630−639. DOI: 10.1038/cmi.2017.36. |
[157] | Wang, E.Y., Mao, T.Y., Klein, J., et al. (2021). Diverse functional autoantibodies in patients with covid-19. Nature 595: 283. DOI: 10.1038/s41586-021-03631-y. |
[158] | Cuevas-Sierra, A., Ramos-Lopez, O., Riezu-Boj, J.I., et al. (2019). Diet, gut microbiota, and obesity: Links with host genetics and epigenetics and potential applications. Adv. Nutr. 10: S17−S30. DOI: 10.1093/advances/nmy078. |
[159] | de La Serre, C.B., Ellis, C.L., Lee, J., et al. (2010). Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 299: G440−G448. DOI: 10.1152/ajpgi.00098.2010. |
[160] | Chen, D., Yang, Z., Chen, X., et al. (2015). Effect of lactobacillus rhamnosus hsryfm 1301 on the gut microbiota and lipid metabolism in rats fed a high-fat diet. J. Microbiol. Biotechnol. 25: 687−695. DOI: 10.4014/jmb.1409.09085. |
[161] | Kim, K.-A., Gu, W., Lee, I.-A., et al. (2012). High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the tlr4 signaling pathway. PloS One 7: e47713. DOI: 10.1371/journal.pone.0047713. |
[162] | Hamilton, M.K., Boudry, G., Lemay, D.G., et al. (2015). Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am. J. Physiol. Gastrointest. Liver Physiol. 308: G840−G851. DOI: 10.1152/ajpgi.00029.2015. |
[163] | Geng, J., Ni, Q., Sun, W., et al. (2022). The links between gut microbiota and obesity and obesity related diseases. Biomed. Pharmacother. 147: 112678. DOI: 10.1016/j.biopha.2022.112678. |
[164] | Stanislawski, M.A., Dabelea, D., Lange, L.A., et al. (2019). Gut microbiota phenotypes of obesity. NPJ Biofilms Microbiomes 5: 18. DOI: 10.1038/s41522-019-0091-8. |
[165] | Liu, R., Hong, J., Xu, X., et al. (2017). Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23: 859−868. DOI: 10.1038/nm.4358. |
[166] | Aron-Wisnewsky, J., Warmbrunn, M.V., Nieuwdorp, M., et al. (2021). Metabolism and metabolic disorders and the microbiome: The intestinal microbiota associated with obesity, lipid metabolism, and metabolic health-pathophysiology and therapeutic strategies. Gastroenterology 160: 573−599. DOI: 10.1053/j.gastro.2020.10.057. |
[167] | Li, G., Xie, C., Lu, S., et al. (2017). Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab. 26: 801. DOI: 10.1016/j.cmet.2017.10.007. |
[168] | Fabbiano, S., Suárez-Zamorano, N., Chevalier, C., et al. (2018). Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements. Cell Metab. 28 : 907-921.e7. DOI: 10.1016/j.cmet.2018.08.005. |
[169] | Everard, A., Lazarevic, V., Gaïa, N., et al. (2014). Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME. J. 8: 2116−2130. DOI: 10.1038/ismej.2014.45. |
[170] | Dao, M.C., Everard, A., Aron-Wisnewsky, J., et al. (2016). Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 65: 426−436. DOI: 10.1136/gutjnl-2014-308778. |
[171] | Vallianou, N., Stratigou, T., Christodoulatos, G.S., et al. (2020). Probiotics, prebiotics, synbiotics, postbiotics, and obesity: Current evidence, controversies, and perspectives. Curr. Obes. Rep. 9: 179−192. DOI: 10.1007/s13679-020-00379-w. |
[172] | Depommier, C., Everard, A., Druart, C., et al. (2019). Supplementation with akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat. Med. 25: 1096−1103. DOI: 10.1038/s41591-019-0495-2. |
[173] | Aron-Wisnewsky, J., Clément, K., and Nieuwdorp, M. (2019). Fecal microbiota transplantation: A future therapeutic option for obesity/diabetes. Curr. Diab. Rep. 19: 51. DOI: 10.1007/s11892-019-1180-z. |
[174] | Kootte, R.S., Levin, E., Salojärvi, J., et al. (2017). Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 26 . DOI: 10.1016/j.cmet.2017.09.008. |
[175] | Mabey, J.G., Chaston, J.M., Castro, D.G., et al. (2020). Gut microbiota differs a decade after bariatric surgery relative to a nonsurgical comparison group. Surg. Obes. Relat. Dis. 16: 1304−1311. DOI: 10.1016/j.soard.2020.04.006. |
[176] | Farin, W., Oñate, F.P., Plassais, J., et al. (2020). Impact of laparoscopic roux-en-y gastric bypass and sleeve gastrectomy on gut microbiota: A metagenomic comparative analysis. Surg. Obes. Relat. Dis. 16: 852−862. DOI: 10.1016/j.soard.2020.03.014. |
[177] | Al Assal, K., Prifti, E., Belda, E., et al. (2020). Gut microbiota profile of obese diabetic women submitted to roux-en-y gastric bypass and its association with food intake and postoperative diabetes remission. Nutrients 12 : 278. DOI: 10.3390/nu12020278. |
[178] | Wu, J., Wang, K., Wang, X., et al. (2021). The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell 12: 360−373. DOI: 10.1007/s13238-020-00814-7. |
[179] | Holroyd Eric, W., Sirker, A., Kwok Chun, S., et al. (2017). The relationship of body mass index to percutaneous coronary intervention outcomes. JACC Cardiovasc. Inte. 10: 1283−1292. DOI: 10.1016/j.jcin.2017.03.013. |
[180] | van Rosendael, A.R., Shaw, L.J., Xie, J.X., et al. (2019). Superior risk stratification with coronary computed tomography angiography using a comprehensive atherosclerotic risk score. JACC Cardiovasc. Imaging 12: 1987−1997. DOI: 10.1016/j.jcmg.2018.10.024. |
[181] | Horwich, T.B., Fonarow, G.C., and Clark, A.L. (2018). Obesity and the obesity paradox in heart failure. Prog. Cardiovasc. Dis. 61: 151−156. DOI: 10.1016/j.pcad.2018.05.005. |
[182] | Holland, S., Wellwood, I., and Kuys, S. (2023). Effect of abnormal body weight on mortality and functional recovery in adults after stroke: An umbrella review. Int. J. Stroke 19 . DOI: 10.1177/17474930231212972. |
[183] | Bagheri, M., Speakman, J.R., Shabbidar, S., et al. (2015). A dose-response meta-analysis of the impact of body mass index on stroke and all-cause mortality in stroke patients: A paradox within a paradox. Obes. Rev. 16: 416−423. DOI: 10.1111/obr.12272. |
[184] | Mehta, A., De Paola, L., Pana, T.A., et al. (2022). The relationship between nutritional status at the time of stroke on adverse outcomes: A systematic review and meta-analysis of prospective cohort studies. Nutr. Rev. 80: 2275−2287. DOI: 10.1093/nutrit/nuac034. |
[185] | Gravina, G., Ferrari, F., and Nebbiai, G. (2021). The obesity paradox and diabetes. Eat. Weight Disord. 26: 1057−1068. DOI: 10.1007/s40519-020-01015-1. |
[186] | Lee, E.Y., Lee, Y.-H., Yi, S.-W., et al. (2017). BMI and all-cause mortality in normoglycemia, impaired fasting glucose, newly diagnosed diabetes, and prevalent diabetes: A cohort study. Diabetes Care 40: 1026−1033. DOI: 10.2337/dc16-1458. |
[187] | Costanzo, P., Cleland, J.G.F., Pellicori, P., et al. (2015). The obesity paradox in type 2 diabetes mellitus: Relationship of body mass index to prognosis: A cohort study. Ann. Intern. Med. 162: 610−618. DOI: 10.7326/M14-1551. |
[188] | Yao, S., Zeng, L., Wang, F., et al. (2023). Obesity paradox in lung diseases: What explains it? Obes. Facts 16: 411−426. DOI: 10.1159/000531792. |
[189] | Strulov Shachar, S., and Williams, G.R. (2017). The obesity paradox in cancer-moving beyond BMI. Cancer Epidemiol. Biomarkers Prev. 26: 13−16. DOI: 10.1158/1055-9965.EPI-16-0439. |
[190] | Bader, J.E., Wolf, M.M., Lupica-Tondo, G.L., et al. (2024). Obesity induces pd-1 on macrophages to suppress anti-tumour immunity. Nature 630: 968−975. DOI: 10.1038/s41586-024-07529-3. |
[191] | Petersen, M.C., Smith, G.I., Palacios, H.H., et al. (2024). Cardiometabolic characteristics of people with metabolically healthy and unhealthy obesity. Cell Metab. 36 . DOI: 10.1016/j.cmet.2024.03.002. |
[192] | Wei, C. (2021). Guidelines for medical nutrition treatment of overweight/obesity in China (2021). Asia. Pac. J. Clin. Nutr. 13: 450−482. DOI: 10.6133/apjcn.202209_31(3).0013. |
[193] | Jensen, M.D., Ryan, D.H., Apovian, C.M., et al. (2014). 2013 aha/acc/tos guideline for the management of overweight and obesity in adults. Circulation 129 . DOI: 10.1161/01.cir.0000437739.71477.ee. |
[194] | Dietary guidelines for americans, 2020-2025. (2020). In Services, U.S.D.o.A.a.U.S.D.o.H.a.H., ed. 9th Edition ed. |
[195] | Larsen, R.N., Mann, N.J., Maclean, E., et al. (2011). The effect of high-protein, low-carbohydrate diets in the treatment of type 2 diabetes: A 12 month randomised controlled trial. Diabetologia 54: 731−740. DOI: 10.1007/s00125-010-2027-y. |
[196] | Krebs, J.D., Elley, C.R., Parry-Strong, A., et al. (2012). The diabetes excess weight loss (dewl) trial: A randomised controlled trial of high-protein versus high-carbohydrate diets over 2 years in type 2 diabetes. Diabetologia 55: 905−914. DOI: 10.1007/s00125-012-2461-0. |
[197] | Santesso, N., Akl, E.A., Bianchi, M., et al. (2012). Effects of higher- versus lower-protein diets on health outcomes: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 66: 780−788. DOI: 10.1038/ejcn.2012.37. |
[198] | Kucharska, A., Gajewska, D., Kiedrowski, M., et al. (2018). The impact of individualised nutritional therapy according to dash diet on blood pressure, body mass, and selected biochemical parameters in overweight/obese patients with primary arterial hypertension: A prospective randomised study. Kardiol. Pol. 76: 158−165. DOI: 10.5603/KP.a2017.0184. |
[199] | Razavi Zade, M., Telkabadi, M.H., Bahmani, F., et al. (2016). The effects of dash diet on weight loss and metabolic status in adults with non-alcoholic fatty liver disease: A randomized clinical trial. Liver Int. 36: 563−571. DOI: 10.1111/liv.12990. |
[200] | Ge, L., Sadeghirad, B., Ball, G.D.C., et al. (2020). Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: Systematic review and network meta-analysis of randomised trials. BMJ 369: m696. DOI: 10.1136/bmj.m696. |
[201] | Huo, R., Du, T., Xu, Y., et al. (2015). Effects of mediterranean-style diet on glycemic control, weight loss and cardiovascular risk factors among type 2 diabetes individuals: A meta-analysis. Eur. J. Clin. Nutr. 69: 1200−1208. DOI: 10.1038/ejcn.2014.243. |
[202] | Johnston, B.C., Kanters, S., Bandayrel, K., et al. (2014). Comparison of weight loss among named diet programs in overweight and obese adults: A meta-analysis. JAMA 312: 923−933. DOI: 10.1001/jama.2014.10397. |
[203] | Bull, F.C., Al-Ansari, S.S., Biddle, S., et al. (2020). World health organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 54: 1451−1462. DOI: 10.1136/bjsports-2020-102955. |
[204] | Elmaleh-Sachs, A., Schwartz, J.L., Bramante, C.T., et al. (2023). Obesity management in adults: A review. JAMA 330: 2000−2015. DOI: 10.1001/jama.2023.19897. |
[205] | Bellicha, A., van Baak, M.A., Battista, F., et al. (2021). Effect of exercise training on weight loss, body composition changes, and weight maintenance in adults with overweight or obesity: An overview of 12 systematic reviews and 149 studies. Obes. Rev. 22 Suppl. 4 : e13256. DOI: 10.1111/obr.13256. |
[206] | O'Donoghue, G., Blake, C., Cunningham, C., et al. (2021). What exercise prescription is optimal to improve body composition and cardiorespiratory fitness in adults living with obesity. A network meta-analysis. Obes. Rev. 22: e13137. DOI: 10.1111/obr.13137. |
[207] | Oppert, J.M., Bellicha, A., van Baak, M.A., et al. (2021). Exercise training in the management of overweight and obesity in adults: Synthesis of the evidence and recommendations from the european association for the study of obesity physical activity working group. Obes. Rev. 22 Suppl. 4 : e13273. DOI: 10.1111/obr.13273. |
[208] | Recchia, F., Leung, C.K., Yu, A.P., et al. (2023). Dose-response effects of exercise and caloric restriction on visceral adiposity in overweight and obese adults: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 57: 1035−1041. DOI: 10.1136/bjsports-2022-106304. |
[209] | Ferguson, T., Olds, T., Curtis, R., et al. (2022). Effectiveness of wearable activity trackers to increase physical activity and improve health: A systematic review of systematic reviews and meta-analyses. Lancet Digit. Health 4: e615−e626. DOI: 10.1016/s2589-7500(22)00111-x. |
[210] | Gaskin, C.J., Cooper, K., Stephens, L.D., et al. (2024). Clinical practice guidelines for the management of overweight and obesity published internationally: A scoping review. Obes. Rev. 25: e13700. DOI: 10.1111/obr.13700. |
[211] | Jones-Corneille, L.R., Wadden, T.A., Sarwer, D.B., et al. (2012). Axis i psychopathology in bariatric surgery candidates with and without binge eating disorder: Results of structured clinical interviews. Obes. Surg. 22: 389−397. DOI: 10.1007/s11695-010-0322-9. |
[212] | Luppino, F.S., de Wit, L.M., Bouvy, P.F., et al. (2010). Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies. Arch. Gen. Psychiatry. 67: 220−229. DOI: 10.1001/archgenpsychiatry.2010.2. |
[213] | Armstrong, M.J., Mottershead, T.A., Ronksley, P.E., et al. (2011). Motivational interviewing to improve weight loss in overweight and/or obese patients: A systematic review and meta-analysis of randomized controlled trials. Obes. Rev. 12: 709−723. DOI: 10.1111/j.1467-789X.2011.00892.x. |
[214] | Castelnuovo, G., Pietrabissa, G., Manzoni, G.M., et al. (2017). Cognitive behavioral therapy to aid weight loss in obese patients: Current perspectives. Psychol. Res. Behav. Manag. 10: 165−173. DOI: 10.2147/PRBM.S113278. |
[215] | Hall, W.L. (2022). The emerging importance of tackling sleep-diet interactions in lifestyle interventions for weight management. Br. J. Nutr. 128: 561−568. DOI: 10.1017/S000711452200160X. |
[216] | Ferrara, A., Hedderson, M.M., Brown, S.D., et al. (2020). A telehealth lifestyle intervention to reduce excess gestational weight gain in pregnant women with overweight or obesity (glow): A randomised, parallel-group, controlled trial. Lancet Diabetes Endocrinol. 8: 490−500. DOI: 10.1016/S2213-8587(20)30107-8. |
[217] | Jakicic, J.M., Davis, K.K., Rogers, R.J., et al. (2016). Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: The idea randomized clinical trial. JAMA 316: 1161−1171. DOI: 10.1001/jama.2016.12858. |
[218] | Wiederhold, B.K., Riva, G., and Gutiérrez-Maldonado, J. (2016). Virtual reality in the assessment and treatment of weight-related disorders. Cyberpsychol. Behav. Soc. Netw. 19: 67−73. DOI: 10.1089/cyber.2016.0012. |
[219] | Kurtzman, G.W., Day, S.C., Small, D.S., et al. (2018). Social incentives and gamification to promote weight loss: The lose it randomized, controlled trial. J. Gen. Intern. Med. 33: 1669−1675. DOI: 10.1007/s11606-018-4552-1. |
[220] | Grunvald, E., Shah, R., Hernaez, R., et al. (2022). Aga clinical practice guideline on pharmacological interventions for adults with obesity. Gastroenterology 163: 1198−1225. DOI: 10.1053/j.gastro.2022.08.045. |
[221] | Styne, D.M., Arslanian, S.A., Connor, E.L., et al. (2017). Pediatric obesity-assessment, treatment, and prevention: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 102: 709−757. DOI: 10.1210/jc.2016-2573. |
[222] | Hampl, S.E., Hassink, S.G., Skinner, A.C., et al. (2023). Clinical practice guideline for the evaluation and treatment of children and adolescents with obesity. Pediatrics 151 : e2022060640. DOI: 10.1542/peds.2022-060640. |
[223] | Hannon, T.S., and Arslanian, S.A. (2023). Obesity in adolescents. N. Engl. J. Med. 389: 251−261. DOI: 10.1056/NEJMcp2102062. |
[224] | Henderson, K., Lewis, Sloan, C.E., et al. (2024). Effectiveness and safety of drugs for obesity. BMJ 384: e072686. DOI: 10.1136/bmj-2022-072686. |
[225] | Gudzune, K.A., and Kushner, R.F. (2024). Medications for obesity: A review. JAMA 332: 571−584. DOI: 10.1001/jama.2024.10816. |
[226] | Sjöström, L., Rissanen, A., Andersen, T., et al. (1998). Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients. European Multicentre Orlistat Study Group. Lancet 352: 167−172. DOI: 10.1016/s0140-6736(97)11509-4. |
[227] | Shi, Q., Wang, Y., Hao, Q., et al. (2024). Pharmacotherapy for adults with overweight and obesity: A systematic review and network meta-analysis of randomised controlled trials. Lancet. 403: e21−e31. DOI: 10.1016/S0140-6736(24)00351-9. |
[228] | Jastreboff, A.M., Aronne, L.J., Ahmad, N.N., et al. (2022). Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 387: 205−216. DOI: 10.1056/NEJMoa2206038. |
[229] | Bult, M.J., van Dalen, T., and Muller, A.F. (2008). Surgical treatment of obesity. Eur. J. Endocrinol. 158: 135−145. DOI: 10.1530/eje-07-0145. |
[230] | Arterburn, D.E., and Courcoulas, A.P. (2014). Bariatric surgery for obesity and metabolic conditions in adults. BMJ 349: g3961. DOI: 10.1136/bmj.g3961. |
[231] | Wolfe, B.M., Kvach, E., and Eckel, R.H. (2016). Treatment of obesity: Weight loss and bariatric surgery. Circ. Res. 118: 1844−1855. DOI: 10.1161/circresaha.116.307591. |
[232] | Kumbhari, V., Cummings, D.E., Kalloo, A.N., et al. (2021). Aga clinical practice update on evaluation and management of early complications after bariatric/metabolic surgery: Expert review. Clin. Gastroenterol. Hepatol. 19: 1531−1537. DOI: 10.1016/j.cgh.2021.03.020. |
[233] | Grams, J., and Garvey, W.T. (2015). Weight loss and the prevention and treatment of type 2 diabetes using lifestyle therapy, pharmacotherapy, and bariatric surgery: Mechanisms of action. Curr. Obes. Rep. 4: 287−302. DOI: 10.1007/s13679-015-0155-x. |
[234] | Gill, R.S., Sharma, A.M., Gill, S.S., et al. (2011). The impact of obesity on diabetes mellitus and the role of bariatric surgery. Maturitas 69: 137−140. DOI: 10.1016/j.maturitas.2011.03.020. |
[235] | Ikramuddin, S., Korner, J., Lee, W.J., et al. (2013). Roux-en-y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: The diabetes surgery study randomized clinical trial. JAMA 309: 2240−2249. DOI: 10.1001/jama.2013.5835. |
[236] | Wolfe, B.M., Purnell, J.Q., and Belle, S.H. (2013). Treating diabetes with surgery. JAMA 309: 2274−2275. DOI: 10.1001/jama.2013.4772. |
[237] | Ren, Y., Yang, W., Yang, J., et al. (2015). Effect of roux-en-y gastric bypass with different pouch size in chinese t2dm patients with bmi 30-35 kg/m2. Obes. Surg. 25: 457−463. DOI: 10.1007/s11695-014-1411-y. |
[238] | Reges, O., Greenland, P., Dicker, D., et al. (2018). Association of bariatric surgery using laparoscopic banding, roux-en-y gastric bypass, or laparoscopic sleeve gastrectomy vs usual care obesity management with all-cause mortality. JAMA 319: 279−290. DOI: 10.1001/jama.2017.20513. |
[239] | English, W.J., and Williams, D.B. (2018). Metabolic and bariatric surgery: An effective treatment option for obesity and cardiovascular disease. Prog. Cardiovasc. Dis. 61: 253−269. DOI: 10.1016/j.pcad.2018.06.003. |
[240] | Ghiassi, S., and Morton, J.M. (2020). Safety and efficacy of bariatric and metabolic surgery. Curr. Obes. Rep. 9: 159−164. DOI: 10.1007/s13679-020-00377-y. |
[241] | Pareek, M., Schauer, P.R., Kaplan, L.M., et al. (2018). Metabolic surgery: Weight loss, diabetes, and beyond. J. Am. Coll. Cardiol. 71: 670−687. DOI: 10.1016/j.jacc.2017.12.014. |
[242] | Welbourn, R., and Pournaras, D. (2010). Bariatric surgery: A cost-effective intervention for morbid obesity; functional and nutritional outcomes. Proc. Nutr. Soc. 69: 528−535. DOI: 10.1017/s0029665110001515. |
[243] | Brown, W.A., Liem, R., Al-Sabah, S., et al. (2024). Metabolic bariatric surgery across the ifso chapters: Key insights on the baseline patient demographics, procedure types, and mortality from the eighth ifso global registry report. Obes. Surg. 34: 1764−1777. DOI: 10.1007/s11695-024-07196-3. |
[244] | Angrisani, L., Santonicola, A., Iovino, P., et al. (2024). Ifso worldwide survey 2020-2021: Current trends for bariatric and metabolic procedures. Obes. Surg. 34: 1075−1085. DOI: 10.1007/s11695-024-07118-3. |
[245] | Mahawar, K.K., Omar, I., Singhal, R., et al. (2021). The first modified delphi consensus statement on sleeve gastrectomy. Surg. Endosc. 35: 7027−7033. DOI: 10.1007/s00464-020-08216-w. |
[246] | Han, Y., Jia, Y., Wang, H., et al. (2020). Comparative analysis of weight loss and resolution of comorbidities between laparoscopic sleeve gastrectomy and roux-en-y gastric bypass: A systematic review and meta-analysis based on 18 studies. Int. J. Surg. 76: 101−110. DOI: 10.1016/j.ijsu.2020.02.035. |
[247] | Apaer, S., Aizezi, Z., Cao, X., et al. (2024). Safety and efficacy of lsg versus lrygb on patients with obesity: A systematic review and meta-analysis from rcts. Obes. Surg. 34: 1138−1151. DOI: 10.1007/s11695-024-07076-w. |
[248] | Cui, B., Wang, G., Li, P., et al. (2023). Disease-specific mortality and major adverse cardiovascular events after bariatric surgery: A meta-analysis of age, sex, and bmi-matched cohort studies. Int. J. Surg. 109: 389−400. DOI: 10.1097/js9.0000000000000066. |
[249] | Yang, W., and Wang, C. (2021). Long-term complications in youth-onset type 2 diabetes. N. Engl. J. Med. 385: 2014−2015. DOI: 10.1056/NEJMc2114053. |
[250] | Yang, W., and Wang, C. (2022). Metabolic surgery needs stronger endorsement in asian t2dm patients with low BMI. Obes. Surg. 32: 212−213. DOI: 10.1007/s11695-021-05636-y. |
[251] | Arterburn, D.E., Telem, D.A., Kushner, R.F., and Courcoulas, A.P. (2020). Benefits and risks of bariatric surgery in adults: A review. JAMA 324: 879−887. DOI: 10.1001/jama.2020.12567. |
[252] | Yang, W., Abbott, S., Borg, C.M., et al. (2022). Global variations in preoperative practices concerning patients seeking primary bariatric and metabolic surgery (pact study): A survey of 634 bariatric healthcare professionals. Int. J. Obes. (Lond) 46: 1341−1350. DOI: 10.1038/s41366-022-01119-x. |
[253] | Au, K., and Yang, W. (2024). Glp-1 receptor agonists in weight loss and bariatric surgery: Balancing efficacy and gastrointestinal adverse events. Obes. Surg. 34: 1382−1383. DOI: 10.1007/s11695-024-07061-3. |
[254] | Au, K., and Yang, W. (2023). Auxiliary use of chatgpt in surgical diagnosis and treatment. Int. J. Surg. 109: 3940−3943. DOI: 10.1097/js9.0000000000000686. |
[255] | Jazi, A.H.D., Mahjoubi, M., Shahabi, S., et al. (2023). Bariatric evaluation through ai: A survey of expert opinions versus chatgpt-4 (beta-seov). Obes. Surg. 33: 3971−3980. DOI: 10.1007/s11695-023-06903-w. |
[256] | Law, S., Oldfield, B., and Yang, W. (2024). Chatgpt/gpt-4 (large language models): Opportunities and challenges of perspective in bariatric healthcare professionals. Obes. Rev. 25 : e13746. DOI: 10.1111/obr.13746. |
[257] | Wight, D., Wimbush, E., Jepson, R., et al. (2016). Six steps in quality intervention development (6squid). J. Epidemiol. Community Health 70 :520-525. DOI: 10.1136/jech-2015-205952. |
[258] | Salwen, J.K., Hymowitz, G.F., Vivian, D., et al. (2014). Childhood abuse, adult interpersonal abuse, and depression in individuals with extreme obesity. Child. Abuse. Negl. 38: 425−433. DOI: 10.1016/j.chiabu.2013.12.005. |
[259] | King, L., Gill, T., Allender, S., et al. (2011). Best practice principles for community-based obesity prevention: Development, content and application. Obes. Rev. 12: 329−338. DOI: 10.1111/j.1467-789X.2010.00798.x. |
[260] | Vrijheid, M., Fossati, S., Maitre, L., et al. (2020). Early-life environmental exposures and childhood obesity: An exposome-wide approach. Environ. Health Perspect. 128: 67009. DOI: 10.1289/EHP5975. |
[261] | Heymsfield, S.B., and Wadden, T.A. (2017). Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 376: 254−266. DOI: 10.1056/NEJMra1514009. |
[262] | American College of Cardiology/American Heart Association Task Force on Practice Guidelines, O.E.P., 2013 (2014). Expert panel report: Guidelines (2013) for the management of overweight and obesity in adults. Obesity (Silver Spring) 22 : Suppl 2: S41-410. DOI:10.1002/oby.20660. |
[263] | Strain, T., Wijndaele, K., Dempsey, P.C., et al. (2020). Wearable-device-measured physical activity and future health risk. Nat. Med. 26: 1385−1391. DOI: 10.1038/s41591-020-1012-3. |
[264] | Natalucci, V., Marmondi, F., Biraghi, M., et al. (2023). The effectiveness of wearable devices in non-communicable diseases to manage physical activity and nutrition: Where we are? Nutrients 15 : 913. DOI: 10.3390/nu15040913. |
[265] | Kaur, A., Briggs, A., Adams, J.,et al. (2022). New calorie labelling regulations in england. BMJ (Clinical Research ed.) 377: o1079. DOI: 10.1136/bmj.o1079. |
[266] | Bee, Y.M., Tai, E.S., and Wong, T.Y. (2022). Singapore's "war on diabetes". Lancet Diabetes Endocrinol. 10: 391−392. DOI: 10.1016/S2213-8587(22)00133-4. |
Xiao N., Ding Y., Cui B., et al., (2024). Navigating obesity: A comprehensive review of epidemiology, pathophysiology, complications and management strategies. The Innovation Medicine 2(3): 100090. https://doi.org/10.59717/j.xinn-med.2024.100090 |
Worldwide trends in overweight/obesity, deaths, and disability-adjusted life years due to overweight/obesity
The pathogenesis of obesity
Obesity-related diseases affect multiple systems in the human body.
Effect of obesity on respiratory physiology
Obesity is a major risk factor for cancer and immune disease
Microbial modulation and obesity
Illustrations of obesity intervention and treatment