REPORT   Open Access     Cite

Loss of Axin1 in limb mesenchymal cells leads to multiple synostoses syndrome-like phenotype in mice

    Show all affliationsShow less
More Information
    1. Loss-of-Axin1 or Axin1/Axin2 in limb MSCs in mice results in a phenotype resembling SYNS.

      Loss-of-Axins in limb MSCs in mice lead to the activation of β-catenin-BMP signaling in the cKO mice model.

      The SYNS phenotype in Axin1 cKO mice could be partially reversed by β-catenin or BMP signaling inhibitor.

      The genetic mouse model with SYNS-like phenotype could serve as important tools for SYNS disease.

  • Multiple synostoses syndrome (SYNS) is a disease characterized by the fusion of multiple joints. Unfortunately, the underlying and critical signaling pathways of this disorder remain poorly understood. Given the pivotal role of Wnt/β-catenin signaling in skeletal development and the key regulatory effect of Axin1 and Axin2 in the β-catenin pathway, limb mesenchymal stem cell (MSC) specific Axin1 conditional KO (cKO) mice and Axin1/Axin2 double KO (dKO) mice were generated to explore their involvement in joint formation. Abnormalities, such as developmental defects in joints and fusions in multiple joint tissues were observed in both Axin1 cKO and Axin1/Axin2 dKO mice, which resemble to the characteristics of human SYNS disease including synostoses of carpal and tarsal bones, as well as ankylosis of elbow joint and knee joint. Administration of β-catenin or BMP inhibitor significantly reversed the joint fusion phenotype in Axin1 cKO mice. Our findings suggest that Axin1 plays a key role in joint formation by inhibiting β-catenin-BMP signaling and could potentially serve as a therapeutic target for SYNS.
  • 加载中
  • [1] Elkington, S.G., and Huntsman, R.G. (1967). The Talbot fingers: A study in symphalangism. Br. Med. J. 1: 407−411. DOI: 10.1136/bmj.1.5537.407.

    View in Article CrossRef Google Scholar

    [2] Pan, Z., Lu, W., Li, X., et al. (2020). Multiple synostoses syndrome: Clinical report and retrospective analysis. Am. J. Med. Genet. A 182: 1438−1448. DOI: 10.1002/ajmg.a.61583.

    View in Article CrossRef Google Scholar

    [3] Higashi, K., and Inoue, S. (1983). Conductive deafness, symphalangism, and facial abnormalities: The WL syndrome in a Japanese family. Am. J. Med. Genet. 16: 105−109. DOI: 10.1002/ajmg.1320160116.

    View in Article CrossRef Google Scholar

    [4] Dobson, S.M., Kiss, C., Borschneck, D., et al. (2022). Novel FGF9 variant contributes to multiple synostoses syndrome 3. Am. J. Med. Genet. A 188: 2162−2167. DOI: 10.1002/ajmg.a.62729.

    View in Article CrossRef Google Scholar

    [5] Lee, B.H., Kim, O.H., Yoon, H.K., et al. (2014). Variable phenotypes of multiple synostosis syndrome in patients with novel NOG mutations. Joint Bone Spine 81: 533−536. DOI: 10.1016/j.jbspin.2014.07.006.

    View in Article CrossRef Google Scholar

    [6] Debeer, P., Huysmans, C., Van de Ven, W.J., et al. (2005). Carpal and tarsal synostoses and transverse reduction defects of the toes in two brothers heterozygous for a double de novo NOGGIN mutation. Am. J. Med. Genet. A 134: 318−320. DOI: 10.1002/ajmg.a.30645.

    View in Article CrossRef Google Scholar

    [7] Dawson, K., Seeman, P., Sebald, E., et al. (2006). GDF5 is a second locus for multiple-synostosis syndrome. Am. J. Hum. Genet. 78: 708−712. DOI: 10.1086/503204.

    View in Article CrossRef Google Scholar

    [8] Clarke, R.A., Fang, Z., Murrell, D., et al. (2021). GDF6 knockdown in a family with multiple synostosis syndrome and speech impairment. Genes (Basel) 12 : 1354. DOI: 10.3390/genes12091354.

    View in Article Google Scholar

    [9] Rodriguez-Zabala, M., Aza-Carmona, M., Rivera-Pedroza, C.I., et al. (2017). FGF9 mutation causes craniosynostosis along with multiple synostoses. Hum. Mutat. 38: 1471−1476. DOI: 10.1002/humu.23292.

    View in Article CrossRef Google Scholar

    [10] Tang, L., Wu, X., Zhang, H., et al. (2017). A point mutation in Fgf9 impedes joint interzone formation leading to multiple synostoses syndrome. Hum. Mol. Genet. 26: 1280−1293. DOI: 10.1093/hmg/ddx029.

    View in Article CrossRef Google Scholar

    [11] Thuresson, A.C., Croft, B., Hailer, Y.D., et al. (2021). A novel heterozygous variant in FGF9 associated with previously unreported features of multiple synostosis syndrome 3. Clin. Genet. 99: 325−329. DOI: 10.1111/cge.13880.

    View in Article CrossRef Google Scholar

    [12] Sentchordi-Montane, L., Diaz-Gonzalez, F., Catedra-Valles, E.V., et al. (2021). Identification of the third FGF9 variant in a girl with multiple synostosis-comparison of the genotype: Phenotype of FGF9 variants in humans and mice. Clin. Genet. 99(2): 309−312. DOI: 10.1111/cge.13876.

    View in Article CrossRef Google Scholar

    [13] Yu, H.M., Jerchow, B., Sheu, T.J., et al. (2005). The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development 132: 1995−2005. DOI: 10.1242/dev.01786.

    View in Article CrossRef Google Scholar

    [14] Yan, Y., Tang, D., Chen, M., et al. (2009). Axin2 controls bone remodeling through the beta-catenin-BMP signaling pathway in adult mice. J. Cell Sci. 122 : 3566-3578. DOI: 10.1242/jcs.051904.

    View in Article Google Scholar

    [15] Zhou, Y., Shu, B., Xie, R., et al. (2019). Deletion of Axin1 in condylar chondrocytes leads to osteoarthritis-like phenotype in temporomandibular joint via activation of beta-catenin and FGF signaling. J. Cell Physiol. 234: 1720−1729. DOI: 10.1002/jcp.27043.

    View in Article CrossRef Google Scholar

    [16] Biechele, S., Cox, B.J., and Rossant, J. (2011). Porcupine homolog is required for canonical Wnt signaling and gastrulation in mouse embryos. Dev. Biol. 355: 275−285. DOI: 10.1016/j.ydbio.2011.04.029.

    View in Article CrossRef Google Scholar

    [17] Kondo, N., Yuasa, T., Shimono, K., et al. (2011). Intervertebral disc development is regulated by Wnt/beta-catenin signaling. Spine (Phila Pa 1976) 36 : E513-518. DOI: 10.1097/BRS.0b013e3181f52cb5.

    View in Article Google Scholar

    [18] Clevers, H., and Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell 149: 1192−1205. DOI: 10.1016/j.cell.2012.05.012.

    View in Article CrossRef Google Scholar

    [19] Xie, L., Wang, G., Wu, Y., et al. (2021). Programmed surface on poly(aryl-ether-ether-ketone) initiating immune mediation and fulfilling bone regeneration sequentially. The Innovation 2: 100148. DOI: 10.1016/j.xinn.2021.100148.

    View in Article CrossRef Google Scholar

    [20] Xu, Y., Li, Y., Gao, A., et al. (2023). Gasotransmitter delivery for bone diseases and regeneration. The Innovation Life 1: 100015. DOI: 10.59717/j.xinn-life.2023.100015.

    View in Article CrossRef Google Scholar

    [21] Baron, R., and Kneissel, M. (2013). WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19: 179−192. DOI: 10.1038/nm.3074.

    View in Article CrossRef Google Scholar

    [22] Regard, J.B., Zhong, Z., Williams, B.O., et al. (2012). Wnt signaling in bone development and disease: Making stronger bone with Wnts. Cold Spring Harb. Perspect. Biol. 4 . DOI: 10.1101/cshperspect.a007997.

    View in Article Google Scholar

    [23] Xie, R., Yi, D., Zeng, D., et al. (2022). Specific deletion of Axin1 leads to activation of beta-catenin/BMP signaling resulting in fibular hemimelia phenotype in mice. Elife 11 : e80013. DOI: 10.7554/eLife.80013.

    View in Article Google Scholar

    [24] Xie, R., Jiang, R., and Chen, D. (2011). Generation of Axin1 conditional mutant mice. Genesis 49: 98−102. DOI: 10.1002/dvg.20703.

    View in Article CrossRef Google Scholar

    [25] Zeng, L., Fagotto, F., Zhang, T., et al. (1997). The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90: 181−192. DOI: 10.1016/s0092-8674(00)80324-4.

    View in Article CrossRef Google Scholar

    [26] Logan, M., Martin, J.F., Nagy, A., et al. (2002). Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33: 77−80. DOI: 10.1002/gene.10092.

    View in Article CrossRef Google Scholar

    [27] Brault, V., Moore, R., Kutsch, S., et al. (2001). Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128: 1253−1264. DOI: 10.1242/dev.128.8.1253.

    View in Article CrossRef Google Scholar

    [28] McLeod, M.J. (1980). Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S. Teratology 22: 299−301. DOI: 10.1002/tera.1420220306.

    View in Article CrossRef Google Scholar

    [29] Behrens, J., Jerchow, B.A., Wurtele, M., et al. (1998). Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 280: 596−599. DOI: 10.1126/science.280.5363.596.

    View in Article CrossRef Google Scholar

    [30] Li, V.S., Ng, S.S., Boersema, P.J., et al. (2012). Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell 149: 1245−1256. DOI: 10.1016/j.cell.2012.05.002.

    View in Article CrossRef Google Scholar

    [31] Kim, S.E., Huang, H., Zhao, M., et al. (2013). Wnt stabilization of beta-catenin reveals principles for morphogen receptor-scaffold assemblies. Science 340: 867−870. DOI: 10.1126/science.1232389.

    View in Article CrossRef Google Scholar

    [32] Gonsalves, F.C., Klein, K., Carson, B.B., et al. (2011). An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway. Proc. Natl. Acad. Sci. U. S. A. 108: 5954−5963. DOI: 10.1073/pnas.1017496108.

    View in Article CrossRef Google Scholar

    [33] Liu, J., Pan, S., Hsieh, M.H., et al. (2013). Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc. Natl. Acad. Sci. U. S. A. 110: 20224−20229. DOI: 10.1073/pnas.1314239110.

    View in Article CrossRef Google Scholar

    [34] Gong, Y., Krakow, D., Marcelino, J., et al. (1999). Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. Nat. Genet. 21: 302−304. DOI: 10.1038/6821.

    View in Article CrossRef Google Scholar

    [35] Brunet, L.J., McMahon, J.A., McMahon, A.P., et al. (1998). Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280: 1455−1457. DOI: 10.1126/science.280.5368.1455.

    View in Article CrossRef Google Scholar

    [36] Yu, P.B., Hong, C.C., Sachidanandan, C., et al. (2008). Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol. 4: 33−41. DOI: 10.1038/nchembio.2007.54.

    View in Article CrossRef Google Scholar

    [37] Bandyopadhyay, A., Tsuji, K., Cox, K., et al. (2006). Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet. 2: e216. DOI: 10.1371/journal.pgen.0020216.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Yi D., Xie R., Zeng D., et al., (2024). Loss of Axin1 in limb mesenchymal cells leads to multiple synostoses syndrome-like phenotype in mice. The Innovation Medicine 2(1): 100053. https://doi.org/10.59717/j.xinn-med.2024.100053
    Yi D., Xie R., Zeng D., et al., (2024). Loss of Axin1 in limb mesenchymal cells leads to multiple synostoses syndrome-like phenotype in mice. The Innovation Medicine 2(1): 100053. https://doi.org/10.59717/j.xinn-med.2024.100053

Figures(6)    

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(2575) PDF downloads(396) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint