Microbial extracellular electron transfer is an important biological process.
Geobacter spp. mediates the biogeochemical cycling of elements and shows promise in biotechnology applications.
Cyclic di-GMP, an intracellular secondary messenger, regulates biofilm formation in diverse bacterial species.
Increased or decreased cyclic di-GMP levels both enhance extracellular electron transfer in Geobacter sulfurreducens biofilms.
[1] | Shi, L., Dong, H., Reguera, G., et al. (2016). Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 14: 651−662. DOI: 10.1038/nrmicro.2016.93. |
[2] | Wang, W., Du, Y., Yang, S., et al. (2019). Bacterial extracellular electron transfer occurs in mammalian gut. Anal. Chem. 91: 12138−12141. DOI: 10.1021/acs.analchem.9b03176. |
[3] | Chabert, N., Amin Ali, O., and Achouak, W. (2015). All ecosystems potentially host electrogenic bacteria. Bioelectrochemistry 106: 88−96. DOI: 10.1016/j.bioelechem.2015.07.004. |
[4] | Lin, X., Yang, F., You, L.-x., et al. (2021). Liposoluble quinone promotes the reduction of hydrophobic mineral and extracellular electron transfer of Shewanella oneidensis MR-1. The Innovation 2: 100−104. DOI: 10.1016/j.xinn.2021.100104. |
[5] | Lovley, D.R., Stolz, J.F., Nord, G.L., et al. (1987). Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330: 252−254. DOI: 10.1038/330252a0. |
[6] | Lovley, D.R., and Phillips, E.J.P. (1988). Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microb. 54: 1472−1480. DOI: 10.1128/aem.54.6.1472-1480.1988. |
[7] | He, Y., Gong, Y., Su, Y., et al. (2019). Bioremediation of Cr (VI) contaminated groundwater by Geobacter sulfurreducens: Environmental factors and electron transfer flow studies. Chemosphere 221: 793−801. DOI: 10.1016/j.chemosphere.2019.01.039. |
[8] | Jiang, Z., Shi, M., and Shi, L. (2020). Degradation of organic contaminants and steel corrosion by the dissimilatory metal-reducing microorganisms Shewanella and Geobacter spp. Int Biodeter Biodegr 147: 104842. DOI: 10.1016/j.ibiod.2019.104842. |
[9] | Rotaru, A.-E., Shrestha, P.M., Liu, F., et al. (2014). A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energ. Environ. Sci. 7: 408−415. DOI: 10.1039/C3EE42189A. |
[10] | Ueki, T. (2021). Cytochromes in extracellular electron transfer in Geobacter. Appl. Environ. Microb. 87: e03109−03120. DOI: 10.1128/AEM.03109-20. |
[11] | Dulay, H., Tabares, M., Kashefi, K., et al. (2020). Cobalt resistance via detoxification and mineralization in the iron-reducing bacterium Geobacter sulfurreducens. Front. Microbiol. 11: 600463. DOI: 10.3389/fmicb.2020.600463. |
[12] | Peng, L., Zhang, X.-T., Yin, J., et al. (2016). Geobacter sulfurreducens adapts to low electrode potential for extracellular electron transfer. Electrochim. Acta. 191: 743−749. DOI: 10.1016/j.electacta.2016.01.033. |
[13] | Liu, Y., Kim, H., Franklin, R.R., et al. (2011). Linking spectral and electrochemical analysis to monitor c-type cytochrome redox status in living Geobacter sulfurreducens biofilms. ChemPhysChem 12: 2235−2241. DOI: 10.1002/cphc.201100246. |
[14] | Reguera, G., McCarthy, K.D., Mehta, T., et al. (2005). Extracellular electron transfer via microbial nanowires. Nature 435: 1098−1101. DOI: 10.1038/nature03661. |
[15] | Thirumurthy, M.A., and Jones, A.K. (2020). Geobacter cytochrome OmcZs binds riboflavin: Implications for extracellular electron transfer. Nanotechnology 31: 124001. DOI: 10.1088/1361-6528/ab5de6. |
[16] | Jenal, U., Reinders, A., and Lori, C. (2017). Cyclic di-GMP: Second messenger extraordinaire. Nat. Rev. Microb. 15: 271−284. DOI: 10.1038/nrmicro.2016.190. |
[17] | Hengge, R. (2009). Principles of c-di-GMP signalling in bacteria. Nat. Rev. Microb. 7: 263−273. DOI: 10.1038/nrmicro2109. |
[18] | Liang, Z.-X. (2015). The expanding roles of c-di-GMP in the biosynthesis of exopolysaccharides and secondary metabolites. Nat. Prod. Rep. 32: 663−683. DOI: 10.1039/C4NP00086B. |
[19] | Cotter, P.A. and Stibitz, S. (2007). C-di-GMP-mediated regulation of virulence and biofilm formation. Curr. Opin. Microbiol. 10: 17−23. DOI: 10.1016/j.mib.2006.12.006. |
[20] | Kellenberger, C.A., Wilson, S.C., Hickey, S.F., et al. (2015). GEMM-I riboswitches from Geobacter sense the bacterial second messenger cyclic AMP-GMP. Proc. Nati. Acad. Sci. 112: 5383−5388. DOI: 10.1073/pnas.1419328112. |
[21] | Tian, L., Yan, X., Wang, D., et al. (2022). Two key Geobacter species of wastewater-enriched electroactive biofilm respond differently to electric field. Water Res. 213: 118185. DOI: 10.1016/j.watres.2022.118185. |
[22] | Leang, C., Malvankar, N.S., Franks, A.E., et al. (2013). Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production. Energ. Environ. Sci. 6: 1901−1908. DOI: 10.1039/c3ee40441b. |
[23] | Hallberg, Z.F., Chan, C.H., Wright, T.A., et al. (2019). Structure and mechanism of a Hypr GGDEF enzyme that activates cGAMP signaling to control extracellular metal respiration. eLife 8: e43959. DOI: 10.7554/eLife.43959. |
[24] | Zacharoff, L., Chan, C.H., and Bond, D.R. (2016). Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens. Bioelectrochemistry 107: 7−13. DOI: 10.1016/j.bioelechem.2015.08.003. |
[25] | Yang, Y., Ding, Y., Hu, Y., et al. (2015). Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth. Biol. 4: 815−823. DOI: 10.1021/sb500331x. |
[26] | Sondermann, H., Shikuma, N.J., and Yildiz, F.H. (2012). You’ve come a long way: C-di-GMP signaling. Curr. Opin. Microbiol. 15: 140−146. DOI: 10.1016/j.mib.2011.12.008. |
[27] | Lovley, D., Nevin, K.P., Kim, B.C., et al. (2009). Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS ONE 4: e5628. DOI: 10.1371/journal.pone.0005628. |
[28] | Mukherjee, M., Hu, Y., Tan, C.H., et al. (2018). Engineering a light-responsive, quorum quenching biofilm to mitigate biofouling on water purification membranes. Sci. Adv. 4: eaau1459. DOI: 10.1126/sciadv.aau1459. |
[29] | Yu, Y.-Y., Wang, Y.-Z., Fang, Z., et al. (2020). Single cell electron collectors for highly efficient wiring-up electronic abiotic/biotic interfaces. Nat. Comm. 11: 4087. DOI: 10.1038/s41467-020-17897-9. |
[30] | Peng, Z., Liu, Z., Jiang, Y., et al. (2022). In vivo interactions between Cyc2 and Rus as well as Rus and Cyc1 of Acidithiobacillus ferrooxidans during extracellular oxidization of ferrous iron. Int. Biodeter. Biodegr. 173: 105453. DOI: 10.1016/j.ibiod.2022.105453. |
[31] | Hengge, R., Galperin, M.Y., Ghigo, J.M., et al. (2016). Systematic nomenclature for GGDEF and EAL domain-containing cyclic di-GMP turnover proteins of Escherichia coli. J. Bacteriol. 198: 7−11. DOI: 10.1128/jb.00424-15. |
[32] | Reguera, G., Nevin, K.P., Nicoll, J.S., et al. (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 72: 7345−7348. DOI: 10.1128/AEM.01444-06. |
[33] | Gu, Y., Srikanth, V., Salazar-Morales, A.I., et al. (2021). Structure of Geobacter pili reveals secretory rather than nanowire behaviour. Nature 597: 430−434. DOI: 10.1038/s41586-021-03857-w. |
[34] | Wang, F., Mustafa, K., Suciu, V., et al. (2022). Cryo-EM structure of an extracellular Geobacter OmcE cytochrome filament reveals tetrahaem packing. Nat. Microbiol. 7: 1291−1300. DOI: 10.1038/s41564-022-01159-z. |
[35] | Nevin, K.P., Kim, B.-C., Glaven, R.H., et al. (2009). Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS ONE 4: e5628. DOI: 10.1371/journal.pone.0005628. |
[36] | Richter, H., Nevin, K.P., Jia, H., et al. (2009). Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energ. Environ. Sci. 2: 506−516. DOI: 10.1039/B816647A. |
[37] | Yalcin, S.E. and Malvankar, N.S. (2020). The blind men and the filament: Understanding structures and functions of microbial nanowires. Curr. Opin. Chem. Biolog. 59: 193−201. DOI: 10. 1016/j. cbpa. 2020. 08. 004. DOI: 10.1016/j.cbpa.2020.08.004. |
[38] | LLOYD, J.R., LEANG, C., MYERSON, A.L.H., et al. (2003). Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. J. Biochem. 369: 153−161. DOI: 10.1042/bj20020597. |
[39] | Portela, P.C., Fernandes, T.M., Dantas, J.M., et al. (2018). Biochemical and functional insights on the triheme cytochrome PpcA from Geobacter metallireducens. Arch. Biochem. Biophys. 644: 8−16. DOI: 10.1016/j.abb.2018.02.017. |
[40] | Ding, Y.-H.R., Hixson, K.K., Giometti, C.S., et al. (2006). The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions. Biochim. Biophys. Acta. Proteins Proteom. 1764: 1198−1206. DOI: 10.1016/j.bbapap.2006.04.017. |
[41] | Hu, Y., Wu, Y., Mukherjee, M., et al. (2017). A near-infrared light responsive c-di-GMP module-based AND logic gate in Shewanella oneidensis. Chem. Comm. 53: 1646−1648. DOI: 10.1039/C6CC08584A. |
[42] | Liu, T., Yu, Y.-Y., Deng, X.-P., et al. (2015). Enhanced Shewanella biofilm promotes bioelectricity generation. Biotechnol. Bioeng. 112: 2051−2059. DOI: 10.1002/bit.25624. |
[43] | Ng, C.K., Xu, J., Cai, Z., et al. (2020). Elevated intracellular cyclic-di-GMP level in Shewanella oneidensis increases expression of c-type cytochromes. Microb. Biotech. 13: 1904−1916. DOI: 10.1111/1751-7915.13636. |
[44] | Matsumoto, A., Koga, R., Kanaly, R.A., et al. (2021). Identification of a diguanylate cyclase that facilitates biofilm formation on electrodes by Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 87: e00201−00221. DOI: 10.1128/AEM.00201-21. |
[45] | Malvankar, N.S., Tuominen, M.T., and Lovley, D.R. (2012). Lack of cytochrome involvement in long-range electron transport through conductive biofilms and nanowires of Geobacter sulfurreducens. Energ. Environ. Sci. 5: 8651−8659. DOI: 10.1039/C2EE22330A. |
[46] | Yalcin, S.E., O’Brien, J.P., Gu, Y., et al. (2020). Electric field stimulates production of highly conductive microbial OmcZ nanowires. Nat. Chem. Biol. 16: 1136−1142. DOI: 10.1038/s41589-020-0623-9. |
[47] | Jiang, J., He, P., Luo, Y., et al. (2023). The varied roles of pilA-N, omcE, omcS, omcT, and omcZ in extracellular electron transfer by Geobacter sulfurreducens. Front. Microbiol. 14: 1251346. DOI: 10.3389/fmicb.2023.1251346. |
[48] | Wang, Z., Hu, Y., Dong, Y., et al. Enhancing electrical outputs of the fuel cells with Geobacter sulferreducens by overexpressing nanowire proteins. Microb. Biotechnol. 16 : 534. DOI: 10.1111/1751-7915.14128. |
[49] | Ye, Y., Liu, X., Nealson, K.H., et al. (2022). Dissecting the structural and conductive functions of nanowires in Geobacter sulfurreducens electroactive biofilms. mBio 13: e03822−03821. DOI: 10.1128/mbio.03822-21. |
[50] | Liu, X., Walker, D.J.F., Nonnenmann, S.S., et al. (2021). Direct observation of electrically conductive pili emanating from Geobacter sulfurreducens. mBio 12: e02209−02221. DOI: 10.1128/mBio.02209-21. |
[51] | Lovley, D.R. (2017). Electrically conductive pili: Biological function and potential applications in electronics. Curr. Opin. Electrochem. 4: 190−198. DOI: 10.1016/j.coelec.2017.08.015. |
[52] | Malvankar, N.S., Mester, T., Tuominen, M.T., et al. (2012). Supercapacitors based on c-Type cytochromes using conductive nanostructured networks of living bacteria. ChemPhysChem 13: 463−468. DOI: 10.1002/cphc.201100865. |
[53] | Malvankar, N.S., Vargas, M., Nevin, K.P., et al. (2011). Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6: 573−579. DOI: 10.1038/nnano.2011.119. |
[54] | Hu, Y., Han, X., Shi, L., et al. (2022). Electrochemically active biofilm-enabled biosensors: Current status and opportunities for biofilm engineering. Electrochimi. Acta. 428: 140917. DOI: 10.1016/j.electacta.2022.140917. |
[55] | Dong, Y., Sanford, R.A., Connor, L., et al. (2021). Differential structure and functional gene response to geochemistry associated with the suspended and attached shallow aquifer microbiomes from the Illinois Basin, IL. Water Res. 202: 117431. DOI: 10.1016/j.watres.2021.117431. |
Hu Y., Han X., Luo Y., et al., (2024). All roads lead to Rome: Cyclic di-GMP differentially regulates extracellular electron transfer in Geobacter biofilms. The Innovation Life 2(1): 100052. https://doi.org/10.59717/j.xinn-life.2024.100052 |
C-di-GMP regulates G. sulfurreducens biofilm formation on nonconductive and conductive surfaces
Performance of MFCs inoculated with different strains
Expression analysis of cytochromes and pilin protein in biofilm cells
Roles of increased omcZ and omcS transcription in enhanced EET at a low c-di-GMP level
Role of increased pilA transcription in enhanced EET at a low c-di-GMP level
Role of increased ppcA transcription in enhanced EET at a high c-di-GMP level
Regulation mode of c-di-GMP in the biofilm formation and EET of G. sulfurreducens