REVIEW   Open Access     Cite

Navigating obesity: A comprehensive review of epidemiology, pathophysiology, complications and management strategies

    Show all affliationsShow less
More Information
    1. Lifestyle interventions are the preferred method for obesity intervention and treatment.

      Advancements in digital technology and wearable devices provide a new pathway for obesity management.

      Interdisciplinary collaboration is crucial for obesity intervention.

  • Obesity, a growing global health crisis, is driven by a complex interplay of genetic, biological, environmental, behavioral, socio-cultural, and economic factors. This comprehensive review encapsulates the epidemiology, pathophysiological mechanism, and the myriad of health complications it triggers, such as cardiovascular diseases (CVDs), cancer, neurological disorders, respiratory ailments, digestive diseases, mobility impairments, and psychological stress. The etiology of obesity is multifaceted, involving genetic predispositions, environmental influences, behavioral tendencies, and socio-economic elements. The pathophysiological underpinnings of obesity encompass multifaceted aspects of energy metabolism, including the regulation of appetite, glucose, lipid, and amino acid metabolism. This review also addresses the seemingly contradictory roles of obesity in various diseases, offering insights into these phenomena. The management of obesity is multi-pronged, including lifestyle modifications, pharmacological interventions, and metabolic surgeries. Lifestyle changes are foundational, but advancements in molecular techniques, digital technology, wearable devices, and artificial intelligence are opening new avenues for personalized treatment and early intervention. Pharmacological treatment and metabolic surgery are effective but should be judiciously tailored to individual patient needs. This review underscores the importance of a multifaceted approach to obesity management, aiming to curb the escalating trend and enhance future interventions and treatments. The ultimate goal is to synthesize current evidence and innovative strategies to combat obesity effectively.
  • 加载中
  • [1] W.H.O. (2020). Obesity and overweight fact sheet. WHO. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

    View in Article Google Scholar

    [2] Collaborators, G.B.D.O., Afshin, A., Forouzanfar, M.H., et al. (2017). Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 377: 13−27. DOI: 10.1056/NEJMoa1614362.

    View in Article CrossRef Google Scholar

    [3] Collaboration NCDRF. (2016). Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387 : 1377–1396. DOI: 10.1016/S0140-6736(16)30054-X.

    View in Article Google Scholar

    [4] Locke, A.E., Kahali, B., Berndt, S.I., et al. (2015). Genetic studies of body mass index yield new insights for obesity biology. Nature 518: 197−206. DOI: 10.1038/nature14177.

    View in Article CrossRef Google Scholar

    [5] Berrington de Gonzalez, A., Hartge, P., Cerhan, J.R., et al. (2010). Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med. 363 :2211-2219. DOI: 10.1056/NEJMoa1000367.

    View in Article Google Scholar

    [6] Pan, X.F., Wang, L., and Pan, A. (2021). Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol. 9: 373−392. DOI: 10.1016/S2213-8587(21)00045-0.

    View in Article CrossRef Google Scholar

    [7] Trandafir, L.M., Dodi, G., Frasinariu, O., et al. (2022). Tackling dyslipidemia in obesity from a nanotechnology perspective. Nutrients 14 : 3774. DOI: 10.3390/nu14183774.

    View in Article Google Scholar

    [8] Behl, T., Gupta, A., Chigurupati, S., et al. (2022). Natural and synthetic agents targeting reactive carbonyl species against metabolic syndrome. Molecules 27 : 1583. DOI: 10.3390/molecules27051583.

    View in Article Google Scholar

    [9] Ortega, F.B., Lavie, C.J., and Blair, S.N. (2016). Obesity and cardiovascular disease. Circ. Res. 118: 1752−1770. DOI: 10.1161/CIRCRESAHA.115.306883.

    View in Article CrossRef Google Scholar

    [10] Phelps, N.H., Singleton, R.K., Zhou, B., et al. (2024). Worldwide trends in underweight and obesity from 1990 to 2022: A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 403 : 1027-1050. DOI: 10.1016/S0140-6736(23)02750-2.

    View in Article Google Scholar

    [11] Federation, W.O. (2024). World obesity atlas 2024. London: World obesity federation. https://data.worldobesity.org/publications/?cat=22.

    View in Article Google Scholar

    [12] Ma, G., Meyer, C.L., Jackson-Morris, A., et al. (2024). The return on investment for the prevention and treatment of childhood and adolescent overweight and obesity in china: A modelling study. Lancet Reg. Health West. Pac. 43 : 100977. DOI: 10.1016/j.lanwpc.2023.100977.

    View in Article Google Scholar

    [13] Peng, W., Chen, S., Chen, X., et al. (2024). Trends in major non-communicable diseases and related risk factors in china 2002–2019: An analysis of nationally representative survey data. Lancet Reg. Health West. Pac. 43 : 100809. DOI: 10.1016/j.lanwpc.2023.100809.

    View in Article Google Scholar

    [14] Aris, I.M., and Block, J.P. (2022). Childhood obesity interventions—going beyond the individual. JAMA pediatrics 176: e214388−e214388.

    View in Article Google Scholar

    [15] Perdomo, C.M., Cohen, R.V., Sumithran, P., et al. (2023). Contemporary medical, device, and surgical therapies for obesity in adults. Lancet 401: 1116−1130. DOI: 10.1016/S0140-6736(22)02403-5.

    View in Article CrossRef Google Scholar

    [16] Wang, Y., Zhao, L., Gao, L., et al. (2021). Health policy and public health implications of obesity in China. Lancet Diabetes Endocrinol. 9: 446−461. DOI: 10.1016/S2213-8587(21)00118-2.

    View in Article CrossRef Google Scholar

    [17] Beal, T., Ortenzi, F., and Fanzo, J. (2023). Estimated micronutrient shortfalls of the eat–lancet planetary health diet. Lancet Planet. Health 7: e233−e237. DOI: 10.1016/S2542-5196(23)00006-2.

    View in Article CrossRef Google Scholar

    [18] Katzmarzyk, P.T. (2023). Expanding our understanding of the global impact of physical inactivity. The Lancet Global Health 11: e2−e3. DOI: 10.1016/S2214-109X(22)00482-X.

    View in Article CrossRef Google Scholar

    [19] Jiwani, S.S., Carrillo-Larco, R.M., Hernández-Vásquez, A., et al. (2019). The shift of obesity burden by socioeconomic status between 1998 and 2017 in latin america and the caribbean: A cross-sectional series study. Lancet Glob. Health 7 e1644-e1654. DOI: 10.1016/S2214-109X(20)30021-8.

    View in Article Google Scholar

    [20] Bouchard, C. (2021). Genetics of obesity: What we have learned over decades of research. Obesity (Silver Spring) . 29: 802−820. DOI: 10.1002/oby.23116.

    View in Article CrossRef Google Scholar

    [21] Loos, R.J.F., and Yeo, G.S.H. (2022). The genetics of obesity: From discovery to biology. Nat. Rev. Genet. 23: 120−133. DOI: 10.1038/s41576-021-00414-z.

    View in Article CrossRef Google Scholar

    [22] Khera, A.V., Chaffin, M., Wade, K.H., et al. (2019). Polygenic prediction of weight and obesity trajectories from birth to adulthood. Cell 177: 587−596.e589. DOI: 10.1016/j.cell.2019.03.028.

    View in Article CrossRef Google Scholar

    [23] Zhang, X., Ha, S., Lau, H.C.-H., et al. (2023). Excess body weight: Novel insights into its roles in obesity comorbidities. Semin. Cancer Biol. 92: 16−27. DOI: 10.1016/j.semcancer.2023.03.008.

    View in Article CrossRef Google Scholar

    [24] Yeo, G.S., and Heisler, L.K. (2012). Unraveling the brain regulation of appetite: Lessons from genetics. Nat. Neurosci. 15: 1343−1349. DOI: 10.1038/nn.3211.

    View in Article CrossRef Google Scholar

    [25] Richard, D. (2015). Cognitive and autonomic determinants of energy homeostasis in obesity. Nat. Rev. Endocrinol. 11: 489−501. DOI: 10.1038/nrendo.2015.103.

    View in Article CrossRef Google Scholar

    [26] Pan, W.W., and Myers, M.G., Jr. (2018). Leptin and the maintenance of elevated body weight. Nat. Rev. Neurosci. 19: 95−105. DOI: 10.1038/nrn.2017.168.

    View in Article CrossRef Google Scholar

    [27] Hill, J.O., Wyatt, H.R., Reed, G.W., et al. (2003). Obesity and the environment: Where do we go from here. Science 299: 853−855. DOI: 10.1126/science.1079857.

    View in Article CrossRef Google Scholar

    [28] Heymsfield, S.B., and Wadden, T.A. (2017). Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 376: 1492. DOI: 10.1056/NEJMc1701944.

    View in Article CrossRef Google Scholar

    [29] DeFronzo, R.A., and Tripathy, D. (2009). Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32 Suppl 2 : S157-163. DOI: 10.2337/dc09-S302.

    View in Article Google Scholar

    [30] Samuel, V.T., and Shulman, G.I. (2016). The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. J. Clin. Invest. 126: 12−22. DOI: 10.1172/jci77812.

    View in Article CrossRef Google Scholar

    [31] Savage, D.B., Petersen, K.F., and Shulman, G.I. (2007). Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol. Rev. 87: 507−520. DOI: 10.1152/physrev.00024.2006.

    View in Article CrossRef Google Scholar

    [32] Newgard, C.B., An, J., Bain, J.R., et al. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9: 311−326. DOI: 10.1016/j.cmet.2009.02.002.

    View in Article CrossRef Google Scholar

    [33] Jang, C., Oh, S.F., Wada, S., et al. (2016). A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat. Med. 22: 421−426. DOI: 10.1038/nm.4057.

    View in Article CrossRef Google Scholar

    [34] Zhang, Y., Yang, J., Hou, W., et al. (2021). Obesity trends and associations with types of physical activity and sedentary behavior in us adults: National health and nutrition examination survey, 2007-2016. Obesity (Silver Spring) 29: 240−250. DOI: 10.1002/oby.23043.

    View in Article CrossRef Google Scholar

    [35] Fitzgerald, M.P., Hennigan, K., O’Gorman, C.S., et al. (2019). Obesity, diet and lifestyle in 9-year-old children with parentally reported chronic diseases: Findings from the growing up in ireland longitudinal child cohort study. Ir. J. Med. Sci. (1971-) 188 : 29-34. DOI:10.1007/s11845-018-1814-1.

    View in Article Google Scholar

    [36] Romero-Ibarguengoitia, M.E., Vadillo-Ortega, F., Caballero, A.E., et al. (2018). Family history and obesity in youth, their effect on acylcarnitine/aminoacids metabolomics and non-alcoholic fatty liver disease (nafld). Structural equation modeling approach. PloS. One. 13: e0193138. DOI: 10.1371/journal.pone.0193138.

    View in Article CrossRef Google Scholar

    [37] Chen, L., Qin, Y., Zhang, Y., et al. (2024). Association of the external environmental exposome and obesity: A comprehensive nationwide study in 2019 among chinese children and adolescents. Sci. Total. Enviro. 927: 172233. DOI: 10.1016/j.scitotenv.2024.172233.

    View in Article CrossRef Google Scholar

    [38] Aris, I.M., Perng, W., Dabelea, D., et al. (2022). Associations of neighborhood opportunity and social vulnerability with trajectories of childhood body mass index and obesity among us children. JAMA Netw. Open. 5: e2247957. DOI: 10.1001/jamanetworkopen.2022.47957.

    View in Article CrossRef Google Scholar

    [39] Powell-Wiley, T.M., Poirier, P., Burke, L.E., et al. (2021). Obesity and cardiovascular disease: A scientific statement from the american heart association. Circulation 143: e984−e1010. DOI: 10.1161/CIR.0000000000000973.

    View in Article CrossRef Google Scholar

    [40] Piche, M.E., Poirier, P., Lemieux, I., et al. (2018). Overview of epidemiology and contribution of obesity and body fat distribution to cardiovascular disease: An update. Prog.Cardiovasc. Dis. 61: 103−113. DOI: 10.1016/j.pcad.2018.06.004.

    View in Article CrossRef Google Scholar

    [41] Si, S., Tewara, M.A., Ji, X., et al. (2020). Body surface area, height, and body fat percentage as more sensitive risk factors of cancer and cardiovascular disease. Cancer Med. 9: 4433−4446. DOI: 10.1002/cam4.3076.

    View in Article CrossRef Google Scholar

    [42] Huang, Y., Hu, Y., and Bao, B. (2023). Relationship of body mass index and visceral fat area combination with arterial stiffness and cardiovascular risk in cardiovascular disease-free people: Nhanes (2011-2018). Endocr. Connect. 12 : e230219. DOI: 10.1530/EC-23-0291.

    View in Article Google Scholar

    [43] Myint, P.K., Kwok, C.S., Luben, R.N., et al. (2014). Body fat percentage, body mass index and waist-to-hip ratio as predictors of mortality and cardiovascular disease. Heart. 100: 1613−1619. DOI: 10.1136/heartjnl-2014-305816.

    View in Article CrossRef Google Scholar

    [44] Hall, M.E., Cohen, J.B., Ard, J.D., et al. (2021). Weight-loss strategies for prevention and treatment of hypertension: A scientific statement from the american heart association. Hypertension 78: e38−e50. DOI: 10.1161/HYP.0000000000000202.

    View in Article CrossRef Google Scholar

    [45] Jayedi, A., Rashidy-Pour, A., Khorshidi, M., et al. (2018). Body mass index, abdominal adiposity, weight gain and risk of developing hypertension: A systematic review and dose-response meta-analysis of more than 2.3 million participants. Obes. Rev. 19 :654-667. DOI: 10.1111/obr.12656.

    View in Article Google Scholar

    [46] Arnett, D.K., Blumenthal, R.S., Albert, M.A., et al. (2019). 2019 acc/aha guideline on the primary prevention of cardiovascular disease: A report of the american college of cardiology/american heart association task force on clinical practice guidelines. Circulation 140: e596−e646. DOI: 10.1161/CIR.0000000000000678.

    View in Article CrossRef Google Scholar

    [47] Terada, T., Forhan, M., Norris, C.M., et al. (2017). Differences in short- and long-term mortality associated with bmi following coronary revascularization. J. Am. Heart Assoc. 6 : e005335. DOI: 10.1161/JAHA.116.005335.

    View in Article Google Scholar

    [48] Csige, I., Ujvarosy, D., Szabo, Z., et al. (2018). The impact of obesity on the cardiovascular system. J. Diabetes Res. 2018: 3407306. DOI: 10.1155/2018/3407306.

    View in Article CrossRef Google Scholar

    [49] Koliaki, C., Liatis, S., and Kokkinos, A. (2019). Obesity and cardiovascular disease: Revisiting an old relationship. Metabolism. 92: 98−107. DOI: 10.1016/j.metabol.2018.10.011.

    View in Article CrossRef Google Scholar

    [50] Ortega-Loubon, C., Fernandez-Molina, M., Singh, G., et al. (2019). Obesity and its cardiovascular effects. Diabetes Metab. Res. Rev. 35: e3135. DOI: 10.1002/dmrr.3135.

    View in Article CrossRef Google Scholar

    [51] Van Gaal, L.F., Mertens, I.L., and De Block, C.E. (2006). Mechanisms linking obesity with cardiovascular disease. Natur. 444: 875−880. DOI: 10.1038/nature05487.

    View in Article CrossRef Google Scholar

    [52] Rocha, V.Z., and Libby, P. (2009). Obesity, inflammation, and atherosclerosis. Nat. Rev. Cardiol. 6: 399−409. DOI: 10.1038/nrcardio.2009.55.

    View in Article CrossRef Google Scholar

    [53] Couillard, C., Ruel, G., Archer, W.R., et al. (2005). Circulating levels of oxidative stress markers and endothelial adhesion molecules in men with abdominal obesity. J. Clin. Endocrinol. Metab. 90: 6454−6459. DOI: 10.1210/jc.2004-2438.

    View in Article CrossRef Google Scholar

    [54] Csige, I., Ujvarosy, D., Szabo, Z., et al. (2018). The impact of obesity on the cardiovascular system. J. Diabetes Res. 2018 : 3407306. DOI: 10.1155/2018/3407306.

    View in Article Google Scholar

    [55] Alpert, M.A., Lavie, C.J., Agrawal, H., et al. (2014). Obesity and heart failure: Epidemiology, pathophysiology, clinical manifestations, and management. Transl. Res. 164: 345−356. DOI: 10.1016/j.trsl.2014.04.010.

    View in Article CrossRef Google Scholar

    [56] Bozkurt, B., Aguilar, D., Deswal, A., et al. (2016). Contributory risk and management of comorbidities of hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic syndrome in chronic heart failure: A scientific statement from the american heart association. Circulation 134: e535−e578. DOI: 10.1161/CIR.0000000000000450.

    View in Article CrossRef Google Scholar

    [57] Aune, D., Schlesinger, S., Norat, T., et al. (2018). Body mass index, abdominal fatness, and the risk of sudden cardiac death: A systematic review and dose-response meta-analysis of prospective studies. Eur. J. Epidemiol. 33: 711−722. DOI: 10.1007/s10654-017-0353-9.

    View in Article CrossRef Google Scholar

    [58] Wong, C.X., Brooks, A.G., Lau, D.H., et al. (2012). Factors associated with the epidemic of hospitalizations due to atrial fibrillation. Am. J. Cardiol. 110: 1496−1499. DOI: 10.1016/j.amjcard.2012.07.011.

    View in Article CrossRef Google Scholar

    [59] Lu, Y., Hajifathalian, K., Ezzati, M., et al. (2014). Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: A pooled analysis of 97 prospective cohorts with 1·8 million participants. Lancet 383: 970−983. DOI: 10.1016/S0140-6736(13)61836-X.

    View in Article CrossRef Google Scholar

    [60] Liu, S., Gao, Z., Dai, Y., et al. (2020). Association of general and abdominal obesity and their changes with stroke in chinese adults: Results from an 11.8-year follow-up study. Nutr. Metab. Cardiovasc. Dis. 30 :2001-2007. DOI: 10.1016/j.numecd.2020.06.011.

    View in Article Google Scholar

    [61] Sui, S.X., and Pasco, J.A. (2020). Obesity and brain function: The brain-body crosstalk. Medicina (Kaunas). 56 : 499. DOI: 10.3390/medicina56100499.

    View in Article Google Scholar

    [62] Morton, G.J., Meek, T.H., and Schwartz, M.W. (2014). Neurobiology of food intake in health and disease. Nat. Rev. Neurosci. 15: 367−378. DOI: 10.1038/nrn3745.

    View in Article CrossRef Google Scholar

    [63] Sanborn, V., Preis, S.R., Ang, A., et al. (2020). Association between leptin, cognition, and structural brain measures among "early" middle-aged adults: Results from the framingham heart study third generation cohort. J. Alzheimers Dis. 77: 1279−1289. DOI: 10.3233/JAD-191247.

    View in Article CrossRef Google Scholar

    [64] Salas-Venegas, V., Flores-Torres, R.P., Rodríguez-Cortés, Y.M., et al. (2022). The obese brain: Mechanisms of systemic and local inflammation, and interventions to reverse the cognitive deficit. Front. Integr. Neurosci. 16: 798995. DOI: 10.3389/fnint.2022.798995.

    View in Article CrossRef Google Scholar

    [65] Castanon, N., Luheshi, G., and Layé, S. (2015). Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity. Front. Neurosci. 9: 229. DOI: 10.3389/fnins.2015.00229.

    View in Article CrossRef Google Scholar

    [66] Tomiyama, A.J. (2019). Stress and obesity. Annu. Rev. Psychol. 70: 703−718. DOI: 10.1146/annurev-psych-010418-102936.

    View in Article CrossRef Google Scholar

    [67] van Strien, T. (2018). Causes of emotional eating and matched treatment of obesity. Curr. Diab. Rep. 18: 35. DOI: 10.1007/s11892-018-1000-x.

    View in Article CrossRef Google Scholar

    [68] Rubino, F., Puhl, R.M., Cummings, D.E., et al. (2020). Joint international consensus statement for ending stigma of obesity. Nat. Med. 26: 485−497. DOI: 10.1038/s41591-020-0803-x.

    View in Article CrossRef Google Scholar

    [69] van Hulsteijn, L.T., Pasquali, R., Casanueva, F., et al. (2020). Prevalence of endocrine disorders in obese patients: Systematic review and meta-analysis. Eur. J. Endocrinol. 182: 11−21. DOI: 10.1530/EJE-19-0666.

    View in Article CrossRef Google Scholar

    [70] Stefan, N. (2020). Causes, consequences, and treatment of metabolically unhealthy fat distribution. Lancet Diabetes Endocrinol. 8: 616−627. DOI: 10.1016/S2213-8587(20)30110-8.

    View in Article CrossRef Google Scholar

    [71] Flegal, K.M., Graubard, B.I., Williamson, D.F., et al. (2007). Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA 298: 2028−2037. DOI: 10.1001/jama.298.17.2028.

    View in Article CrossRef Google Scholar

    [72] Malone, J.I., and Hansen, B.C. (2019). Does obesity cause type 2 diabetes mellitus (t2dm)? Or is it the opposite? Pediatr. Diabetes 20: 5−9. DOI: 10.1111/pedi.12787.

    View in Article CrossRef Google Scholar

    [73] Garvey, W.T., Mechanick, J.I., Brett, E.M., et al. (2016). American association of clinical endocrinologists and american college of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr. Pract. 22 Suppl 3 :1-203. DOI: 10.4158/EP161365.GL.

    View in Article Google Scholar

    [74] Hofland, J., Refardt, J.C., Feelders, R.A., et al. (2024). Approach to the patient: Insulinoma. J. Clin. Endocrinol. Metab. 109: 1109−1118. DOI: 10.1210/clinem/dgad641.

    View in Article CrossRef Google Scholar

    [75] Duvillie, B., Kourdoughli, R., Druillennec, S., et al. (2020). Interplay between diabetes and pancreatic ductal adenocarcinoma and insulinoma: The role of aging, genetic factors, and obesity. Front. Endocrinol (Lausanne). 11: 563267. DOI: 10.3389/fendo.2020.563267.

    View in Article CrossRef Google Scholar

    [76] Chaker, L., Bianco, A.C., Jonklaas, J., et al. (2017). Hypothyroidism. Lancet 390: 1550−1562. DOI: 10.1016/S0140-6736(17)30703-1.

    View in Article CrossRef Google Scholar

    [77] Mullur, R., Liu, Y.Y., and Brent, G.A. (2014). Thyroid hormone regulation of metabolism. Physiol. Rev. 94: 355−382. DOI: 10.1152/physrev.00030.2013.

    View in Article CrossRef Google Scholar

    [78] Brenta, G. (2021). The association between obesity and the thyroid: Is the "chicken or the egg" conundrum finally solved. J. Clin. Endocrinol. Metab. 106: e4281−e4283. DOI: 10.1210/clinem/dgab291.

    View in Article CrossRef Google Scholar

    [79] Pasquali, R., Casanueva, F., Haluzik, M., et al. (2020). European society of endocrinology clinical practice guideline: Endocrine work-up in obesity. Eur. J. Endocrinol. 182: G1−G32. DOI: 10.1530/EJE-19-0893.

    View in Article CrossRef Google Scholar

    [80] Lacroix, A., Feelders, R.A., Stratakis, C.A., et al. (2015). Cushing's syndrome. Lancet 386: 913−927. DOI: 10.1016/S0140-6736(14)61375-1.

    View in Article CrossRef Google Scholar

    [81] Reincke, M., and Fleseriu, M. (2023). Cushing syndrome: A review. JAMA 330: 170−181. DOI: 10.1001/jama.2023.11305.

    View in Article CrossRef Google Scholar

    [82] Pivonello, R., Isidori, A.M., De Martino, M.C., et al. (2016). Complications of cushing's syndrome: State of the art. Lancet Diabetes Endocrinol. 4: 611−629. DOI: 10.1016/S2213-8587(16)00086-3.

    View in Article CrossRef Google Scholar

    [83] Nieman, L.K. (2018). Diagnosis of cushing's syndrome in the modern era. Endocrinol Metab. Clin. North. Am. 47: 259−273. DOI: 10.1016/j.ecl.2018.02.001.

    View in Article CrossRef Google Scholar

    [84] Fleseriu, M., Auchus, R., Bancos, I., et al. (2021). Consensus on diagnosis and management of cushing's disease: A guideline update. Lancet Diabetes Endocrinol. 9: 847−875. DOI: 10.1016/S2213-8587(21)00235-7.

    View in Article CrossRef Google Scholar

    [85] Raatz, S., and Gross, A.C. (2021). Clinical assessment and treatment of early-onset severe obesity. Curr. Obes. Rep. 10: 31−38. DOI: 10.1007/s13679-020-00418-6.

    View in Article CrossRef Google Scholar

    [86] Huvenne, H., Dubern, B., Clement, K., et al. (2016). Rare genetic forms of obesity: Clinical approach and current treatments in 2016. Obes. Facts. 9: 158−173. DOI: 10.1159/000445061.

    View in Article CrossRef Google Scholar

    [87] Fairbrother, U., Kidd, E., Malagamuwa, T., et al. (2018). Genetics of severe obesity. Curr. Diab. Rep. 18: 85. DOI: 10.1007/s11892-018-1053-x.

    View in Article CrossRef Google Scholar

    [88] Wilding, J.P.H. (2020). Endocrine testing in obesity. Eur. J. Endocrinol. 182: C13−C15. DOI: 10.1530/EJE-20-0099.

    View in Article CrossRef Google Scholar

    [89] Kokkoris, P., and Pi-Sunyer, F.X. (2003). Obesity and endocrine disease. Endocrinol. Metab. Clin. North. Am. 32: 895−914. DOI: 10.1016/s0889-8529(03)00078-1.

    View in Article CrossRef Google Scholar

    [90] Thomas, R.M., Ruel, E., Shantavasinkul, P.C., et al. (2015). Endocrine hypertension: An overview on the current etiopathogenesis and management options. World J. Hypertens. 5: 14−27. DOI: 10.5494/wjh.v5.i2.14.

    View in Article CrossRef Google Scholar

    [91] Park, S.S., Ahn, C.H., Kim, S.W., et al. (2024). Subtype-specific body composition and metabolic risk in patients with primary aldosteronism. J. Clin. Endocrinol. Metab. 109: e788−e798. DOI: 10.1210/clinem/dgad520.

    View in Article CrossRef Google Scholar

    [92] Ruiz-Sanchez, J.G., Paja-Fano, M., Gonzalez Boillos, M., et al. (2023). Effect of obesity on clinical characteristics of primary aldosteronism patients at diagnosis and postsurgical response. J. Clin. Endocrinol. Metab. 109: e379−e388. DOI: 10.1210/clinem/dgad400.

    View in Article CrossRef Google Scholar

    [93] Wang, M.-L., McCabe, L., Petsonk, E.L., et al. (1997). Weight gain and longitudinal changes in lung function in steel workers. Chest 111: 1526−1532. DOI: 10.1378/chest.111.6.1526.

    View in Article CrossRef Google Scholar

    [94] Nishimura, Y., Tsutsumi, M., Nakata, H., et al. (1995). Relationship between respiratory muscle strength and lean body mass in men with copd. Chest 107: 1232−1236. DOI: 10.1378/chest.107.5.1232.

    View in Article CrossRef Google Scholar

    [95] Biring, M.S., Lewis, M.I., Liu, J.T., et al. (1999). Pulmonary physiologic changes of morbid obesity. Am. J. Med. Sci 318: 293−297. DOI: 10.1097/00000441-199911000-00002.

    View in Article CrossRef Google Scholar

    [96] Jones, R.L., and Nzekwu, M.M. (2006). The effects of body mass index on lung volumes. Chest 130: 827−833. DOI: 10.1378/chest.130.3.827.

    View in Article CrossRef Google Scholar

    [97] Pelosi, P., Croci, M., Ravagnan, I., et al. (1998) The effects of body mass on lung volumes, respiratory mechanics, and gas exchange during general anesthesia. Anesth. Analg. 87 :654-660. DOI: 10.1097/00000539-199809000-00031.

    View in Article Google Scholar

    [98] Naimark, A., and Cherniack, R.M. (1960). Compliance of the respiratory system and its components in health and obesity. J. Appl. Physiol. 15: 377−382. DOI: 10.1152/jappl.1960.15.3.377.

    View in Article CrossRef Google Scholar

    [99] Stanchina, M.L., Malhotra, A., Fogel, R.B., et al. (2003). The influence of lung volume on pharyngeal mechanics, collapsibility, and genioglossus muscle activation during sleep. Sleep 26: 851−856. DOI: 10.1093/sleep/26.7.851.

    View in Article CrossRef Google Scholar

    [100] Tagaito, Y., Isono, S., Remmers, J.E., et al. (2007). Lung volume and collapsibility of the passive pharynx in patients with sleep-disordered breathing. J. Appl. physiol. (Bethesda, Md.: 1985) 103 :1379-1385. DOI: 10.1152/japplphysiol.00026.2007.

    View in Article Google Scholar

    [101] Nicolacakis, K., Skowronski, M.E., Coreno, A.J., et al. (2008). Observations on the physiological interactions between obesity and asthma. J. Appl. Physiol. (Bethesda, Md.: 1985) 105: 1533-1541. DOI: 10.1152/japplphysiol.01260.2007.

    View in Article Google Scholar

    [102] Sutherland, T.J., Cowan, J.O., Young, S., et al. (2008). The association between obesity and asthma: Interactions between systemic and airway inflammation. Am. J. Respir. Crit. Care. Med. 178: 469−475. DOI: 10.1164/rccm.200802-301OC.

    View in Article CrossRef Google Scholar

    [103] Resta, O., Foschino-Barbaro, M.P., Legari, G., et al. (2001). Sleep-related breathing disorders, loud snoring and excessive daytime sleepiness in obese subjects. Int. J. Obes. Relat. Metab. Disord. 25: 669−675. DOI: 10.1038/sj.ijo.0801603.

    View in Article CrossRef Google Scholar

    [104] Sériès, F. (2002). Upper airway muscles awake and asleep. Sleep Med. Rev. 6: 229−242. DOI: 10.1053/smrv.2001.0163.

    View in Article CrossRef Google Scholar

    [105] Mokhlesi, B., and Tulaimat, A. (2007). Recent advances in obesity hypoventilation syndrome. Chest 132: 1322−1336. DOI: 10.1378/chest.07-0027.

    View in Article CrossRef Google Scholar

    [106] Goyal, A., Pakhare, A., Tiwari, I.R., et al. (2020). Diagnosing obstructive sleep apnea patients with isolated nocturnal hypoventilation and defining obesity hypoventilation syndrome using new european respiratory society classification criteria: An indian perspective. Sleep Med. 66: 85−91. DOI: 10.1016/j.sleep.2019.08.009.

    View in Article CrossRef Google Scholar

    [107] Shah, N.M., Shrimanker, S., and Kaltsakas, G. (2021). Defining obesity hypoventilation syndrome. Breathe (Sheffield, England) 17: 210089. DOI: 10.1183/20734735.0089-2021.

    View in Article CrossRef Google Scholar

    [108] Peters, U., Dixon, A.E., and Forno, E. (2018). Obesity and asthma. J. Allergy Clin. Immunol. 141: 1169−1179. DOI: 10.1016/j.jaci.2018.02.004.

    View in Article CrossRef Google Scholar

    [109] Carpaij, O.A., and van den Berge, M. (2018). The asthma-obesity relationship: Underlying mechanisms and treatment implications. Curr. Opin. Pulm. Med. 24: 42−49. DOI: 10.1097/mcp.0000000000000446.

    View in Article CrossRef Google Scholar

    [110] Desai, D., Newby, C., Symon, F.A., et al. (2013). Elevated sputum interleukin-5 and submucosal eosinophilia in obese individuals with severe asthma. Am. J. Respir. Crit. Care. Med. 188: 657−663. DOI: 10.1164/rccm.201208-1470OC.

    View in Article CrossRef Google Scholar

    [111] van der Wiel, E., Ten Hacken, N.H., van den Berge, M., et al. (2014). Eosinophilic inflammation in subjects with mild-to-moderate asthma with and without obesity: Disparity between sputum and biopsies. Am. J. Respir. Crit. Care. Med. 189: 1281−1284. DOI: 10.1164/rccm.201310-1841LE.

    View in Article CrossRef Google Scholar

    [112] Chaaban, T.A. (2019). Bariatric surgery: A potential cure for asthma. Eur. Respir. Rev. 28: 190003. DOI: 10.1183/16000617.0003-2019.

    View in Article CrossRef Google Scholar

    [113] Fuller-Thomson, E., Howden, K.E.N., Fuller-Thomson, L.R., et al. (2018). A strong graded relationship between level of obesity and copd: Findings from a national population-based study of lifelong nonsmokers. J. Obes. 2018: 6149263. DOI: 10.1155/2018/6149263.

    View in Article CrossRef Google Scholar

    [114] Zewari, S., Vos, P., van den Elshout, F., et al. (2017). Obesity in copd: Revealed and unrevealed issues. COPD 14: 663−673. DOI: 10.1080/15412555.2017.1383978.

    View in Article CrossRef Google Scholar

    [115] Schokker, D.F., Visscher, T.L., Nooyens, A.C., et al. (2007). Prevalence of overweight and obesity in the netherlands. Obes. Rev. 8: 101−108. DOI: 10.1111/j.1467-789X.2006.00273.x.

    View in Article CrossRef Google Scholar

    [116] Ran, P.X., Wang, C., Yao, W.Z., et al. (2007). [A study on the correlation of body mass index with chronic obstructive pulmonary disease and quality of life]. Zhonghua jie he he hu xi za zhi 30: 18−22. https://rs.yiigle.com/cmaid/1465786.

    View in Article Google Scholar

    [117] Franssen, F.M., O'Donnell, D.E., Goossens, G.H., et al. (2008). Obesity and the lung: 5. Obesity and COPD. Thorax. 63: 1110−1117. DOI: 10.1136/thx.2007.086827.

    View in Article CrossRef Google Scholar

    [118] Sacco, V., Rauch, B., Gar, C., et al. (2020). Overweight/obesity as the potentially most important lifestyle factor associated with signs of pneumonia in covid-19. PLoS One 15 : e0 237799. DOI: 10.1371/journal.pone.0237799.

    View in Article Google Scholar

    [119] Kwok, S., Adam, S., Ho, J.H., et al. (2020). Obesity: A critical risk factor in the covid-19 pandemic. Clin. Obes. 10: e12403. DOI: 10.1111/cob.12403.

    View in Article CrossRef Google Scholar

    [120] Mojtabavi, H., Saghazadeh, A., and Rezaei, N. (2020). Interleukin-6 and severe covid-19: A systematic review and meta-analysis. Eur. Cytokine. Netw. 31: 44−49. DOI: 10.1684/ecn.2020.0448.

    View in Article CrossRef Google Scholar

    [121] Sindhu, S., Thomas, R., Shihab, P., et al. (2015). Obesity is a positive modulator of il-6r and il-6 expression in the subcutaneous adipose tissue: Significance for metabolic inflammation. PLoS One 10: e0133494. DOI: 10.1371/journal.pone.0133494.

    View in Article CrossRef Google Scholar

    [122] Behl, T., Kumar, S., Singh, S., et al. (2022). Reviving the mutual impact of sars-cov-2 and obesity on patients: From morbidity to mortality. Biomed. Pharmacother. 151: 113178. DOI: 10.1016/j.biopha.2022.113178.

    View in Article CrossRef Google Scholar

    [123] Clark, A., Jit, M., Warren-Gash, C., et al. (2020). Global, regional, and national estimates of the population at increased risk of severe covid-19 due to underlying health conditions in 2020: A modelling study. Lancet Glob. Health 8: e1003−e1017. DOI: 10.1016/s2214-109x(20)30264-3.

    View in Article CrossRef Google Scholar

    [124] Mintziori, G., Nigdelis, M.P., Mathew, H., et al. (2020). The effect of excess body fat on female and male reproduction. Metabolism: Clinical and Experimental 107: 154193. DOI: 10.1016/j.metabol.2020.154193.

    View in Article CrossRef Google Scholar

    [125] Broughton, D.E., and Moley, K.H. (2017). Obesity and female infertility: Potential mediators of obesity's impact. Fertil. Steril. 107: 840−847. DOI: 10.1016/j.fertnstert.2017.01.017.

    View in Article CrossRef Google Scholar

    [126] Gautam, D., Purandare, N., Maxwell, C.V., et al. (2023). The challenges of obesity for fertility: A figo literature review. Int. J. Gynaecol. Obstet. 160 Suppl. 1 :50-55. DOI: 10.1002/ijgo.14538.

    View in Article Google Scholar

    [127] Sarwer, D.B., Hanson, A.J., Voeller, J., et al. (2018). Obesity and sexual functioning. Curr. Obes. Rep. 7: 301−307. DOI: 10.1007/s13679-018-0319-6.

    View in Article CrossRef Google Scholar

    [128] Bernardi, O., Estienne, A., Reverchon, M., et al. (2021). Adipokines in metabolic and reproductive functions in birds: An overview of current knowns and unknowns. Mol. Cell. Endocrinol. 534: 111370. DOI: 10.1016/j.mce.2021.111370.

    View in Article CrossRef Google Scholar

    [129] Kahn, D., Macias, E., Zarini, S., et al. (2022). Exploring visceral and subcutaneous adipose tissue secretomes in human obesity: Implications for metabolic disease. Endocrinology 163: bqac140. DOI: 10.1210/endocr/bqac140.

    View in Article Google Scholar

    [130] Wadden, K.P., Hollohan, N., Furneaux, T., et al. (2024). Pro-fit-care study: The feasibility assessment of a pilot online exercise intervention for persons living with obesity and female infertility. Front. Sports Act. Living 6: 1332376. DOI: 10.3389/fspor.2024.1332376.

    View in Article CrossRef Google Scholar

    [131] Fabris de Souza, S.A., Faintuch, J., Valezi, A.C., et al. (2005). Postural changes in morbidly obese patients. Obes. Surg. 15: 1013−1016. DOI: 10.1381/0960892054621224.

    View in Article CrossRef Google Scholar

    [132] Guo, J.-M., Zhang, G.-Q., and Alimujiang (2008). [effect of bmi and whr on lumbar lordosis and sacrum slant angle in middle and elderly women]. Zhongguo Gu Shang 21 :30-31. http://www.zggszz.com/zggszzcn/ch/reader/view_abstract.aspx?flag=1&file_no=20080112&journal_id=zggszzcn.

    View in Article Google Scholar

    [133] Wearing, S.C., Hennig, E.M., Byrne, N.M., et al. (2006). Musculoskeletal disorders associated with obesity: A biomechanical perspective. Obes. Rev. 7: 239−250. DOI: 10.1111/j.1467-789X.2006.00251.x.

    View in Article CrossRef Google Scholar

    [134] Cooper, C., Inskip, H., Croft, P., et al. (1998). Individual risk factors for hip osteoarthritis: Obesity, hip injury, and physical activity. Am. J. Epidemiol. 147: 516−522. DOI: 10.1093/oxfordjournals.aje.a009482.

    View in Article CrossRef Google Scholar

    [135] Davis, M.A., Ettinger, W.H., Neuhaus, J.M., et al. (1989). The association of knee injury and obesity with unilateral and bilateral osteoarthritis of the knee. Am. J. Epidemiol. 130: 278−288. DOI: 10.1093/oxfordjournals.aje.a115334.

    View in Article CrossRef Google Scholar

    [136] Lievense, A.M., Bierma-Zeinstra, S.M.A., Verhagen, A.P., et al. (2002). Influence of obesity on the development of osteoarthritis of the hip: A systematic review. Rheumatology (Oxford) . 41: 1155−1162. DOI: 10.1093/rheumatology/41.10.1155.

    View in Article CrossRef Google Scholar

    [137] Vismara, L., Menegoni, F., Zaina, F., et al. (2010). Effect of obesity and low back pain on spinal mobility: A cross sectional study in women. J. Neuroeng. Rehabil. 7: 3. DOI: 10.1186/1743-0003-7-3.

    View in Article CrossRef Google Scholar

    [138] Lui, P.P.Y., and Yung, P.S.H. (2021). Inflammatory mechanisms linking obesity and tendinopathy. J. Orthop. Translat. 31: 80−90. DOI: 10.1016/j.jot.2021.10.003.

    View in Article CrossRef Google Scholar

    [139] Ugwoke, C.K., Cvetko, E., and Umek, N. (2022). Pathophysiological and therapeutic roles of fascial hyaluronan in obesity-related myofascial disease. Int. J. Mo. Sci. 23 . DOI: 10.3390/ijms231911843.

    View in Article Google Scholar

    [140] Wendelboe, A.M., Hegmann, K.T., Gren, L.H., et al. (2004). Associations between body-mass index and surgery for rotator cuff tendinitis. J. Bone. Joint Surg. Am. 86: 743−747. DOI: 10.2106/00004623-200404000-00011.

    View in Article CrossRef Google Scholar

    [141] Goff, J.D., and Crawford, R. (2011). Diagnosis and treatment of plantar fasciitis. Am. Fam. Physician. 84: 676−682.

    View in Article Google Scholar

    [142] Riddle, D.L., Pulisic, M., Pidcoe, P., et al. (2003). Risk factors for plantar fasciitis: A matched case-control study. J. Bone. Joint Surg. Am. 85: 872−877. DOI: 10.2106/00004623-200305000-00015.

    View in Article CrossRef Google Scholar

    [143] Ringel, A.E., Drijvers, J.M., Baker, G.J., et al. (2020). Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell 183: 1848−+. DOI: 10.1016/j.cell.2020.11.009.

    View in Article CrossRef Google Scholar

    [144] Recalde, M., Davila-Batista, V., Díaz, Y., et al. (2021). Body mass index and waist circumference in relation to the risk of 26 types of cancer: A prospective cohort study of 3.5 million adults in spain. BMC Med. 19 : 10. DOI: ARTN 1010.1186/s12916-020-01877-3.

    View in Article Google Scholar

    [145] Recalde, M., Pistillo, A., Davila-Batista, V., et al. (2023). Longitudinal body mass index and cancer risk: A cohort study of 2.6 million catalan adults. Nat. Commun. 14. DOI: ARTN 381610.1038/s41467-023-39282-y.

    View in Article Google Scholar

    [146] Onerup, A., Mehlig, K., Af Geijerstam, A., et al. (2024). Associations between bmi in youth and site-specific cancer in men-a cohort study with register linkage. Obesity (Silver Spring). 32: 376−389. DOI: 10.1002/oby.23942.

    View in Article CrossRef Google Scholar

    [147] Fontvieille, E., Viallon, V., Recalde, M., et al. (2023). Body mass index and cancer risk among adults with and without cardiometabolic diseases: Evidence from the epic and uk biobank prospective cohort studies. Bmc. Med. 21. DOI: ARTN 41810.1186/s12916-023-03114-z.

    View in Article Google Scholar

    [148] Onerup, A., Mehlig, K., Ekblom-Bak, E., et al. (2023). Cardiorespiratory fitness and bmi measured in youth and 5-year mortality after site-specific cancer diagnoses in men-a population-based cohort study with register linkage. Cancer Med. 12: 20000−20014. DOI: 10.1002/cam4.6553.

    View in Article CrossRef Google Scholar

    [149] Li, Z., Weng, H., Su, R., et al. (2017). FTO plays an oncogenic role in acute myeloid leukemia as a n(6)-methyladenosine RNA demethylase. Cancer cell 31: 127−141. DOI: 10.1016/j.ccell.2016.11.017.

    View in Article CrossRef Google Scholar

    [150] Lee, M., Hamilton, J.A.G., Talekar, G.R., et al. (2022). Obesity-induced galectin-9 is a therapeutic target in b-cell acute lymphoblastic leukemia. Nat. Commun. 13 : 1157. DOI: ARTN 115710.1038/s41467-022-28839-y.

    View in Article Google Scholar

    [151] de Candia, P., Prattichizzo, F., Garavelli, S., et al. (2021). The pleiotropic roles of leptin in metabolism, immunity, and cancer. J. Exp. Med. 218 . DOI: ARTN e2019159310.1084/jem.20191593.

    View in Article Google Scholar

    [152] Matarese, G. (2023). The link between obesity and autoimmunity overnutrition could lead to loss of self-tolerance by impinging on immune regulation. Science 379: 1298−1300. DOI: 10.1126/science.ade0113.

    View in Article CrossRef Google Scholar

    [153] Bapat, S.P., Whitty, C., Mowery, C.T., et al. (2022). Obesity alters pathology and treatment response in inflammatory disease. Nature 604: 337−342. DOI: 10.1038/s41586-022-04536-0.

    View in Article CrossRef Google Scholar

    [154] Schwartz, C., Schmidt, V., Deinzer, A., et al. (2022). Innate pd-l1 limits t cell-mediated adipose tissue inflammation and ameliorates diet-induced obesity. Eur. J. Immunol. 52: 179−180. DOI: 10.1126/scitranslmed.abj6879.

    View in Article CrossRef Google Scholar

    [155] Hata, M., Andriessen, E.M.M.A., Hata, M., et al. (2023). Past history of obesity triggers persistent epigenetic changes in innate immunity and exacerbates neuroinflammation. Science 379: 45−61. DOI: 10.1126/science.abj8894.

    View in Article CrossRef Google Scholar

    [156] Zou, J.H., Lai, B.B., Zheng, M.Z., et al. (2018). Cd4+t cells memorize obesity and promote weight regain. Cell. Mol. Immunol. 15: 630−639. DOI: 10.1038/cmi.2017.36.

    View in Article CrossRef Google Scholar

    [157] Wang, E.Y., Mao, T.Y., Klein, J., et al. (2021). Diverse functional autoantibodies in patients with covid-19. Nature 595: 283. DOI: 10.1038/s41586-021-03631-y.

    View in Article CrossRef Google Scholar

    [158] Cuevas-Sierra, A., Ramos-Lopez, O., Riezu-Boj, J.I., et al. (2019). Diet, gut microbiota, and obesity: Links with host genetics and epigenetics and potential applications. Adv. Nutr. 10: S17−S30. DOI: 10.1093/advances/nmy078.

    View in Article CrossRef Google Scholar

    [159] de La Serre, C.B., Ellis, C.L., Lee, J., et al. (2010). Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 299: G440−G448. DOI: 10.1152/ajpgi.00098.2010.

    View in Article CrossRef Google Scholar

    [160] Chen, D., Yang, Z., Chen, X., et al. (2015). Effect of lactobacillus rhamnosus hsryfm 1301 on the gut microbiota and lipid metabolism in rats fed a high-fat diet. J. Microbiol. Biotechnol. 25: 687−695. DOI: 10.4014/jmb.1409.09085.

    View in Article CrossRef Google Scholar

    [161] Kim, K.-A., Gu, W., Lee, I.-A., et al. (2012). High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the tlr4 signaling pathway. PloS One 7: e47713. DOI: 10.1371/journal.pone.0047713.

    View in Article CrossRef Google Scholar

    [162] Hamilton, M.K., Boudry, G., Lemay, D.G., et al. (2015). Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am. J. Physiol. Gastrointest. Liver Physiol. 308: G840−G851. DOI: 10.1152/ajpgi.00029.2015.

    View in Article CrossRef Google Scholar

    [163] Geng, J., Ni, Q., Sun, W., et al. (2022). The links between gut microbiota and obesity and obesity related diseases. Biomed. Pharmacother. 147: 112678. DOI: 10.1016/j.biopha.2022.112678.

    View in Article CrossRef Google Scholar

    [164] Stanislawski, M.A., Dabelea, D., Lange, L.A., et al. (2019). Gut microbiota phenotypes of obesity. NPJ Biofilms Microbiomes 5: 18. DOI: 10.1038/s41522-019-0091-8.

    View in Article CrossRef Google Scholar

    [165] Liu, R., Hong, J., Xu, X., et al. (2017). Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23: 859−868. DOI: 10.1038/nm.4358.

    View in Article CrossRef Google Scholar

    [166] Aron-Wisnewsky, J., Warmbrunn, M.V., Nieuwdorp, M., et al. (2021). Metabolism and metabolic disorders and the microbiome: The intestinal microbiota associated with obesity, lipid metabolism, and metabolic health-pathophysiology and therapeutic strategies. Gastroenterology 160: 573−599. DOI: 10.1053/j.gastro.2020.10.057.

    View in Article CrossRef Google Scholar

    [167] Li, G., Xie, C., Lu, S., et al. (2017). Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab. 26: 801. DOI: 10.1016/j.cmet.2017.10.007.

    View in Article CrossRef Google Scholar

    [168] Fabbiano, S., Suárez-Zamorano, N., Chevalier, C., et al. (2018). Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements. Cell Metab. 28 : 907-921.e7. DOI: 10.1016/j.cmet.2018.08.005.

    View in Article Google Scholar

    [169] Everard, A., Lazarevic, V., Gaïa, N., et al. (2014). Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME. J. 8: 2116−2130. DOI: 10.1038/ismej.2014.45.

    View in Article CrossRef Google Scholar

    [170] Dao, M.C., Everard, A., Aron-Wisnewsky, J., et al. (2016). Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 65: 426−436. DOI: 10.1136/gutjnl-2014-308778.

    View in Article CrossRef Google Scholar

    [171] Vallianou, N., Stratigou, T., Christodoulatos, G.S., et al. (2020). Probiotics, prebiotics, synbiotics, postbiotics, and obesity: Current evidence, controversies, and perspectives. Curr. Obes. Rep. 9: 179−192. DOI: 10.1007/s13679-020-00379-w.

    View in Article CrossRef Google Scholar

    [172] Depommier, C., Everard, A., Druart, C., et al. (2019). Supplementation with akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat. Med. 25: 1096−1103. DOI: 10.1038/s41591-019-0495-2.

    View in Article CrossRef Google Scholar

    [173] Aron-Wisnewsky, J., Clément, K., and Nieuwdorp, M. (2019). Fecal microbiota transplantation: A future therapeutic option for obesity/diabetes. Curr. Diab. Rep. 19: 51. DOI: 10.1007/s11892-019-1180-z.

    View in Article CrossRef Google Scholar

    [174] Kootte, R.S., Levin, E., Salojärvi, J., et al. (2017). Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 26 . DOI: 10.1016/j.cmet.2017.09.008.

    View in Article Google Scholar

    [175] Mabey, J.G., Chaston, J.M., Castro, D.G., et al. (2020). Gut microbiota differs a decade after bariatric surgery relative to a nonsurgical comparison group. Surg. Obes. Relat. Dis. 16: 1304−1311. DOI: 10.1016/j.soard.2020.04.006.

    View in Article CrossRef Google Scholar

    [176] Farin, W., Oñate, F.P., Plassais, J., et al. (2020). Impact of laparoscopic roux-en-y gastric bypass and sleeve gastrectomy on gut microbiota: A metagenomic comparative analysis. Surg. Obes. Relat. Dis. 16: 852−862. DOI: 10.1016/j.soard.2020.03.014.

    View in Article CrossRef Google Scholar

    [177] Al Assal, K., Prifti, E., Belda, E., et al. (2020). Gut microbiota profile of obese diabetic women submitted to roux-en-y gastric bypass and its association with food intake and postoperative diabetes remission. Nutrients 12 : 278. DOI: 10.3390/nu12020278.

    View in Article Google Scholar

    [178] Wu, J., Wang, K., Wang, X., et al. (2021). The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell 12: 360−373. DOI: 10.1007/s13238-020-00814-7.

    View in Article CrossRef Google Scholar

    [179] Holroyd Eric, W., Sirker, A., Kwok Chun, S., et al. (2017). The relationship of body mass index to percutaneous coronary intervention outcomes. JACC Cardiovasc. Inte. 10: 1283−1292. DOI: 10.1016/j.jcin.2017.03.013.

    View in Article CrossRef Google Scholar

    [180] van Rosendael, A.R., Shaw, L.J., Xie, J.X., et al. (2019). Superior risk stratification with coronary computed tomography angiography using a comprehensive atherosclerotic risk score. JACC Cardiovasc. Imaging 12: 1987−1997. DOI: 10.1016/j.jcmg.2018.10.024.

    View in Article CrossRef Google Scholar

    [181] Horwich, T.B., Fonarow, G.C., and Clark, A.L. (2018). Obesity and the obesity paradox in heart failure. Prog. Cardiovasc. Dis. 61: 151−156. DOI: 10.1016/j.pcad.2018.05.005.

    View in Article CrossRef Google Scholar

    [182] Holland, S., Wellwood, I., and Kuys, S. (2023). Effect of abnormal body weight on mortality and functional recovery in adults after stroke: An umbrella review. Int. J. Stroke 19 . DOI: 10.1177/17474930231212972.

    View in Article Google Scholar

    [183] Bagheri, M., Speakman, J.R., Shabbidar, S., et al. (2015). A dose-response meta-analysis of the impact of body mass index on stroke and all-cause mortality in stroke patients: A paradox within a paradox. Obes. Rev. 16: 416−423. DOI: 10.1111/obr.12272.

    View in Article CrossRef Google Scholar

    [184] Mehta, A., De Paola, L., Pana, T.A., et al. (2022). The relationship between nutritional status at the time of stroke on adverse outcomes: A systematic review and meta-analysis of prospective cohort studies. Nutr. Rev. 80: 2275−2287. DOI: 10.1093/nutrit/nuac034.

    View in Article CrossRef Google Scholar

    [185] Gravina, G., Ferrari, F., and Nebbiai, G. (2021). The obesity paradox and diabetes. Eat. Weight Disord. 26: 1057−1068. DOI: 10.1007/s40519-020-01015-1.

    View in Article CrossRef Google Scholar

    [186] Lee, E.Y., Lee, Y.-H., Yi, S.-W., et al. (2017). BMI and all-cause mortality in normoglycemia, impaired fasting glucose, newly diagnosed diabetes, and prevalent diabetes: A cohort study. Diabetes Care 40: 1026−1033. DOI: 10.2337/dc16-1458.

    View in Article CrossRef Google Scholar

    [187] Costanzo, P., Cleland, J.G.F., Pellicori, P., et al. (2015). The obesity paradox in type 2 diabetes mellitus: Relationship of body mass index to prognosis: A cohort study. Ann. Intern. Med. 162: 610−618. DOI: 10.7326/M14-1551.

    View in Article CrossRef Google Scholar

    [188] Yao, S., Zeng, L., Wang, F., et al. (2023). Obesity paradox in lung diseases: What explains it? Obes. Facts 16: 411−426. DOI: 10.1159/000531792.

    View in Article CrossRef Google Scholar

    [189] Strulov Shachar, S., and Williams, G.R. (2017). The obesity paradox in cancer-moving beyond BMI. Cancer Epidemiol. Biomarkers Prev. 26: 13−16. DOI: 10.1158/1055-9965.EPI-16-0439.

    View in Article CrossRef Google Scholar

    [190] Bader, J.E., Wolf, M.M., Lupica-Tondo, G.L., et al. (2024). Obesity induces pd-1 on macrophages to suppress anti-tumour immunity. Nature 630: 968−975. DOI: 10.1038/s41586-024-07529-3.

    View in Article CrossRef Google Scholar

    [191] Petersen, M.C., Smith, G.I., Palacios, H.H., et al. (2024). Cardiometabolic characteristics of people with metabolically healthy and unhealthy obesity. Cell Metab. 36 . DOI: 10.1016/j.cmet.2024.03.002.

    View in Article Google Scholar

    [192] Wei, C. (2021). Guidelines for medical nutrition treatment of overweight/obesity in China (2021). Asia. Pac. J. Clin. Nutr. 13: 450−482. DOI: 10.6133/apjcn.202209_31(3).0013.

    View in Article CrossRef Google Scholar

    [193] Jensen, M.D., Ryan, D.H., Apovian, C.M., et al. (2014). 2013 aha/acc/tos guideline for the management of overweight and obesity in adults. Circulation 129 . DOI: 10.1161/01.cir.0000437739.71477.ee.

    View in Article Google Scholar

    [194] Dietary guidelines for americans, 2020-2025. (2020). In Services, U.S.D.o.A.a.U.S.D.o.H.a.H., ed. 9th Edition ed.

    View in Article Google Scholar

    [195] Larsen, R.N., Mann, N.J., Maclean, E., et al. (2011). The effect of high-protein, low-carbohydrate diets in the treatment of type 2 diabetes: A 12 month randomised controlled trial. Diabetologia 54: 731−740. DOI: 10.1007/s00125-010-2027-y.

    View in Article CrossRef Google Scholar

    [196] Krebs, J.D., Elley, C.R., Parry-Strong, A., et al. (2012). The diabetes excess weight loss (dewl) trial: A randomised controlled trial of high-protein versus high-carbohydrate diets over 2 years in type 2 diabetes. Diabetologia 55: 905−914. DOI: 10.1007/s00125-012-2461-0.

    View in Article CrossRef Google Scholar

    [197] Santesso, N., Akl, E.A., Bianchi, M., et al. (2012). Effects of higher- versus lower-protein diets on health outcomes: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 66: 780−788. DOI: 10.1038/ejcn.2012.37.

    View in Article CrossRef Google Scholar

    [198] Kucharska, A., Gajewska, D., Kiedrowski, M., et al. (2018). The impact of individualised nutritional therapy according to dash diet on blood pressure, body mass, and selected biochemical parameters in overweight/obese patients with primary arterial hypertension: A prospective randomised study. Kardiol. Pol. 76: 158−165. DOI: 10.5603/KP.a2017.0184.

    View in Article CrossRef Google Scholar

    [199] Razavi Zade, M., Telkabadi, M.H., Bahmani, F., et al. (2016). The effects of dash diet on weight loss and metabolic status in adults with non-alcoholic fatty liver disease: A randomized clinical trial. Liver Int. 36: 563−571. DOI: 10.1111/liv.12990.

    View in Article CrossRef Google Scholar

    [200] Ge, L., Sadeghirad, B., Ball, G.D.C., et al. (2020). Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: Systematic review and network meta-analysis of randomised trials. BMJ 369: m696. DOI: 10.1136/bmj.m696.

    View in Article CrossRef Google Scholar

    [201] Huo, R., Du, T., Xu, Y., et al. (2015). Effects of mediterranean-style diet on glycemic control, weight loss and cardiovascular risk factors among type 2 diabetes individuals: A meta-analysis. Eur. J. Clin. Nutr. 69: 1200−1208. DOI: 10.1038/ejcn.2014.243.

    View in Article CrossRef Google Scholar

    [202] Johnston, B.C., Kanters, S., Bandayrel, K., et al. (2014). Comparison of weight loss among named diet programs in overweight and obese adults: A meta-analysis. JAMA 312: 923−933. DOI: 10.1001/jama.2014.10397.

    View in Article CrossRef Google Scholar

    [203] Bull, F.C., Al-Ansari, S.S., Biddle, S., et al. (2020). World health organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 54: 1451−1462. DOI: 10.1136/bjsports-2020-102955.

    View in Article CrossRef Google Scholar

    [204] Elmaleh-Sachs, A., Schwartz, J.L., Bramante, C.T., et al. (2023). Obesity management in adults: A review. JAMA 330: 2000−2015. DOI: 10.1001/jama.2023.19897.

    View in Article CrossRef Google Scholar

    [205] Bellicha, A., van Baak, M.A., Battista, F., et al. (2021). Effect of exercise training on weight loss, body composition changes, and weight maintenance in adults with overweight or obesity: An overview of 12 systematic reviews and 149 studies. Obes. Rev. 22 Suppl. 4 : e13256. DOI: 10.1111/obr.13256.

    View in Article Google Scholar

    [206] O'Donoghue, G., Blake, C., Cunningham, C., et al. (2021). What exercise prescription is optimal to improve body composition and cardiorespiratory fitness in adults living with obesity. A network meta-analysis. Obes. Rev. 22: e13137. DOI: 10.1111/obr.13137.

    View in Article CrossRef Google Scholar

    [207] Oppert, J.M., Bellicha, A., van Baak, M.A., et al. (2021). Exercise training in the management of overweight and obesity in adults: Synthesis of the evidence and recommendations from the european association for the study of obesity physical activity working group. Obes. Rev. 22 Suppl. 4 : e13273. DOI: 10.1111/obr.13273.

    View in Article Google Scholar

    [208] Recchia, F., Leung, C.K., Yu, A.P., et al. (2023). Dose-response effects of exercise and caloric restriction on visceral adiposity in overweight and obese adults: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 57: 1035−1041. DOI: 10.1136/bjsports-2022-106304.

    View in Article CrossRef Google Scholar

    [209] Ferguson, T., Olds, T., Curtis, R., et al. (2022). Effectiveness of wearable activity trackers to increase physical activity and improve health: A systematic review of systematic reviews and meta-analyses. Lancet Digit. Health 4: e615−e626. DOI: 10.1016/s2589-7500(22)00111-x.

    View in Article CrossRef Google Scholar

    [210] Gaskin, C.J., Cooper, K., Stephens, L.D., et al. (2024). Clinical practice guidelines for the management of overweight and obesity published internationally: A scoping review. Obes. Rev. 25: e13700. DOI: 10.1111/obr.13700.

    View in Article CrossRef Google Scholar

    [211] Jones-Corneille, L.R., Wadden, T.A., Sarwer, D.B., et al. (2012). Axis i psychopathology in bariatric surgery candidates with and without binge eating disorder: Results of structured clinical interviews. Obes. Surg. 22: 389−397. DOI: 10.1007/s11695-010-0322-9.

    View in Article CrossRef Google Scholar

    [212] Luppino, F.S., de Wit, L.M., Bouvy, P.F., et al. (2010). Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies. Arch. Gen. Psychiatry. 67: 220−229. DOI: 10.1001/archgenpsychiatry.2010.2.

    View in Article CrossRef Google Scholar

    [213] Armstrong, M.J., Mottershead, T.A., Ronksley, P.E., et al. (2011). Motivational interviewing to improve weight loss in overweight and/or obese patients: A systematic review and meta-analysis of randomized controlled trials. Obes. Rev. 12: 709−723. DOI: 10.1111/j.1467-789X.2011.00892.x.

    View in Article CrossRef Google Scholar

    [214] Castelnuovo, G., Pietrabissa, G., Manzoni, G.M., et al. (2017). Cognitive behavioral therapy to aid weight loss in obese patients: Current perspectives. Psychol. Res. Behav. Manag. 10: 165−173. DOI: 10.2147/PRBM.S113278.

    View in Article CrossRef Google Scholar

    [215] Hall, W.L. (2022). The emerging importance of tackling sleep-diet interactions in lifestyle interventions for weight management. Br. J. Nutr. 128: 561−568. DOI: 10.1017/S000711452200160X.

    View in Article CrossRef Google Scholar

    [216] Ferrara, A., Hedderson, M.M., Brown, S.D., et al. (2020). A telehealth lifestyle intervention to reduce excess gestational weight gain in pregnant women with overweight or obesity (glow): A randomised, parallel-group, controlled trial. Lancet Diabetes Endocrinol. 8: 490−500. DOI: 10.1016/S2213-8587(20)30107-8.

    View in Article CrossRef Google Scholar

    [217] Jakicic, J.M., Davis, K.K., Rogers, R.J., et al. (2016). Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: The idea randomized clinical trial. JAMA 316: 1161−1171. DOI: 10.1001/jama.2016.12858.

    View in Article CrossRef Google Scholar

    [218] Wiederhold, B.K., Riva, G., and Gutiérrez-Maldonado, J. (2016). Virtual reality in the assessment and treatment of weight-related disorders. Cyberpsychol. Behav. Soc. Netw. 19: 67−73. DOI: 10.1089/cyber.2016.0012.

    View in Article CrossRef Google Scholar

    [219] Kurtzman, G.W., Day, S.C., Small, D.S., et al. (2018). Social incentives and gamification to promote weight loss: The lose it randomized, controlled trial. J. Gen. Intern. Med. 33: 1669−1675. DOI: 10.1007/s11606-018-4552-1.

    View in Article CrossRef Google Scholar

    [220] Grunvald, E., Shah, R., Hernaez, R., et al. (2022). Aga clinical practice guideline on pharmacological interventions for adults with obesity. Gastroenterology 163: 1198−1225. DOI: 10.1053/j.gastro.2022.08.045.

    View in Article CrossRef Google Scholar

    [221] Styne, D.M., Arslanian, S.A., Connor, E.L., et al. (2017). Pediatric obesity-assessment, treatment, and prevention: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 102: 709−757. DOI: 10.1210/jc.2016-2573.

    View in Article CrossRef Google Scholar

    [222] Hampl, S.E., Hassink, S.G., Skinner, A.C., et al. (2023). Clinical practice guideline for the evaluation and treatment of children and adolescents with obesity. Pediatrics 151 : e2022060640. DOI: 10.1542/peds.2022-060640.

    View in Article Google Scholar

    [223] Hannon, T.S., and Arslanian, S.A. (2023). Obesity in adolescents. N. Engl. J. Med. 389: 251−261. DOI: 10.1056/NEJMcp2102062.

    View in Article CrossRef Google Scholar

    [224] Henderson, K., Lewis, Sloan, C.E., et al. (2024). Effectiveness and safety of drugs for obesity. BMJ 384: e072686. DOI: 10.1136/bmj-2022-072686.

    View in Article CrossRef Google Scholar

    [225] Gudzune, K.A., and Kushner, R.F. (2024). Medications for obesity: A review. JAMA 332: 571−584. DOI: 10.1001/jama.2024.10816.

    View in Article CrossRef Google Scholar

    [226] Sjöström, L., Rissanen, A., Andersen, T., et al. (1998). Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients. European Multicentre Orlistat Study Group. Lancet 352: 167−172. DOI: 10.1016/s0140-6736(97)11509-4.

    View in Article CrossRef Google Scholar

    [227] Shi, Q., Wang, Y., Hao, Q., et al. (2024). Pharmacotherapy for adults with overweight and obesity: A systematic review and network meta-analysis of randomised controlled trials. Lancet. 403: e21−e31. DOI: 10.1016/S0140-6736(24)00351-9.

    View in Article CrossRef Google Scholar

    [228] Jastreboff, A.M., Aronne, L.J., Ahmad, N.N., et al. (2022). Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 387: 205−216. DOI: 10.1056/NEJMoa2206038.

    View in Article CrossRef Google Scholar

    [229] Bult, M.J., van Dalen, T., and Muller, A.F. (2008). Surgical treatment of obesity. Eur. J. Endocrinol. 158: 135−145. DOI: 10.1530/eje-07-0145.

    View in Article CrossRef Google Scholar

    [230] Arterburn, D.E., and Courcoulas, A.P. (2014). Bariatric surgery for obesity and metabolic conditions in adults. BMJ 349: g3961. DOI: 10.1136/bmj.g3961.

    View in Article CrossRef Google Scholar

    [231] Wolfe, B.M., Kvach, E., and Eckel, R.H. (2016). Treatment of obesity: Weight loss and bariatric surgery. Circ. Res. 118: 1844−1855. DOI: 10.1161/circresaha.116.307591.

    View in Article CrossRef Google Scholar

    [232] Kumbhari, V., Cummings, D.E., Kalloo, A.N., et al. (2021). Aga clinical practice update on evaluation and management of early complications after bariatric/metabolic surgery: Expert review. Clin. Gastroenterol. Hepatol. 19: 1531−1537. DOI: 10.1016/j.cgh.2021.03.020.

    View in Article CrossRef Google Scholar

    [233] Grams, J., and Garvey, W.T. (2015). Weight loss and the prevention and treatment of type 2 diabetes using lifestyle therapy, pharmacotherapy, and bariatric surgery: Mechanisms of action. Curr. Obes. Rep. 4: 287−302. DOI: 10.1007/s13679-015-0155-x.

    View in Article CrossRef Google Scholar

    [234] Gill, R.S., Sharma, A.M., Gill, S.S., et al. (2011). The impact of obesity on diabetes mellitus and the role of bariatric surgery. Maturitas 69: 137−140. DOI: 10.1016/j.maturitas.2011.03.020.

    View in Article CrossRef Google Scholar

    [235] Ikramuddin, S., Korner, J., Lee, W.J., et al. (2013). Roux-en-y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: The diabetes surgery study randomized clinical trial. JAMA 309: 2240−2249. DOI: 10.1001/jama.2013.5835.

    View in Article CrossRef Google Scholar

    [236] Wolfe, B.M., Purnell, J.Q., and Belle, S.H. (2013). Treating diabetes with surgery. JAMA 309: 2274−2275. DOI: 10.1001/jama.2013.4772.

    View in Article CrossRef Google Scholar

    [237] Ren, Y., Yang, W., Yang, J., et al. (2015). Effect of roux-en-y gastric bypass with different pouch size in chinese t2dm patients with bmi 30-35 kg/m2. Obes. Surg. 25: 457−463. DOI: 10.1007/s11695-014-1411-y.

    View in Article CrossRef Google Scholar

    [238] Reges, O., Greenland, P., Dicker, D., et al. (2018). Association of bariatric surgery using laparoscopic banding, roux-en-y gastric bypass, or laparoscopic sleeve gastrectomy vs usual care obesity management with all-cause mortality. JAMA 319: 279−290. DOI: 10.1001/jama.2017.20513.

    View in Article CrossRef Google Scholar

    [239] English, W.J., and Williams, D.B. (2018). Metabolic and bariatric surgery: An effective treatment option for obesity and cardiovascular disease. Prog. Cardiovasc. Dis. 61: 253−269. DOI: 10.1016/j.pcad.2018.06.003.

    View in Article CrossRef Google Scholar

    [240] Ghiassi, S., and Morton, J.M. (2020). Safety and efficacy of bariatric and metabolic surgery. Curr. Obes. Rep. 9: 159−164. DOI: 10.1007/s13679-020-00377-y.

    View in Article CrossRef Google Scholar

    [241] Pareek, M., Schauer, P.R., Kaplan, L.M., et al. (2018). Metabolic surgery: Weight loss, diabetes, and beyond. J. Am. Coll. Cardiol. 71: 670−687. DOI: 10.1016/j.jacc.2017.12.014.

    View in Article CrossRef Google Scholar

    [242] Welbourn, R., and Pournaras, D. (2010). Bariatric surgery: A cost-effective intervention for morbid obesity; functional and nutritional outcomes. Proc. Nutr. Soc. 69: 528−535. DOI: 10.1017/s0029665110001515.

    View in Article CrossRef Google Scholar

    [243] Brown, W.A., Liem, R., Al-Sabah, S., et al. (2024). Metabolic bariatric surgery across the ifso chapters: Key insights on the baseline patient demographics, procedure types, and mortality from the eighth ifso global registry report. Obes. Surg. 34: 1764−1777. DOI: 10.1007/s11695-024-07196-3.

    View in Article CrossRef Google Scholar

    [244] Angrisani, L., Santonicola, A., Iovino, P., et al. (2024). Ifso worldwide survey 2020-2021: Current trends for bariatric and metabolic procedures. Obes. Surg. 34: 1075−1085. DOI: 10.1007/s11695-024-07118-3.

    View in Article CrossRef Google Scholar

    [245] Mahawar, K.K., Omar, I., Singhal, R., et al. (2021). The first modified delphi consensus statement on sleeve gastrectomy. Surg. Endosc. 35: 7027−7033. DOI: 10.1007/s00464-020-08216-w.

    View in Article CrossRef Google Scholar

    [246] Han, Y., Jia, Y., Wang, H., et al. (2020). Comparative analysis of weight loss and resolution of comorbidities between laparoscopic sleeve gastrectomy and roux-en-y gastric bypass: A systematic review and meta-analysis based on 18 studies. Int. J. Surg. 76: 101−110. DOI: 10.1016/j.ijsu.2020.02.035.

    View in Article CrossRef Google Scholar

    [247] Apaer, S., Aizezi, Z., Cao, X., et al. (2024). Safety and efficacy of lsg versus lrygb on patients with obesity: A systematic review and meta-analysis from rcts. Obes. Surg. 34: 1138−1151. DOI: 10.1007/s11695-024-07076-w.

    View in Article CrossRef Google Scholar

    [248] Cui, B., Wang, G., Li, P., et al. (2023). Disease-specific mortality and major adverse cardiovascular events after bariatric surgery: A meta-analysis of age, sex, and bmi-matched cohort studies. Int. J. Surg. 109: 389−400. DOI: 10.1097/js9.0000000000000066.

    View in Article CrossRef Google Scholar

    [249] Yang, W., and Wang, C. (2021). Long-term complications in youth-onset type 2 diabetes. N. Engl. J. Med. 385: 2014−2015. DOI: 10.1056/NEJMc2114053.

    View in Article CrossRef Google Scholar

    [250] Yang, W., and Wang, C. (2022). Metabolic surgery needs stronger endorsement in asian t2dm patients with low BMI. Obes. Surg. 32: 212−213. DOI: 10.1007/s11695-021-05636-y.

    View in Article CrossRef Google Scholar

    [251] Arterburn, D.E., Telem, D.A., Kushner, R.F., and Courcoulas, A.P. (2020). Benefits and risks of bariatric surgery in adults: A review. JAMA 324: 879−887. DOI: 10.1001/jama.2020.12567.

    View in Article CrossRef Google Scholar

    [252] Yang, W., Abbott, S., Borg, C.M., et al. (2022). Global variations in preoperative practices concerning patients seeking primary bariatric and metabolic surgery (pact study): A survey of 634 bariatric healthcare professionals. Int. J. Obes. (Lond) 46: 1341−1350. DOI: 10.1038/s41366-022-01119-x.

    View in Article CrossRef Google Scholar

    [253] Au, K., and Yang, W. (2024). Glp-1 receptor agonists in weight loss and bariatric surgery: Balancing efficacy and gastrointestinal adverse events. Obes. Surg. 34: 1382−1383. DOI: 10.1007/s11695-024-07061-3.

    View in Article CrossRef Google Scholar

    [254] Au, K., and Yang, W. (2023). Auxiliary use of chatgpt in surgical diagnosis and treatment. Int. J. Surg. 109: 3940−3943. DOI: 10.1097/js9.0000000000000686.

    View in Article CrossRef Google Scholar

    [255] Jazi, A.H.D., Mahjoubi, M., Shahabi, S., et al. (2023). Bariatric evaluation through ai: A survey of expert opinions versus chatgpt-4 (beta-seov). Obes. Surg. 33: 3971−3980. DOI: 10.1007/s11695-023-06903-w.

    View in Article CrossRef Google Scholar

    [256] Law, S., Oldfield, B., and Yang, W. (2024). Chatgpt/gpt-4 (large language models): Opportunities and challenges of perspective in bariatric healthcare professionals. Obes. Rev. 25 : e13746. DOI: 10.1111/obr.13746.

    View in Article Google Scholar

    [257] Wight, D., Wimbush, E., Jepson, R., et al. (2016). Six steps in quality intervention development (6squid). J. Epidemiol. Community Health 70 :520-525. DOI: 10.1136/jech-2015-205952.

    View in Article Google Scholar

    [258] Salwen, J.K., Hymowitz, G.F., Vivian, D., et al. (2014). Childhood abuse, adult interpersonal abuse, and depression in individuals with extreme obesity. Child. Abuse. Negl. 38: 425−433. DOI: 10.1016/j.chiabu.2013.12.005.

    View in Article CrossRef Google Scholar

    [259] King, L., Gill, T., Allender, S., et al. (2011). Best practice principles for community-based obesity prevention: Development, content and application. Obes. Rev. 12: 329−338. DOI: 10.1111/j.1467-789X.2010.00798.x.

    View in Article CrossRef Google Scholar

    [260] Vrijheid, M., Fossati, S., Maitre, L., et al. (2020). Early-life environmental exposures and childhood obesity: An exposome-wide approach. Environ. Health Perspect. 128: 67009. DOI: 10.1289/EHP5975.

    View in Article CrossRef Google Scholar

    [261] Heymsfield, S.B., and Wadden, T.A. (2017). Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 376: 254−266. DOI: 10.1056/NEJMra1514009.

    View in Article CrossRef Google Scholar

    [262] American College of Cardiology/American Heart Association Task Force on Practice Guidelines, O.E.P., 2013 (2014). Expert panel report: Guidelines (2013) for the management of overweight and obesity in adults. Obesity (Silver Spring) 22 : Suppl 2: S41-410. DOI:10.1002/oby.20660.

    View in Article Google Scholar

    [263] Strain, T., Wijndaele, K., Dempsey, P.C., et al. (2020). Wearable-device-measured physical activity and future health risk. Nat. Med. 26: 1385−1391. DOI: 10.1038/s41591-020-1012-3.

    View in Article CrossRef Google Scholar

    [264] Natalucci, V., Marmondi, F., Biraghi, M., et al. (2023). The effectiveness of wearable devices in non-communicable diseases to manage physical activity and nutrition: Where we are? Nutrients 15 : 913. DOI: 10.3390/nu15040913.

    View in Article Google Scholar

    [265] Kaur, A., Briggs, A., Adams, J.,et al. (2022). New calorie labelling regulations in england. BMJ (Clinical Research ed.) 377: o1079. DOI: 10.1136/bmj.o1079.

    View in Article CrossRef Google Scholar

    [266] Bee, Y.M., Tai, E.S., and Wong, T.Y. (2022). Singapore's "war on diabetes". Lancet Diabetes Endocrinol. 10: 391−392. DOI: 10.1016/S2213-8587(22)00133-4.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Xiao N., Ding Y., Cui B., et al., (2024). Navigating obesity: A comprehensive review of epidemiology, pathophysiology, complications and management strategies. The Innovation Medicine 2(3): 100090. https://doi.org/10.59717/j.xinn-med.2024.100090
    Xiao N., Ding Y., Cui B., et al., (2024). Navigating obesity: A comprehensive review of epidemiology, pathophysiology, complications and management strategies. The Innovation Medicine 2(3): 100090. https://doi.org/10.59717/j.xinn-med.2024.100090

Figures(7)     Tables(1)

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(7501) PDF downloads(3238) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint