ARTICLE   Open Access     Cite

All roads lead to Rome: Cyclic di-GMP differentially regulates extracellular electron transfer in Geobacter biofilms

More Information
  • Corresponding author: liang.shi@cug.edu.cn
    1. Microbial extracellular electron transfer is an important biological process.

      Geobacter spp. mediates the biogeochemical cycling of elements and shows promise in biotechnology applications.

      Cyclic di-GMP, an intracellular secondary messenger, regulates biofilm formation in diverse bacterial species.

      Increased or decreased cyclic di-GMP levels both enhance extracellular electron transfer in Geobacter sulfurreducens biofilms.

  • Microbial extracellular electron transfer (EET) in dissimilatory metal-reducing microorganisms (DMRMs) is a widespread biological process and is involved in biogeochemical cycling of a variety of elements on the planet of Earth. However, the regulatory networks controlling such important process have been under-investigated. Here, we reported that the intracellular messenger bis-(3′-5′) cyclic dimeric guanosine monophosphate (c-di-GMP) signaling network controls EET in Geobacter sulfurreducens. The low and high levels of c-di-GMP both improved EET in G. sulfurreducens electrode-respiring biofilms by differentially regulating the expression of EET-associated genes. In particular, we found that a low c-di-GMP level reduced the formation of the anode biofilm but enhanced EET by upregulating the transcription of all known nanowire genes (i.e., pilA, omcS, omcZ and omcE). Upregulated omcZ transcription was further determined to play a decisive role in improving EET. Given that c-di-GMP is present in diverse DMRMs, this study substantially expands our understanding of the regulatory role of c-di-GMP signaling and the varied strategies for efficient EET employed by DMRMs. In addition to be fundamentally significant to understand microbe-mineral and microbe-microbe interactions driven by EET, it is also instructive to develop effective engineered microbial systems for practical applications.
  • 加载中
  • [1] Shi, L., Dong, H., Reguera, G., et al. (2016). Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 14: 651−662. DOI: 10.1038/nrmicro.2016.93.

    View in Article CrossRef Google Scholar

    [2] Wang, W., Du, Y., Yang, S., et al. (2019). Bacterial extracellular electron transfer occurs in mammalian gut. Anal. Chem. 91: 12138−12141. DOI: 10.1021/acs.analchem.9b03176.

    View in Article CrossRef Google Scholar

    [3] Chabert, N., Amin Ali, O., and Achouak, W. (2015). All ecosystems potentially host electrogenic bacteria. Bioelectrochemistry 106: 88−96. DOI: 10.1016/j.bioelechem.2015.07.004.

    View in Article CrossRef Google Scholar

    [4] Lin, X., Yang, F., You, L.-x., et al. (2021). Liposoluble quinone promotes the reduction of hydrophobic mineral and extracellular electron transfer of Shewanella oneidensis MR-1. The Innovation 2: 100−104. DOI: 10.1016/j.xinn.2021.100104.

    View in Article CrossRef Google Scholar

    [5] Lovley, D.R., Stolz, J.F., Nord, G.L., et al. (1987). Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330: 252−254. DOI: 10.1038/330252a0.

    View in Article CrossRef Google Scholar

    [6] Lovley, D.R., and Phillips, E.J.P. (1988). Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microb. 54: 1472−1480. DOI: 10.1128/aem.54.6.1472-1480.1988.

    View in Article CrossRef Google Scholar

    [7] He, Y., Gong, Y., Su, Y., et al. (2019). Bioremediation of Cr (VI) contaminated groundwater by Geobacter sulfurreducens: Environmental factors and electron transfer flow studies. Chemosphere 221: 793−801. DOI: 10.1016/j.chemosphere.2019.01.039.

    View in Article CrossRef Google Scholar

    [8] Jiang, Z., Shi, M., and Shi, L. (2020). Degradation of organic contaminants and steel corrosion by the dissimilatory metal-reducing microorganisms Shewanella and Geobacter spp. Int Biodeter Biodegr 147: 104842. DOI: 10.1016/j.ibiod.2019.104842.

    View in Article CrossRef Google Scholar

    [9] Rotaru, A.-E., Shrestha, P.M., Liu, F., et al. (2014). A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energ. Environ. Sci. 7: 408−415. DOI: 10.1039/C3EE42189A.

    View in Article CrossRef Google Scholar

    [10] Ueki, T. (2021). Cytochromes in extracellular electron transfer in Geobacter. Appl. Environ. Microb. 87: e03109−03120. DOI: 10.1128/AEM.03109-20.

    View in Article CrossRef Google Scholar

    [11] Dulay, H., Tabares, M., Kashefi, K., et al. (2020). Cobalt resistance via detoxification and mineralization in the iron-reducing bacterium Geobacter sulfurreducens. Front. Microbiol. 11: 600463. DOI: 10.3389/fmicb.2020.600463.

    View in Article CrossRef Google Scholar

    [12] Peng, L., Zhang, X.-T., Yin, J., et al. (2016). Geobacter sulfurreducens adapts to low electrode potential for extracellular electron transfer. Electrochim. Acta. 191: 743−749. DOI: 10.1016/j.electacta.2016.01.033.

    View in Article CrossRef Google Scholar

    [13] Liu, Y., Kim, H., Franklin, R.R., et al. (2011). Linking spectral and electrochemical analysis to monitor c-type cytochrome redox status in living Geobacter sulfurreducens biofilms. ChemPhysChem 12: 2235−2241. DOI: 10.1002/cphc.201100246.

    View in Article CrossRef Google Scholar

    [14] Reguera, G., McCarthy, K.D., Mehta, T., et al. (2005). Extracellular electron transfer via microbial nanowires. Nature 435: 1098−1101. DOI: 10.1038/nature03661.

    View in Article CrossRef Google Scholar

    [15] Thirumurthy, M.A., and Jones, A.K. (2020). Geobacter cytochrome OmcZs binds riboflavin: Implications for extracellular electron transfer. Nanotechnology 31: 124001. DOI: 10.1088/1361-6528/ab5de6.

    View in Article CrossRef Google Scholar

    [16] Jenal, U., Reinders, A., and Lori, C. (2017). Cyclic di-GMP: Second messenger extraordinaire. Nat. Rev. Microb. 15: 271−284. DOI: 10.1038/nrmicro.2016.190.

    View in Article CrossRef Google Scholar

    [17] Hengge, R. (2009). Principles of c-di-GMP signalling in bacteria. Nat. Rev. Microb. 7: 263−273. DOI: 10.1038/nrmicro2109.

    View in Article CrossRef Google Scholar

    [18] Liang, Z.-X. (2015). The expanding roles of c-di-GMP in the biosynthesis of exopolysaccharides and secondary metabolites. Nat. Prod. Rep. 32: 663−683. DOI: 10.1039/C4NP00086B.

    View in Article CrossRef Google Scholar

    [19] Cotter, P.A. and Stibitz, S. (2007). C-di-GMP-mediated regulation of virulence and biofilm formation. Curr. Opin. Microbiol. 10: 17−23. DOI: 10.1016/j.mib.2006.12.006.

    View in Article CrossRef Google Scholar

    [20] Kellenberger, C.A., Wilson, S.C., Hickey, S.F., et al. (2015). GEMM-I riboswitches from Geobacter sense the bacterial second messenger cyclic AMP-GMP. Proc. Nati. Acad. Sci. 112: 5383−5388. DOI: 10.1073/pnas.1419328112.

    View in Article CrossRef Google Scholar

    [21] Tian, L., Yan, X., Wang, D., et al. (2022). Two key Geobacter species of wastewater-enriched electroactive biofilm respond differently to electric field. Water Res. 213: 118185. DOI: 10.1016/j.watres.2022.118185.

    View in Article CrossRef Google Scholar

    [22] Leang, C., Malvankar, N.S., Franks, A.E., et al. (2013). Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production. Energ. Environ. Sci. 6: 1901−1908. DOI: 10.1039/c3ee40441b.

    View in Article CrossRef Google Scholar

    [23] Hallberg, Z.F., Chan, C.H., Wright, T.A., et al. (2019). Structure and mechanism of a Hypr GGDEF enzyme that activates cGAMP signaling to control extracellular metal respiration. eLife 8: e43959. DOI: 10.7554/eLife.43959.

    View in Article CrossRef Google Scholar

    [24] Zacharoff, L., Chan, C.H., and Bond, D.R. (2016). Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens. Bioelectrochemistry 107: 7−13. DOI: 10.1016/j.bioelechem.2015.08.003.

    View in Article CrossRef Google Scholar

    [25] Yang, Y., Ding, Y., Hu, Y., et al. (2015). Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth. Biol. 4: 815−823. DOI: 10.1021/sb500331x.

    View in Article CrossRef Google Scholar

    [26] Sondermann, H., Shikuma, N.J., and Yildiz, F.H. (2012). You’ve come a long way: C-di-GMP signaling. Curr. Opin. Microbiol. 15: 140−146. DOI: 10.1016/j.mib.2011.12.008.

    View in Article CrossRef Google Scholar

    [27] Lovley, D., Nevin, K.P., Kim, B.C., et al. (2009). Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS ONE 4: e5628. DOI: 10.1371/journal.pone.0005628.

    View in Article CrossRef Google Scholar

    [28] Mukherjee, M., Hu, Y., Tan, C.H., et al. (2018). Engineering a light-responsive, quorum quenching biofilm to mitigate biofouling on water purification membranes. Sci. Adv. 4: eaau1459. DOI: 10.1126/sciadv.aau1459.

    View in Article CrossRef Google Scholar

    [29] Yu, Y.-Y., Wang, Y.-Z., Fang, Z., et al. (2020). Single cell electron collectors for highly efficient wiring-up electronic abiotic/biotic interfaces. Nat. Comm. 11: 4087. DOI: 10.1038/s41467-020-17897-9.

    View in Article CrossRef Google Scholar

    [30] Peng, Z., Liu, Z., Jiang, Y., et al. (2022). In vivo interactions between Cyc2 and Rus as well as Rus and Cyc1 of Acidithiobacillus ferrooxidans during extracellular oxidization of ferrous iron. Int. Biodeter. Biodegr. 173: 105453. DOI: 10.1016/j.ibiod.2022.105453.

    View in Article CrossRef Google Scholar

    [31] Hengge, R., Galperin, M.Y., Ghigo, J.M., et al. (2016). Systematic nomenclature for GGDEF and EAL domain-containing cyclic di-GMP turnover proteins of Escherichia coli. J. Bacteriol. 198: 7−11. DOI: 10.1128/jb.00424-15.

    View in Article CrossRef Google Scholar

    [32] Reguera, G., Nevin, K.P., Nicoll, J.S., et al. (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 72: 7345−7348. DOI: 10.1128/AEM.01444-06.

    View in Article CrossRef Google Scholar

    [33] Gu, Y., Srikanth, V., Salazar-Morales, A.I., et al. (2021). Structure of Geobacter pili reveals secretory rather than nanowire behaviour. Nature 597: 430−434. DOI: 10.1038/s41586-021-03857-w.

    View in Article CrossRef Google Scholar

    [34] Wang, F., Mustafa, K., Suciu, V., et al. (2022). Cryo-EM structure of an extracellular Geobacter OmcE cytochrome filament reveals tetrahaem packing. Nat. Microbiol. 7: 1291−1300. DOI: 10.1038/s41564-022-01159-z.

    View in Article CrossRef Google Scholar

    [35] Nevin, K.P., Kim, B.-C., Glaven, R.H., et al. (2009). Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS ONE 4: e5628. DOI: 10.1371/journal.pone.0005628.

    View in Article CrossRef Google Scholar

    [36] Richter, H., Nevin, K.P., Jia, H., et al. (2009). Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energ. Environ. Sci. 2: 506−516. DOI: 10.1039/B816647A.

    View in Article CrossRef Google Scholar

    [37] Yalcin, S.E. and Malvankar, N.S. (2020). The blind men and the filament: Understanding structures and functions of microbial nanowires. Curr. Opin. Chem. Biolog. 59: 193−201. DOI: 10. 1016/j. cbpa. 2020. 08. 004. DOI: 10.1016/j.cbpa.2020.08.004.

    View in Article CrossRef Google Scholar

    [38] LLOYD, J.R., LEANG, C., MYERSON, A.L.H., et al. (2003). Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. J. Biochem. 369: 153−161. DOI: 10.1042/bj20020597.

    View in Article CrossRef Google Scholar

    [39] Portela, P.C., Fernandes, T.M., Dantas, J.M., et al. (2018). Biochemical and functional insights on the triheme cytochrome PpcA from Geobacter metallireducens. Arch. Biochem. Biophys. 644: 8−16. DOI: 10.1016/j.abb.2018.02.017.

    View in Article CrossRef Google Scholar

    [40] Ding, Y.-H.R., Hixson, K.K., Giometti, C.S., et al. (2006). The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions. Biochim. Biophys. Acta. Proteins Proteom. 1764: 1198−1206. DOI: 10.1016/j.bbapap.2006.04.017.

    View in Article CrossRef Google Scholar

    [41] Hu, Y., Wu, Y., Mukherjee, M., et al. (2017). A near-infrared light responsive c-di-GMP module-based AND logic gate in Shewanella oneidensis. Chem. Comm. 53: 1646−1648. DOI: 10.1039/C6CC08584A.

    View in Article CrossRef Google Scholar

    [42] Liu, T., Yu, Y.-Y., Deng, X.-P., et al. (2015). Enhanced Shewanella biofilm promotes bioelectricity generation. Biotechnol. Bioeng. 112: 2051−2059. DOI: 10.1002/bit.25624.

    View in Article CrossRef Google Scholar

    [43] Ng, C.K., Xu, J., Cai, Z., et al. (2020). Elevated intracellular cyclic-di-GMP level in Shewanella oneidensis increases expression of c-type cytochromes. Microb. Biotech. 13: 1904−1916. DOI: 10.1111/1751-7915.13636.

    View in Article CrossRef Google Scholar

    [44] Matsumoto, A., Koga, R., Kanaly, R.A., et al. (2021). Identification of a diguanylate cyclase that facilitates biofilm formation on electrodes by Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 87: e00201−00221. DOI: 10.1128/AEM.00201-21.

    View in Article CrossRef Google Scholar

    [45] Malvankar, N.S., Tuominen, M.T., and Lovley, D.R. (2012). Lack of cytochrome involvement in long-range electron transport through conductive biofilms and nanowires of Geobacter sulfurreducens. Energ. Environ. Sci. 5: 8651−8659. DOI: 10.1039/C2EE22330A.

    View in Article CrossRef Google Scholar

    [46] Yalcin, S.E., O’Brien, J.P., Gu, Y., et al. (2020). Electric field stimulates production of highly conductive microbial OmcZ nanowires. Nat. Chem. Biol. 16: 1136−1142. DOI: 10.1038/s41589-020-0623-9.

    View in Article CrossRef Google Scholar

    [47] Jiang, J., He, P., Luo, Y., et al. (2023). The varied roles of pilA-N, omcE, omcS, omcT, and omcZ in extracellular electron transfer by Geobacter sulfurreducens. Front. Microbiol. 14: 1251346. DOI: 10.3389/fmicb.2023.1251346.

    View in Article CrossRef Google Scholar

    [48] Wang, Z., Hu, Y., Dong, Y., et al. Enhancing electrical outputs of the fuel cells with Geobacter sulferreducens by overexpressing nanowire proteins. Microb. Biotechnol. 16 : 534. DOI: 10.1111/1751-7915.14128.

    View in Article Google Scholar

    [49] Ye, Y., Liu, X., Nealson, K.H., et al. (2022). Dissecting the structural and conductive functions of nanowires in Geobacter sulfurreducens electroactive biofilms. mBio 13: e03822−03821. DOI: 10.1128/mbio.03822-21.

    View in Article CrossRef Google Scholar

    [50] Liu, X., Walker, D.J.F., Nonnenmann, S.S., et al. (2021). Direct observation of electrically conductive pili emanating from Geobacter sulfurreducens. mBio 12: e02209−02221. DOI: 10.1128/mBio.02209-21.

    View in Article CrossRef Google Scholar

    [51] Lovley, D.R. (2017). Electrically conductive pili: Biological function and potential applications in electronics. Curr. Opin. Electrochem. 4: 190−198. DOI: 10.1016/j.coelec.2017.08.015.

    View in Article CrossRef Google Scholar

    [52] Malvankar, N.S., Mester, T., Tuominen, M.T., et al. (2012). Supercapacitors based on c-Type cytochromes using conductive nanostructured networks of living bacteria. ChemPhysChem 13: 463−468. DOI: 10.1002/cphc.201100865.

    View in Article CrossRef Google Scholar

    [53] Malvankar, N.S., Vargas, M., Nevin, K.P., et al. (2011). Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6: 573−579. DOI: 10.1038/nnano.2011.119.

    View in Article CrossRef Google Scholar

    [54] Hu, Y., Han, X., Shi, L., et al. (2022). Electrochemically active biofilm-enabled biosensors: Current status and opportunities for biofilm engineering. Electrochimi. Acta. 428: 140917. DOI: 10.1016/j.electacta.2022.140917.

    View in Article CrossRef Google Scholar

    [55] Dong, Y., Sanford, R.A., Connor, L., et al. (2021). Differential structure and functional gene response to geochemistry associated with the suspended and attached shallow aquifer microbiomes from the Illinois Basin, IL. Water Res. 202: 117431. DOI: 10.1016/j.watres.2021.117431.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Hu Y., Han X., Luo Y., et al., (2024). All roads lead to Rome: Cyclic di-GMP differentially regulates extracellular electron transfer in Geobacter biofilms. The Innovation Life 2(1): 100052. https://doi.org/10.59717/j.xinn-life.2024.100052
    Hu Y., Han X., Luo Y., et al., (2024). All roads lead to Rome: Cyclic di-GMP differentially regulates extracellular electron transfer in Geobacter biofilms. The Innovation Life 2(1): 100052. https://doi.org/10.59717/j.xinn-life.2024.100052

Figures(7)     Tables(1)

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(2234) PDF downloads(600) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint