[1] | Tarolli, P., and Zhao, W. (2023). Drought in agriculture: Preservation, adaptation, migration. The Innovation Geoscience 1(1): 100002. DOI: 10.59717/j.xinn-geo.2023.100002. |
[2] | Hartmann, H., Moura, C. F., Anderegg, W. R., et al. (2018). Research frontiers for improving our understanding of drought‐induced tree and forest mortality. New Phytologist 218(1): 15−28. DOI: 10.1111/nph.15048. |
[3] | Wolf, S., and Paul-Limoges, E. (2023). Drought and heat reduce forest carbon uptake. Nature Communications 14(1): 6217. DOI: 10.1038/s41467-023-41851-0. |
[4] | Au, J., Bloom, A. A., Parazoo, N. C., et al. (2023). Forest productivity recovery or collapse. Model‐data integration insights on drought‐induced tipping points. Global Change Biology 29(19): 5652−5665. DOI: 10.1111/gcb.16867. |
[5] | Zhang X, Chen N, Chen Z, et al. (2018). Geospatial sensor web: A cyber-physical infrastructure for geoscience research and application. Earth-Science Reviews 185: 684−703. DOI: 10.1016/j.earscirev.2018.07.006. |
Zhang X., Liu J., Zeng J., et al., (2024). Impact of drought-induced forest mortality on terrestrial carbon cycle from remote sensing perspective. The Innovation Geoscience 2(1): 100057. https://doi.org/10.59717/j.xinn-geo.2024.100057 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
Physiology process behind drought induced forest mortality, corresponding remote sensing observations, and three research challenges.