Loss-of-Axin1 or Axin1/Axin2 in limb MSCs in mice results in a phenotype resembling SYNS.
Loss-of-Axins in limb MSCs in mice lead to the activation of β-catenin-BMP signaling in the cKO mice model.
The SYNS phenotype in Axin1 cKO mice could be partially reversed by β-catenin or BMP signaling inhibitor.
The genetic mouse model with SYNS-like phenotype could serve as important tools for SYNS disease.
[1] | Elkington, S.G., and Huntsman, R.G. (1967). The Talbot fingers: A study in symphalangism. Br. Med. J. 1: 407−411. DOI: 10.1136/bmj.1.5537.407. |
[2] | Pan, Z., Lu, W., Li, X., et al. (2020). Multiple synostoses syndrome: Clinical report and retrospective analysis. Am. J. Med. Genet. A 182: 1438−1448. DOI: 10.1002/ajmg.a.61583. |
[3] | Higashi, K., and Inoue, S. (1983). Conductive deafness, symphalangism, and facial abnormalities: The WL syndrome in a Japanese family. Am. J. Med. Genet. 16: 105−109. DOI: 10.1002/ajmg.1320160116. |
[4] | Dobson, S.M., Kiss, C., Borschneck, D., et al. (2022). Novel FGF9 variant contributes to multiple synostoses syndrome 3. Am. J. Med. Genet. A 188: 2162−2167. DOI: 10.1002/ajmg.a.62729. |
[5] | Lee, B.H., Kim, O.H., Yoon, H.K., et al. (2014). Variable phenotypes of multiple synostosis syndrome in patients with novel NOG mutations. Joint Bone Spine 81: 533−536. DOI: 10.1016/j.jbspin.2014.07.006. |
[6] | Debeer, P., Huysmans, C., Van de Ven, W.J., et al. (2005). Carpal and tarsal synostoses and transverse reduction defects of the toes in two brothers heterozygous for a double de novo NOGGIN mutation. Am. J. Med. Genet. A 134: 318−320. DOI: 10.1002/ajmg.a.30645. |
[7] | Dawson, K., Seeman, P., Sebald, E., et al. (2006). GDF5 is a second locus for multiple-synostosis syndrome. Am. J. Hum. Genet. 78: 708−712. DOI: 10.1086/503204. |
[8] | Clarke, R.A., Fang, Z., Murrell, D., et al. (2021). GDF6 knockdown in a family with multiple synostosis syndrome and speech impairment. Genes (Basel) 12 : 1354. DOI: 10.3390/genes12091354. |
[9] | Rodriguez-Zabala, M., Aza-Carmona, M., Rivera-Pedroza, C.I., et al. (2017). FGF9 mutation causes craniosynostosis along with multiple synostoses. Hum. Mutat. 38: 1471−1476. DOI: 10.1002/humu.23292. |
[10] | Tang, L., Wu, X., Zhang, H., et al. (2017). A point mutation in Fgf9 impedes joint interzone formation leading to multiple synostoses syndrome. Hum. Mol. Genet. 26: 1280−1293. DOI: 10.1093/hmg/ddx029. |
[11] | Thuresson, A.C., Croft, B., Hailer, Y.D., et al. (2021). A novel heterozygous variant in FGF9 associated with previously unreported features of multiple synostosis syndrome 3. Clin. Genet. 99: 325−329. DOI: 10.1111/cge.13880. |
[12] | Sentchordi-Montane, L., Diaz-Gonzalez, F., Catedra-Valles, E.V., et al. (2021). Identification of the third FGF9 variant in a girl with multiple synostosis-comparison of the genotype: Phenotype of FGF9 variants in humans and mice. Clin. Genet. 99(2): 309−312. DOI: 10.1111/cge.13876. |
[13] | Yu, H.M., Jerchow, B., Sheu, T.J., et al. (2005). The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development 132: 1995−2005. DOI: 10.1242/dev.01786. |
[14] | Yan, Y., Tang, D., Chen, M., et al. (2009). Axin2 controls bone remodeling through the beta-catenin-BMP signaling pathway in adult mice. J. Cell Sci. 122 : 3566-3578. DOI: 10.1242/jcs.051904. |
[15] | Zhou, Y., Shu, B., Xie, R., et al. (2019). Deletion of Axin1 in condylar chondrocytes leads to osteoarthritis-like phenotype in temporomandibular joint via activation of beta-catenin and FGF signaling. J. Cell Physiol. 234: 1720−1729. DOI: 10.1002/jcp.27043. |
[16] | Biechele, S., Cox, B.J., and Rossant, J. (2011). Porcupine homolog is required for canonical Wnt signaling and gastrulation in mouse embryos. Dev. Biol. 355: 275−285. DOI: 10.1016/j.ydbio.2011.04.029. |
[17] | Kondo, N., Yuasa, T., Shimono, K., et al. (2011). Intervertebral disc development is regulated by Wnt/beta-catenin signaling. Spine (Phila Pa 1976) 36 : E513-518. DOI: 10.1097/BRS.0b013e3181f52cb5. |
[18] | Clevers, H., and Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell 149: 1192−1205. DOI: 10.1016/j.cell.2012.05.012. |
[19] | Xie, L., Wang, G., Wu, Y., et al. (2021). Programmed surface on poly(aryl-ether-ether-ketone) initiating immune mediation and fulfilling bone regeneration sequentially. The Innovation 2: 100148. DOI: 10.1016/j.xinn.2021.100148. |
[20] | Xu, Y., Li, Y., Gao, A., et al. (2023). Gasotransmitter delivery for bone diseases and regeneration. The Innovation Life 1: 100015. DOI: 10.59717/j.xinn-life.2023.100015. |
[21] | Baron, R., and Kneissel, M. (2013). WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19: 179−192. DOI: 10.1038/nm.3074. |
[22] | Regard, J.B., Zhong, Z., Williams, B.O., et al. (2012). Wnt signaling in bone development and disease: Making stronger bone with Wnts. Cold Spring Harb. Perspect. Biol. 4 . DOI: 10.1101/cshperspect.a007997. |
[23] | Xie, R., Yi, D., Zeng, D., et al. (2022). Specific deletion of Axin1 leads to activation of beta-catenin/BMP signaling resulting in fibular hemimelia phenotype in mice. Elife 11 : e80013. DOI: 10.7554/eLife.80013. |
[24] | Xie, R., Jiang, R., and Chen, D. (2011). Generation of Axin1 conditional mutant mice. Genesis 49: 98−102. DOI: 10.1002/dvg.20703. |
[25] | Zeng, L., Fagotto, F., Zhang, T., et al. (1997). The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90: 181−192. DOI: 10.1016/s0092-8674(00)80324-4. |
[26] | Logan, M., Martin, J.F., Nagy, A., et al. (2002). Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33: 77−80. DOI: 10.1002/gene.10092. |
[27] | Brault, V., Moore, R., Kutsch, S., et al. (2001). Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128: 1253−1264. DOI: 10.1242/dev.128.8.1253. |
[28] | McLeod, M.J. (1980). Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S. Teratology 22: 299−301. DOI: 10.1002/tera.1420220306. |
[29] | Behrens, J., Jerchow, B.A., Wurtele, M., et al. (1998). Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 280: 596−599. DOI: 10.1126/science.280.5363.596. |
[30] | Li, V.S., Ng, S.S., Boersema, P.J., et al. (2012). Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell 149: 1245−1256. DOI: 10.1016/j.cell.2012.05.002. |
[31] | Kim, S.E., Huang, H., Zhao, M., et al. (2013). Wnt stabilization of beta-catenin reveals principles for morphogen receptor-scaffold assemblies. Science 340: 867−870. DOI: 10.1126/science.1232389. |
[32] | Gonsalves, F.C., Klein, K., Carson, B.B., et al. (2011). An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway. Proc. Natl. Acad. Sci. U. S. A. 108: 5954−5963. DOI: 10.1073/pnas.1017496108. |
[33] | Liu, J., Pan, S., Hsieh, M.H., et al. (2013). Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc. Natl. Acad. Sci. U. S. A. 110: 20224−20229. DOI: 10.1073/pnas.1314239110. |
[34] | Gong, Y., Krakow, D., Marcelino, J., et al. (1999). Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. Nat. Genet. 21: 302−304. DOI: 10.1038/6821. |
[35] | Brunet, L.J., McMahon, J.A., McMahon, A.P., et al. (1998). Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280: 1455−1457. DOI: 10.1126/science.280.5368.1455. |
[36] | Yu, P.B., Hong, C.C., Sachidanandan, C., et al. (2008). Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol. 4: 33−41. DOI: 10.1038/nchembio.2007.54. |
[37] | Bandyopadhyay, A., Tsuji, K., Cox, K., et al. (2006). Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet. 2: e216. DOI: 10.1371/journal.pgen.0020216. |
Yi D., Xie R., Zeng D., et al., (2024). Loss of Axin1 in limb mesenchymal cells leads to multiple synostoses syndrome-like phenotype in mice. The Innovation Medicine 2(1): 100053. https://doi.org/10.59717/j.xinn-med.2024.100053 |
Deletion of Axin1 in limb mesenchymal progenitor cells resulted in defects in the upper joint
Multiple synostoses-like phenotype in upper limb of Axin1 cKO mice and Axin1/Axin2 dKO mice
Fusion of carpal and tarsal bone in Axin1 cKO mice and Axin1/Axin2 dKO mice
Inhibition of β-catenin signaling rescued upper joint defects in Axin1 cKO mice
Inhibition of BMP signaling rescued upper joint defects in Axin1 cKO mice
Upregulation of BMP2 induced by inhibition of Axin1 (or Axin1/Axin2) was mediated by Runx2