The drift direction of the Pacific plate has changed many times.
Magnetic anomalies show rotations of the Pacific and the Izanagi plates.
The Ontong Java mantle plume induced rotation of the Pacific Ocean.
The drifting history of the Pacific plate agrees well with the geological records of eastern China.
[1] | Niu, Y. (2005). Generation and evolution of basaltic magmas: some basic concepts and a new view on the origin of Mesozoic–Cenozoic basaltic volcanism in eastern China. Geological Journal of China Universities 11: 9−46. |
[2] | Ling, M. X., Li, Y., Ding, X. ,et al. (2013). Destruction of the North China Craton Induced by Ridge Subductions. J. Geol. 121: 197−213. DOI: 10.1086/669248. |
[3] | Wu, F.-y., Sun, D.-y., Li, H. ,et al. (2002). A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem Geol 187: 143−173. DOI: 10.1016/S0009-2541(02)00018-9. |
[4] | Wu, F. Y., Yang, J. H., Xu, Y. G. ,et al. in Annual Review of Earth and Planetary Sciences, Vol 47 Vol. 47 Annual Review of Earth and Planetary Sciences (eds R. Jeanloz & K. H. Freeman) 173-+ (2019). |
[5] | Zhu, R., Zhang, H., Zhu, G. ,et al. (2017). Craton destruction and related resources. International Journal of Earth Sciences 106: 2233−2257. DOI: 10.1007/s00531-016-1441-x. |
[6] | Zhu, R. X., Fan, H. R., Li, J. W. ,et al. (2015). Decratonic gold deposits. Sci China Earth Sci 58: 1523−1537. DOI: 10.1007/s11430-015-5139-x. |
[7] | Zhu, R. X.and Sun, W. D. (2021). The big mantle wedge and decratonic gold deposits. Sci China Earth Sci 64: 1451−1462. DOI: 10.1007/s11430-020-9733-1. |
[8] | Zhu, R. X., Xu, Y. G., Zhu, G. ,et al. (2012). Destruction of the North China Craton. Sci China Earth Sci 55: 1565−1587. DOI: 10.1007/s11430-012-4516-y. |
[9] | Xu, Y.-G. (2007). Diachronous lithospheric thinning of the North China Craton and formation of the Daxin'anling–Taihangshan gravity lineament. Lithos 96: 281−298. DOI: 10.1016/j.lithos.2006.09.013. |
[10] | Xu, Y. G., Li, H. Y., Pang, C. J.and He, B. (2009). On the timing and duration of the destruction of the North China Craton. Chinese Science Bulletin 54: 3379−3396. |
[11] | Zhu, R.and Xu, Y. (2019). The subduction of the west Pacific plate and the destruction of the North China Craton. Science China Earth Sciences 62: 1340−1350. DOI: 10.1007/s11430-018-9356-y. |
[12] | Dai, L.-Q., Zheng, Y.-F.and Zhao, Z.-F. (2016). Termination time of peak decratonization in North China: Geochemical evidence from mafic igneous rocks. Lithos 240: 327−336. |
[13] | Zheng, Y. F., Xu, Z., Zhao, Z. F.and Dai, L. Q. (2018). Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Sci China Earth Sci 61: 353−385. DOI: 10.1007/s11430-017-9160-3. |
[14] | Xu, Y., Zhang, Y., Yang, B.and Bao, X. (2022). Phanerozoic evolution of lithospheric structures of the North China Craton. Geophysical Research Letters 49: e2022GL098341. |
[15] | Zhang, Z.-K., Ling, M.-X., Lin, W. ,et al. (2020). “Yanshanian Movement” induced by the westward subduction of the paleo–Pacific plate. Solid Earth Sciences 5: 103−114. DOI: 10.1016/j.sesci.2020.04.002. |
[16] | Sun, W., Zhang, L.and Liu, X. (2022). The Rotation of the Pacific Plate Induced by the Ontong Java Large Igneous Province. Journal of Earth Science |
[17] | Sun, W. D., Ding, X., Hu, Y. H.and Li, X. H. (2007). The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters 262: 533−542. DOI: 10.1016/j.jpgl.2007.08.021. |
[18] | Deng, J., Su, S., Niu, Y. ,et al. (2007). A possible model for the lithospheric thinning of North China Craton: Evidence from the Yanshanian (Jura-Cretaceous) magmatism and tectonism. Lithos 96: 22−35. DOI: 10.1016/j.lithos.2006.09.009. |
[19] | Li, S., Zhao, G., Dai, L. ,et al. (2012). Mesozoic basins in eastern China and their bearing on the deconstruction of the North China Craton. Journal of Asian Earth Sciences 47: 64−79. DOI: 10.1016/j.jseaes.2011.06.008. |
[20] | Zhou, J., Jin, C., Suo, Y. ,et al. (2021). Yanshanian mineralization and geodynamic evolution in the Western Pacific Margin: A review of metal deposits of Zhejiang Province, China. Ore Geology Reviews 135: 104216. DOI: 10.1016/j.oregeorev.2021.104216. |
[21] | Seton, M., Müller, R., Zahirovic, S. ,et al. (2012). Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 113: 212−270. DOI: 10.1016/j.earscirev.2012.03.002. |
[22] | Maruyama, S., Isozaki, Y., Kimura, G.and Terabayashi, M. (1997). Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Island Arc 6: 121−142. DOI: 10.1111/j.1440-1738.1997.tb00043.x. |
[23] | Seton, M., Flament, N., Whittaker, J. ,et al. (2015). Ridge subduction sparked reorganization of the Pacific plate-mantle system 60-50 million years ago. Geophysical Research Letters 42: 1732−1740. DOI: 10.1002/2015GL063057. |
[24] | Seton, M., Williams, S. E., Domeier, M. ,et al. (2023). Deconstructing plate tectonic reconstructions. Nature Reviews Earth & Environment, 1-20. |
[25] | Hess, H. H. (1946). Drowned ancient islands of the Pacific Basin. Eos, Transactions American Geophysical Union 27: 875−875. DOI: 10.1029/TR027i006p00875. |
[26] | Wilson, J. T. (1963). A possible origin of the Hawaiian islands. Canadian Journal of Physics 41: 863−870. DOI: 10.1139/p63-094. |
[27] | Morgan, W. J. (1971). Convection plumes in the lower mantle. Nature 230: 42−43. DOI: 10.1038/230042a0. |
[28] | Torsvik, T. H., Doubrovine, P. V., Steinberger, B. ,et al. (2017). Pacific plate motion change caused the Hawaiian-Emperor Bend. Nat. Commun. 8: 12. DOI: 10.1038/s41467-017-00025-5. |
[29] | Whittaker, J. M., Müller, R. D., Leitchenkov, G. ,et al. (2007). Major Australian-Antarctic Plate Reorganization at Hawaiian-Emperor Bend Time. Science 318: 83. DOI: 10.1126/science.1143769. |
[30] | Wessel, P., Harada, Y.and Kroenke, L. W. (2006). Toward a self‐consistent, high‐resolution absolute plate motion model for the Pacific. Geochemistry, Geophysics, Geosystems 7 |
[31] | Wessel, P.and Kroenke, L. W. (1997). A geometric technique for relocating hotspots and refining absolute plate motions. Nature 387: 365−369. DOI: 10.1038/387365a0. |
[32] | Wessel, P.and Kroenke, L. W. (2008). Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. Journal of Geophysical Research: Solid Earth 113 |
[33] | Koppers, A. A. P., Morgan, J. P., Morgan, J. W.and Staudigel, H. (2001). Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails. Earth and Planetary Science Letters 185: 237−252. DOI: 10.1016/S0012-821X(00)00387-3. |
[34] | Tarduno, J., Bunge, H.-P., Sleep, N.and Hansen, U. (2009). The Bent Hawaiian-Emperor Hotspot Track: Inheriting the Mantle Wind. Science 324: 50−53. DOI: 10.1126/science.1161256. |
[35] | Tarduno, J. A., Duncan, R. A., Scholl, D. W. ,et al. (2003). The Emperor Seamounts: Southward motion of the Hawaiian hotspot plume in earth's mantle. Science 301: 1064−1069. DOI: 10.1126/science.1086442. |
[36] | Steinberger, B., Sutherland, R.and O'connell, R. J. (2004). Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature 430: 167−173. DOI: 10.1038/nature02660. |
[37] | O'Connor, J. M., Steinberger, B., Regelous, M. ,et al. (2013). Constraints on past plate and mantle motion from new ages for the Hawaiian‐Emperor Seamount Chain. Geochemistry, Geophysics, Geosystems 14: 4564−4584. DOI: 10.1002/ggge.20267. |
[38] | Sun, W., Langmuir, C. H., Ribe, N. M. ,et al. (2021). Plume-ridge interaction induced migration of the Hawaiian-Emperor seamounts. Science Bulletin |
[39] | Zhang, L., Cao, Z., Zartman, R. E. ,et al. (2023). An emerging plume head interacting with the Hawaiian plume tail. The Innovation 4: 100404. |
[40] | Li, Z.-X.and Li, X.-H. (2007). Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology 35: 179−182. |
[41] | Zhou, X.and Li, W. (2000). Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics 326: 269−287. DOI: 10.1016/S0040-1951(00)00120-7. |
[42] | Engebretson, D. C., Cox, A., Gordon, R. G. ,et al. in Relative Motions Between Oceanic and Continental Plates in the Pacific Basin Vol. 206 0 (Geological Society of America, 1985). |
[43] | Nakanishi, M., Tamaki, K.and Kobayashi, K. (1989). Mesozoic magnetic anomaly lineations and seafloor spreading history of the northwestern Pacific. Journal of Geophysical Research: Solid Earth 94: 15437−15462. DOI: 10.1029/JB094iB11p15437. |
[44] | Sharp, W. D.and Clague, D. A. (2006). 50-Ma Initiation of Hawaiian-Emperor Bend Records Major Change in Pacific Plate Motion. Science 313: 1281−1284. DOI: 10.1126/science.1128489. |
[45] | Tozer, B., Sandwell, D. T., Smith, W. H. ,et al. (2019). Global bathymetry and topography at 15 arc sec: SRTM15+. Earth and Space Science 6: 1847−1864. DOI: 10.1029/2019EA000658. |
[46] | Mahoney, J. J., Duncan, R. A., Tejada, M. L. G. ,et al. (2005). Jurassic-Cretaceous boundary age and mid-ocean-ridge–type mantle source for Shatsky Rise. Geology 33: 185−188. |
[47] | Norton, I. O., Foulger, G. R.and Jurdy, D. M. in Plates, Plumes and Planetary Processes Vol. 430 0 (Geological Society of America, 2007). |
[48] | Nakanishi, M., Sager, W. W., Korenaga, J. ,et al. in The Origin, Evolution, and Environmental Impact of Oceanic Large Igneous Provinces Vol. 511 0 (Geological Society of America, 2015). |
[49] | Sager, W. W., Huang, Y. M., Tominaga, M. ,et al. (2019). Oceanic plateau formation by seafloor spreading implied by Tamu Massif magnetic anomalies. Nature Geoscience 12: 661−+. DOI: 10.1038/s41561-019-0390-y. |
[50] | Sano, T., Hanyu, T., Tejada, M. L. G. ,et al. (2020). Two-stages of plume tail volcanism formed Ojin Rise Seamounts adjoining Shatsky Rise. Lithos 372-373, 105652. |
[51] | Liu, L., Gurnis, M., Seton, M. ,et al. (2010). The role of oceanic plateau subduction in the Laramide orogeny. Nature Geoscience 3: 353−357. DOI: 10.1038/ngeo829. |
[52] | Nakanishi, M., Sager, W. W.and Klaus, A. (1999). Magnetic lineations within Shatsky Rise, northwest Pacific Ocean: Implications for hot spot-triple junction interaction and oceanic plateau formation. J. Geophys. Res.-Solid Earth 104: 7539−7556. DOI: 10.1029/1999JB900002. |
[53] | Sun, W.-d., Liu, L.-j., Hu, Y.-b. ,et al. (2018). Post-ridge-subduction acceleration of the Indian plate induced by slab rollback. Solid Earth Sciences 3: 1−7. DOI: 10.1016/j.sesci.2017.12.003. |
[54] | Sun, S. J., Zhang, L. P., Zhang, R. Q. ,et al. (2018). Mid-Late Cretaceous igneous activity in South China: the Qianjia example, Hainan Island. Int Geol Rev 60: 1665−1683. DOI: 10.1080/00206814.2017.1402379. |
[55] | Zhang, L. P., Hu, Y. B., Liang, J. L. ,et al. (2017). Adakitic rocks associated with the Shilu copper-molybdenum deposit in the Yangchun Basin, South China, and their tectonic implications. Acta Geochim 36: 132−150. DOI: 10.1007/s11631-017-0146-6. |
[56] | Zhang, L. P., Zhang, R. Q., Hu, Y. B. ,et al. (2017). The formation of the Late Cretaceous Xishan Sn-W deposit, South China: Geochronological and geochemical perspectives. Lithos 290: 253−268. |
[57] | Zhang, L., Deng, J., Sun, S. ,et al. (2023). Subduction of the Neo-Tethys ridge beneath the Eurasian continent during the Cretaceous. Ore Geol Rev 154: 105302. DOI: 10.1016/j.oregeorev.2023.105302. |
[58] | Deng, J., Yang, X., Zartman, R. E. ,et al. (2020). Early cretaceous transformation from Pacific to Neo-Tethys subduction in the SW Pacific Ocean: Constraints from Pb-Sr-Nd-Hf isotopes of the Philippine arc. Geochimica et Cosmochimica Acta 285: 21−40. DOI: 10.1016/j.gca.2020.06.024. |
[59] | Deng, J., Yang, X., Qi, H. ,et al. (2019). Early Cretaceous adakite from the Atlas porphyry Cu-Au deposit in Cebu Island, Central Philippines: Partial melting of subducted oceanic crust. Ore Geol Rev 110: 102937. DOI: 10.1016/j.oregeorev.2019.102937. |
[60] | Li, C. Y., Hao, X. L., Liu, J. Q. ,et al. (2017). The formation of Luoboling porphyry Cu-Mo deposit: Constraints from zircon and apatite. Lithos 272: 291−300. |
[61] | O’Connor, J. M., Hoernle, K., Müller, R. D. ,et al. (2015). Deformation-related volcanism in the Pacific Ocean linked to the Hawaiian–Emperor bend. Nature Geoscience 8: 393−397. DOI: 10.1038/ngeo2416. |
[62] | Reagan, M. K., Heaton, D. E., Schmitz, M. D. ,et al. (2019). Forearc ages reveal extensive short-lived and rapid seafloor spreading following subduction initiation. Earth and Planetary Science Letters 506: 520−529. DOI: 10.1016/j.jpgl.2018.11.020. |
[63] | Sun, W., Zhang, L., Li, H.and Liu, X. (2020). The synchronic cenozoic subduction initiations in the west pacific induced by the closure of the neo-tethys ocean. Science Bulletin 65: 2068−2071. DOI: 10.1016/j.scib.2020.09.001. |
[64] | Seton, M., Müller, R. D., Zahirovic, S. ,et al. (2020). A global data set of present‐day oceanic crustal age and seafloor spreading parameters. Geochemistry, Geophysics, Geosystems 21: e2020GC009214. |
[65] | Li, H., Arculus, R. J., Ishizuka, O. ,et al. (2021). Basalt derived from highly refractory mantle sources during early Izu-Bonin-Mariana arc development. Nat. Commun. 12: 1723. DOI: 10.1038/s41467-021-21980-0. |
[66] | HAWKINS, J. W.and CASTILLO, P. R. (1998). Early history of the Izu–Bonin–Mariana arc system: evidence from Belau and the Palau Trench. Island Arc 7: 559−578. DOI: 10.1111/j.1440-1738.1998.00210.x. |
[67] | Sun, W. D., Yang, X. Y., Fan, W. M.and Wu, F. Y. (2012). Mesozoic large scale magmatism and mineralization in South China: Preface. Lithos 150: 1−5. DOI: 10.1016/j.lithos.2012.06.028. |
[68] | Wang, F. Y., Ling, M. X., Ding, X. ,et al. (2011). Mesozoic large magmatic events and mineralization in SE China: oblique subduction of the Pacific plate. Int Geol Rev 53: 704−726. DOI: 10.1080/00206814.2010.503736. |
[69] | Wu, K., Ling, M. X., Sun, W. D. ,et al. (2017). Major transition of continental basalts in the Early Cretaceous: Implications for the destruction of the North China Craton. Chem Geol 470: 93−106. DOI: 10.1016/j.chemgeo.2017.08.025. |
[70] | Kinoshita, O. (1995). Migration of igneous activities related to ridge subduction in Southwest Japan and the East Asian continental margin from the Mesozoic to the Paleogene. Tectonophysics 245: 25−35. DOI: 10.1016/0040-1951(94)00211-Q. |
[71] | Ling, M. X., Wang, F. Y., Ding, X. ,et al. (2009). Cretaceous Ridge Subduction Along the Lower Yangtze River Belt, Eastern China. Econ Geol 104: 303−321. DOI: 10.2113/gsecongeo.104.2.303. |
[72] | Zhang, C. C., Sun, W. D., Wang, J. T. ,et al. (2017). Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China. Geochim Cosmochim Ac 206: 343−363. DOI: 10.1016/j.gca.2017.03.013. |
[73] | Zhang, H., Ling, M. X., Liu, Y. L. ,et al. (2013). High Oxygen Fugacity and Slab Melting Linked to Cu Mineralization: Evidence from Dexing Porphyry Copper Deposits, Southeastern China. J. Geol. 121: 289−305. DOI: 10.1086/669975. |
[74] | Hou, Z., Pan, X., Li, Q. ,et al. (2013). The giant Dexing porphyry Cu–Mo–Au deposit in east China: product of melting of juvenile lower crust in an intracontinental setting. Mineralium Deposita 48: 1019−1045. DOI: 10.1007/s00126-013-0472-5. |
[75] | Mao, J., Zheng, W., Xie, G. ,et al. (2021). Recognition of a Middle–Late Jurassic arc-related porphyry copper belt along the southeast China coast: Geological characteristics and metallogenic implications. Geology 49: 592−596. |
[76] | Ren, L., Bao, Z., Huang, W. ,et al. (2020). Flat-slab subduction and formation of “intraplate” porphyry deposits: Insights from the Jurassic high and low La/Yb ore-forming porphyries along the Qin-Hang belt, South China. Ore Geology Reviews 123: 103574. DOI: 10.1016/j.oregeorev.2020.103574. |
[77] | Wang, G.-G., Ni, P., Li, L. ,et al. (2020). Petrogenesis of the Middle Jurassic andesitic dikes in the giant Dexing porphyry copper ore field, South China: Implications for mineralization. Journal of Asian Earth Sciences 196: 104375. DOI: 10.1016/j.jseaes.2020.104375. |
[78] | Wang, G.-G., Ni, P., Yao, J. ,et al. (2015). The link between subduction-modified lithosphere and the giant Dexing porphyry copper deposit, South China: constraints from high-Mg adakitic rocks. Ore Geology Reviews 67: 109−126. DOI: 10.1016/j.oregeorev.2014.12.004. |
[79] | Wang, Y., Yang, X., Kang, X. ,et al. (2022). Geochemical and mineralogical studies of zircon, apatite, and chlorite in the giant Dexing porphyry Cu-Mo-Au deposit, South China: Implications for mineralization and hydrothermal processes. Journal of Geochemical Exploration 240: 107042. DOI: 10.1016/j.gexplo.2022.107042. |
[80] | Zhang, H., An, F., Ling, M. ,et al. (2022). Metallogenesis of Porphyry Copper Deposit Indicated by In Situ Zircon U-Pb-Hf-O and Apatite Sr Isotopes. Minerals 12: 1464. |
[81] | Zhang, X., Ni, P., Wang, G. ,et al. (2022). Magmatic controls on the mineralization potential of a porphyry Cu system: The case of Jurassic Tongshan skarn Cu deposit in the Qin–Hang Belt, South China. Gondwana Research 101: 203−223. DOI: 10.1016/j.gr.2021.08.004. |
[82] | Chen, S.-C., Yu, J.-J., Bi, M.-F.and Lehmann, B. (2023). Fluid-rock interaction and fluid mixing in the large Furong tin deposit, South China: New insights from tourmaline and apatite chemistry and in situ B-Nd-Sr isotope composition. American Mineralogist: Journal of Earth and Planetary Materials 108: 338−353. DOI: 10.2138/am-2022-8310. |
[83] | Li, W.-S., Ni, P., Zeng, Z.-L. ,et al. (2022). In situ zircon and cassiterite U-Pb ages constraints on concealed granite and W mineralization in the Kuimeishan deposit, Nanling Region, South China. Journal of Geochemical Exploration 240: 107043. DOI: 10.1016/j.gexplo.2022.107043. |
[84] | Peng, H.-W., Fan, H.-R., Lecumberri-Sanchez, P. ,et al. (2023). Fluid evolution and ore genesis of the Tiantangshan granite-related vein-type Rb-Sn-W deposit, south China: constraints from LA-ICP-MS analyses of fluid inclusions. Mineralium Deposita 58: 751−769. DOI: 10.1007/s00126-022-01155-7. |
[85] | Wang, J., Zhao, L., Li, Q. ,et al. (2023). Ore-forming process of the W–Sn and Cu skarn mineralization in the Huangshaping deposit (Nanling Range): Constraints from scheelite geochemistry and cassiterite U–Pb geochronology. Ore Geology Reviews, 105354. |
[86] | Zhao, L., Shao, Y., Zhang, Y. ,et al. (2022). Differentiated enrichment of magnetite in the Jurassic W–Sn and Cu skarn deposits in the Nanling Range (South China) and their ore-forming processes: An example from the Huangshaping deposit. Ore Geology Reviews, 105046. |
[87] | Chen, J., Halls, C.and Stanley, C. (1992). Tin-bearing skarns of South China: Geological setting and mineralogy. Ore Geology Reviews 7: 225−248. DOI: 10.1016/0169-1368(92)90006-7. |
[88] | Hua, R., Zhang, W., Gu, S.and Chen, P. (2007). Comparison between REE granite and W-Sn granite in the Nanling region, South China, and their mineralizations. Acta Petrologica Sinica 23: 2321−2328. |
[89] | Mao, J.-w. (2007). Large-scale tungstentin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes. Acta Petrol. Sin. 23: 2329−2338. |
[90] | Peng, J., Zhou, M.-F., Hu, R. ,et al. (2006). Precise molybdenite Re–Os and mica Ar–Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China. Mineralium Deposita 41: 661−669. DOI: 10.1007/s00126-006-0084-4. |
[91] | Yuan, S., Peng, J., Hu, R. ,et al. (2008). A precise U–Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium Deposita 43: 375−382. DOI: 10.1007/s00126-007-0166-y. |
[92] | Bonnetti, C., Riegler, T., Liu, X.and Cuney, M. (2023). Granite-related high-temperature hydrothermal uranium mineralisation: evidence from the alteration fingerprint associated with an early Yanshanian magmatic event in the Nanling belt, SE China. Mineralium Deposita 58: 427−460. DOI: 10.1007/s00126-022-01137-9. |
[93] | Cao, J., Yang, X., Du, J. ,et al. (2018). Formation and geodynamic implication of the Early Yanshanian granites associated with W–Sn mineralization in the Nanling range, South China: An overview. Int Geol Rev 60: 1744−1771. DOI: 10.1080/00206814.2018.1466370. |
[94] | Kong, H., Li, H., Wu, Q.-H. ,et al. (2018). Co-development of Jurassic I-type and A-type granites in southern Hunan, South China: Dual control by plate subduction and intraplate mantle upwelling. Geochemistry 78: 500−520. DOI: 10.1016/j.chemer.2018.08.002. |
[95] | Li, H., Palinkaš, L. A., Watanabe, K.and Xi, X.-S. (2018). Petrogenesis of Jurassic A-type granites associated with Cu-Mo and W-Sn deposits in the central Nanling region, South China: Relation to mantle upwelling and intra-continental extension. Ore Geology Reviews 92: 449−462. DOI: 10.1016/j.oregeorev.2017.11.029. |
[96] | Lu, Y., Cao, J., Fu, J. ,et al. (2021). Petrogenesis of the granite related to the Dashunlong Sn polymetallic deposit, Dayishan ore field, South China. Ore Geology Reviews 139: 104478. DOI: 10.1016/j.oregeorev.2021.104478. |
[97] | Sun, W. (2021). Ore deposits in the Lower Yangtze River Belt. Solid Earth Sciences 6: 329. DOI: 10.1016/j.sesci.2021.11.004. |
[98] | Wu, J., Kong, H., Li, H. ,et al. (2021). Multiple metal sources of coupled Cu-Sn deposits: Insights from the Tongshanling polymetallic deposit in the Nanling Range, South China. Ore Geology Reviews 139: 104521. DOI: 10.1016/j.oregeorev.2021.104521. |
[99] | Chen, Y. X., Li, H., Sun, W. D. ,et al. (2016). Generation of Late Mesozoic Qianlishan A(2)-type granite in Nanling Range, South China: Implications for Shizhuyuan W-Sn mineralization and tectonic evolution. Lithos 266: 435−452. |
[100] | Ding, X., Su, K., Yan, H. ,et al. (2022). Effect of F-Rich Fluids on the A-Type Magmatism and Related Metal Mobilization: New Insights from the Fogang-Nankunshan-Yajishan Igneous Rocks in Southeast China. J Earth Sci-China 33: 591−608. DOI: 10.1007/s12583-022-1611-7. |
[101] | Liu, H., Liao, R., Zhang, L. ,et al. (2020). Plate subduction, oxygen fugacity, and mineralization. Journal of Oceanology and Limnology |
[102] | Schmidt, M. W. (1996). Experimental constraints on recycling of potassium from subducted oceanic crust. Science 272: 1927−1930. DOI: 10.1126/science.272.5270.1927. |
[103] | Li, C. Y., Zhang, H., Wang, F. Y. ,et al. (2012). The formation of the Dabaoshan porphyry molybdenum deposit induced by slab rollback. Lithos 150: 101−110. DOI: 10.1016/j.lithos.2012.04.001. |
[104] | Xiong, X.-L., Rao, B., Chen, F.-R. ,et al. (2002). Crystallization and melting experiments of a fluorine-rich leucogranite from the Xianghualing Pluton, South China, at 150 MPa and H2O-saturated conditions. Journal of Asian Earth Sciences 21: 175−188. DOI: 10.1016/S1367-9120(02)00030-5. |
[105] | Hu, R.-Z.and Zhou, M.-F. (2012). Multiple Mesozoic mineralization events in South China—an introduction to the thematic issue. Mineralium Deposita 47: 579−588. DOI: 10.1007/s00126-012-0431-6. |
[106] | Mao, J. W., Cheng, Y. B., Chen, M. H.and Pirajno, F. (2013). Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita 48: 267−294. DOI: 10.1007/s00126-012-0446-z. |
[107] | Sun, K., Chen, B.and Deng, J. (2019). Biotite in highly evolved granites from the Shimensi W–Cu–Mo polymetallic ore deposit, China: Insights into magma source and evolution. Lithos 350: 105245. |
[108] | Yang, Y., Pan, X., Hou, Z.and Deng, Y. (2021). Redox states and protoliths of Late Mesozoic granitoids in the eastern Jiangnan Orogen: Implications for W, Mo, Cu, Sn, and (Au) mineralization. Ore Geology Reviews 134: 104038. DOI: 10.1016/j.oregeorev.2021.104038. |
[109] | Song, W. L., Yao, J. M., Chen, H. Y. ,et al. (2018). Mineral paragenesis, fluid inclusions, H-O isotopes and ore-forming processes of the giant Dahutang W-Cu-Mo deposit, South China. Ore Geol Rev 99: 116−150. DOI: 10.1016/j.oregeorev.2018.06.002. |
[110] | Yao, J. M., Mathur, R., Sun, W. D. ,et al. (2016). Fractionation of Cu and Mo isotopes caused by vapor-liquid partitioning, evidence from the Dahutang W-Cu-Mo ore field. Geochem. Geophys. Geosyst. 17: 1725−1739. DOI: 10.1002/2016GC006328. |
[111] | Feng, C., Wang, H., Xiang, X.and Zhang, M. (2018). Late Mesozoic granite-related W–Sn mineralization in the northern Jiangxi region, SE China: A review. Journal of Geochemical Exploration 195: 31−48. DOI: 10.1016/j.gexplo.2018.06.008. |
[112] | Zhao, Z., Fu, T.-Y., Gan, J.-W. ,et al. (2021). A synthesis of mineralization style and regional distribution and a proposed new metallogenic model of Mesozoic W-dominated polymentallic deposits in South China. Ore Geology Reviews 133: 104008. DOI: 10.1016/j.oregeorev.2021.104008. |
[113] | Yan, H. B., Ding, X., Ling, M. X. ,et al. (2021). Three late-Mesozoic fluorite deposit belts in southeast China and links to subduction of the (paleo-) Pacific plate. Ore Geology Reviews 129 |
[114] | Sun, W., Ling, M., Yang, X. ,et al. (2010). Ridge subduction and porphyry copper-gold mineralization: An overview. Science China Earth Sciences 53: 475−484. DOI: 10.1007/s11430-010-0024-0. |
[115] | Cao, J., Yang, X., Yang, S. ,et al. (2023). Records of apatite for multiple injections of magmas in adakitic plutons: A case study of Mesozoic plutons in the Shatanjiao region of the Tongling ore cluster, south China. Journal of Asian Earth Sciences 242: 105507. DOI: 10.1016/j.jseaes.2022.105507. |
[116] | Lu, S., Lan, X., Zhao, L. ,et al. (2022). A 3D Investigation of Geological Structure and Its Relationship to Mineralization in the Nanling-Xuancheng Ore District, Middle-Lower Yangtze River Metallogenic Belt, China. Journal of Earth Science 33: 664−680. DOI: 10.1007/s12583-021-1577-x. |
[117] | Qi, H., Yang, X., Lu, S. ,et al. (2020). Ore genesis and fluid evolution of the Qiaomaishan Cu–W deposit, in the Middle-Lower Yangtze River Metallogenic Belt: Evidence from in situ analyses of apatite and scheelite. Ore Geology Reviews 127: 103864. DOI: 10.1016/j.oregeorev.2020.103864. |
[118] | Yang, S. Y., Jiang, S. Y., Li, L. ,et al. (2011). Late Mesozoic magmatism of the Jiurui mineralization district in the Middle-Lower Yangtze River Metallogenic Belt, Eastern China: Precise U-Pb ages and geodynamic implications. Gondwana Research 20: 831−843. DOI: 10.1016/j.gr.2011.03.012. |
[119] | Xie, G. Q., Mao, J. W.and Zhao, H. J. (2011). Zircon U-Pb geochronological and Hf isotopic constraints on petrogenesis of Late Mesozoic intrusions in the southeast Hubei Province, Middle-Lower Yangtze River belt (MLYRB), East China. Lithos 125: 693−710. DOI: 10.1016/j.lithos.2011.04.001. |
[120] | Liu, Z., Yang, X. Y., Liu, C. M. ,et al. (2018). Genesis of Early Cretaceous porphyrite-type iron deposits and related sub-volcanic rocks in the Ningwu Volcanic Basin, Middle-Lower Yangtze Metallogenic Belt, Southeast China. Int Geol Rev 60: 1507−1528. DOI: 10.1080/00206814.2017.1419883. |
[121] | Zhou, T. F., Wang, S. W., Fan, Y. ,et al. (2015). A review of the intracontinental porphyry deposits in the Middle-Lower Yangtze River Valley metallogenic belt, Eastern China. Ore Geology Reviews 65: 433−456. DOI: 10.1016/j.oregeorev.2014.10.002. |
[122] | Mao, J. W., Xie, G. Q., Duan, C. ,et al. (2011). A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Reviews 43: 294−314. DOI: 10.1016/j.oregeorev.2011.07.010. |
[123] | Li, Z.-Y., Xia, Q.-X.and Liu, Y.-X. (2023). Multiple generations of garnet, zircon and titanite: Temporal constraints on Fe skarn mineralization in the Middle-Lower Yangtze River Valley Metallogenic Belt, eastern China. Lithos, 107028. |
[124] | Liu, Y., Fan, Y., Zhou, T. ,et al. (2020). Hydrothermal fluid characteristics and implications of the Makou IOA deposit in Luzong Basin, eastern China. Ore Geology Reviews 127: 103867. DOI: 10.1016/j.oregeorev.2020.103867. |
[125] | Nie, L., Zhou, T., Fan, Y. ,et al. (2017). Geology, geochemistry and genesis of the Makou magnetite-apatite deposit in the Luzong volcanic basin, Middle-Lower Yangtze River Valley Metallogenic Belt, Eastern China. Ore Geology Reviews 91: 264−277. DOI: 10.1016/j.oregeorev.2017.09.022. |
[126] | Xie, G., Mao, J., Zhu, Q. ,et al. (2020). Mineral deposit model of Cu–Fe–Au skarn system in the edongnan region, Eastern China. Acta Geologica Sinica‐English Edition 94: 1797−1807. |
[127] | Zhu, Q., Xie, G., Cook, N. J.and Ciobanu, C. L. (2023). Fingerprinting involvement of evaporites in magmatic-hydrothermal processes from the Jinshandian Fe skarn deposit, eastern China, using apatite geochemistry. Lithos 442: 107076. |
[128] | Chang, Y., Zhou, T.and Fan, Y. (2017). Review of exploration and research and geological progress in the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica 33: 3333−3352. |
[129] | Liu, S.-A., Li, S., He, Y.and Huang, F. (2010). Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: Implications for petrogenesis and Cu–Au mineralization. Geochim Cosmochim Ac 74: 7160−7178. DOI: 10.1016/j.gca.2010.09.003. |
[130] | Deng, J. H., Yang, X. Y., Li, S. ,et al. (2016). Partial melting of subducted paleo-Pacific plate during the early Cretaceous: Constraint from adakitic rocks in the Shaxi porphyry Cu-Au deposit, Lower Yangtze River Belt. Lithos 262: 651−667. DOI: 10.1016/j.lithos.2016.07.039. |
[131] | Xie, J. C., Wang, Y., Li, Q. Z. ,et al. (2018). Early Cretaceous adakitic rocks in the Anqing region, southeastern China: constraints on petrogenesis and metallogenic significance. Int Geol Rev 60: 1435−1452. DOI: 10.1080/00206814.2017.1362672. |
[132] | Ling, M. X., Wang, F. Y., Ding, X. ,et al. (2011). Different origins of adakites from the Dabie Mountains and the Lower Yangtze River Belt, eastern China: geochemical constraints. Int Geol Rev 53: 727−740. DOI: 10.1080/00206814.2010.482349. |
[133] | Deng, J. H., Yang, X. Y., Sun, W. D. ,et al. (2012). Petrology, geochemistry, and tectonic significance of Mesozoic shoshonitic volcanic rocks, Luzong volcanic basin, eastern China. International Geology Review 54: 714−736. DOI: 10.1080/00206814.2011.580628. |
[134] | Li, H., Ling, M. X., Li, C. Y. ,et al. (2012). A-type granite belts of two chemical subgroups in central eastern China: Indication of ridge subduction. Lithos 150: 26−36. DOI: 10.1016/j.lithos.2011.09.021. |
[135] | Jiang, X.-Y., Li, H., Ding, X. ,et al. (2018). Formation of A-type granites in the Lower Yangtze River Belt: A perspective from apatite geochemistry. Lithos 304-307, 125-134. |
[136] | Bai, J., Ling, M., Yang, X. ,et al. (2022). Yangshan A-Type Granites in the Lower Yangtze River Belt Formed by Ridge Subduction: Radiogenic Ca and Nd Isotopic Constraints. Journal of Earth Science |
[137] | Jiang, X.-Y., Ling, M.-X., Wu, K. ,et al. (2018). Insights into the origin of coexisting A1- and A2-type granites: Implications from zircon Hf-O isotopes of the Huayuangong intrusion in the Lower Yangtze River Belt, eastern China. Lithos 318-319, 230-243. |
[138] | Jiang, X.-Y., Luo, J.-C., Guo, J. ,et al. (2018). Geochemistry of I- and A-type granites of the Qingyang–Jiuhuashan complex, eastern China: Insights into early cretaceous multistage magmatism. Lithos 316-317, 278-294. |
[139] | Mao, J., Xie, G., Duan, C. ,et al. (2011). A tectono-genetic model for porphyry–skarn–stratabound Cu–Au–Mo–Fe and magnetite–apatite deposits along the Middle–Lower Yangtze River Valley, Eastern China. Ore Geology Reviews 43: 294−314. DOI: 10.1016/j.oregeorev.2011.07.010. |
[140] | Xu, W., Gao, S., Wang, Q. ,et al. (2006). Mesozoic crustal thickening of the eastern North China craton: evidence from eclogite xenoliths and petrologic implications. Geology 34: 721−724. |
[141] | Sun, S. J., Yang, X. Y., Wang, G. J. ,et al. (2019). In situ elemental and Sr-O isotopic studies on apatite from the Xu-Huai intrusion at the southern margin of the North China Craton: Implications for petrogenesis and metallogeny. Chem Geol 510: 200−214. DOI: 10.1016/j.chemgeo.2019.02.010. |
[142] | Li, H., Ling, M. X., Ding, X. ,et al. (2014). The geochemical characteristics of Haiyang A-type granite complex in Shandong, eastern China. Lithos 200: 142−156. |
[143] | Zhang, Z., Ling, M., Zhang, L. ,et al. (2020). High oxygen fugacity magma: implication for the destruction of the North China Craton. Acta Geochim 39: 161−171. DOI: 10.1007/s11631-020-00394-7. |
[144] | Wu, H., Liu, S.-A., He, Y.and Li, S. (2023). Mesozoic slab-derived magmas from mid-eastern China: Responses to a ridge-transform fault-ridge subduction system. Chem Geol 617: 121259. DOI: 10.1016/j.chemgeo.2022.121259. |
[145] | Li, S. Z., Suo, Y. H., Li, X. Y. ,et al. (2019). Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate. Earth-Sci. Rev. 192: 91−137. DOI: 10.1016/j.earscirev.2019.03.003. |
[146] | Wang, Y., Fan, W., Zhang, G.and Zhang, Y. (2013). Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Research 23: 1273−1305. DOI: 10.1016/j.gr.2012.02.019. |
[147] | Zhao, Y., Xu, G., Zhang, S. ,et al. (2004). Yanshanian movement and conversion of tectonic regimes in East Asia. Earth science frontiers 11: 319−328. |
[148] | Dong, S. W., Zhang, Y. Q., Long, C. X. ,et al. (2008). Jurassic tectonic revolution in China and new interpretation of the "Yanshan Movement". Acta Geologica Sinica-English Edition 82: 334−347. |
[149] | Hao, W., Zhu, G.and Zhu, R. (2019). Timing of the Yanshan Movement: evidence from the Jingxi Basin in the Yanshan fold-and-thrust belt, eastern China. International Journal of Earth Sciences 108: 1961−1978. DOI: 10.1007/s00531-019-01743-5. |
[150] | Meng, Q. (2017). Development of Sedimentary Basins in Eastern China During the Yanshanian Period. Bulletin of Mineralogy Petrology and Geochemistry 36: 567. |
[151] | Meng, Q.-R., Zhou, Z.-H., Zhu, R.-X. ,et al. (2022). Cretaceous basin evolution in northeast Asia: tectonic responses to the paleo-Pacific plate subduction. Natl. Sci. Rev. 9: nwab088. DOI: 10.1093/nsr/nwab088. |
[152] | Meng, Q.-R., Wei, H.-H., Wu, G.-L.and Duan, L. (2014). Early Mesozoic tectonic settings of the northern North China craton. Tectonophysics 611: 155−166. DOI: 10.1016/j.tecto.2013.11.015. |
[153] | Davis, G. A., Zheng, Y. D., Wang, C. ,et al. (2001). Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China. Paleozoic and Mesozoic Tectonic Evolution of Central Asia: From Continental Assembly to Intracontinental Deformation 194: 171−197. |
[154] | Dong, S. W., Zhang, Y. Q., Li, H. L. ,et al. (2018). The Yanshan orogeny and late Mesozoic multi-plate convergence in East AsiaCommemorating 90th years of the "Yanshan Orogeny". Sci China Earth Sci 61: 1888−1909. DOI: 10.1007/s11430-017-9297-y. |
[155] | Dong, S., Zhang, Y., Zhang, F. ,et al. (2015). Late Jurassic–Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution. Journal of Asian Earth Sciences 114: 750−770. DOI: 10.1016/j.jseaes.2015.08.011. |
[156] | Lin, W., Faure, M., Chen, Y. ,et al. (2013). Late Mesozoic compressional to extensional tectonics in the Yiwulushan massif, NE China and its bearing on the evolution of the Yinshan-Yanshan orogenic belt Part I: Structural analyses and geochronological constraints. Gondwana Research 23: 54−77. DOI: 10.1016/j.gr.2012.02.013. |
[157] | Xia, Q. K., Liu, J., Liu, S. C. ,et al. (2013). High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth and Planetary Science Letters 361: 85−97. DOI: 10.1016/j.jpgl.2012.11.024. |
[158] | Xu, Y. G. (2001). Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china: evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 26: 747−757. DOI: 10.1016/S1464-1895(01)00124-7. |
[159] | Meng, Q.-R., Zhou, Z.-H., Zhu, R.-X. ,et al. (2021). Cretaceous basin evolution in northeast Asia: Tectonic responses to the paleo-Pacific plate subduction. Natl. Sci. Rev. |
[160] | Meng, Q.-R. (2003). What drove late Mesozoic extension of the northern China–Mongolia tract. Tectonophysics 369: 155−174. DOI: 10.1016/S0040-1951(03)00195-1. |
[161] | Lin, W., Zeng, J., Meng, L. ,et al. (2021). Extensional tectonics and North China Craton destruction: Insights from the magnetic susceptibility anisotropy (AMS) of granite and metamorphic core complex. Science China Earth Sciences 64: 1557−1589. DOI: 10.1007/s11430-020-9754-1. |
[162] | Davis, G. A., Cong, W., Yadong, Z. ,et al. (1998). The enigmatic Yinshan fold-and-thrust belt of northern China: New views on its intraplate contractional styles. Geology 26: 43−46. |
[163] | Dong, Y., Zhang, G., Neubauer, F. ,et al. (2011). Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences 41: 213−237. DOI: 10.1016/j.jseaes.2011.03.002. |
[164] | Gu, C., Zhu, G., Zhai, M. ,et al. (2016). Features and origin time of Mesozoic strike-slip structures in the Yilan-Yitong Fault Zone. Science China Earth Sciences 59: 2389−2410. DOI: 10.1007/s11430-016-5334-4. |
[165] | Yang, Q., Shi, W., Hou, G. ,et al. (2020). Late Mesozoic intracontinental deformation at the northern margin of the North China Craton: A case study from the Kalaqin massif, southeastern Inner Mongolia, China. Tectonophysics 793: 228591. DOI: 10.1016/j.tecto.2020.228591. |
[166] | Yang, Q., Shi, W., Hou, G. ,et al. (2021). Late Mesozoic Intracontinental Deformation in the Northern Margin of the North China Craton: A Case Study From the Shangyi Basin, Northwestern Hebei Province, China. Frontiers in Earth Science 9: 710758. DOI: 10.3389/feart.2021.710758. |
[167] | Wu, G.-L., Meng, Q.-R., Zhu, R.-X. ,et al. (2021). Middle Jurassic orogeny in the northern North China block. Tectonophysics 801: 228713. DOI: 10.1016/j.tecto.2020.228713. |
[168] | Vine, F. J.and Matthews, D. H. (1963). Magnetic anomalies over oceanic ridges. Nature 199: 947−949. DOI: 10.1038/199947a0. |
[169] | Müller, R. D., Sdrolias, M., Gaina, C.and Roest, W. R. (2008). Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems 9 |
[170] | Müller, R. D., Seton, M., Zahirovic, S. ,et al. (2016). Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup. Annual Review of Earth and Planetary Sciences 44: 107−138. DOI: 10.1146/annurev-earth-060115-012211. |
[171] | Muller, R. D., Cannon, J., Qin, X. ,et al. (2018). GPlates: Building a Virtual Earth Through Deep Time. Geochemistry Geophysics Geosystems 19: 2243−2261. DOI: 10.1029/2018GC007584. |
[172] | Liu, S. F., Gurnis, M., Ma, P. F.and Zhang, B. (2017). Reconstruction of northeast Asian deformation integrated with western Pacific plate subduction since 200 Ma. Earth-Sci. Rev. 175: 114−142. DOI: 10.1016/j.earscirev.2017.10.012. |
[173] | Cao, X., Zahirovic, S., Li, S. ,et al. (2022). A deforming plate tectonic model of the South China Block since the Jurassic. Gondwana Research 102: 3−16. DOI: 10.1016/j.gr.2020.11.010. |
[174] | Mather, B. R., Müller, R. D., Zahirovic, S. ,et al. (2023). Deep time spatio‐temporal data analysis using py GP lates with P late T ectonic T ools and GP lately. Geoscience Data Journal |
[175] | van de Lagemaat, S. H., Kamp, P. J., Boschman, L. M.and Van Hinsbergen, D. J. (2023). Reconciling the Cretaceous breakup and demise of the Phoenix Plate with East Gondwana orogenesis in New Zealand. Earth-Sci. Rev., 104276. |
[176] | Williams, S., Wright, N. M., Cannon, J. ,et al. (2021). Reconstructing seafloor age distributions in lost ocean basins. Geosci. Front. 12: 769−780. DOI: 10.1016/j.gsf.2020.06.004. |
[177] | Sun, W. (2019). The Magma Engine and the driving force of plate tectonics. Chinese Science Bulletin 64: 2988−3006. DOI: 10.1360/N972019-00274. |
[178] | Hu, J., Gurnis, M., Rudi, J. ,et al. (2022). Dynamics of the abrupt change in Pacific Plate motion around 50 million years ago. Nature Geoscience 15: 74−78. DOI: 10.1038/s41561-021-00862-6. |
[179] | Sun, W., Zhang, L., Liao, R. ,et al. (2020). Plate convergence in the Indo-Pacific region. Journal of Oceanology and Limnology 38: 1008−1017. DOI: 10.1007/s00343-020-0146-y. |
[180] | Arculus, R. J., Ishizuka, O., Bogus, K. A. ,et al. (2015). A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc. Nature Geoscience 8: 728−733. DOI: 10.1038/ngeo2515. |
[181] | Regelous, M., Hofmann, A. W., Abouchami, W.and Galer, S. J. G. (2003). Geochemistry of lavas from the Emperor Seamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. J. Petrol. 44: 113−140. DOI: 10.1093/petrology/44.1.113. |
[182] | Griffiths, R. W.and Campbell, I. H. (1991). Interaction of mantle plume heads with the Earth's surface and onset of small-scale convection. Journal of Geophysical Research: Solid Earth 96: 18295−18310. DOI: 10.1029/91JB01897. |
[183] | Xu, Y. G., He, B., Chung, S. L. ,et al. (2004). Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology 32: 917−920. |
[184] | Larson, R. L. (1997). Superplumes and ridge interactions between Ontong Java and Manihiki Plateaus and the Nova-Canton Trough. Geology 25: 779−782. |
[185] | Phinney, E. J., Mann, P., Coffin, M. F.and Shipley, T. H. (1999). Sequence stratigraphy, structure, and tectonic history of the southwestern Ontong Java Plateau adjacent to the North Solomon Trench and Solomon Islands Arc. Journal of Geophysical Research: Solid Earth 104: 20449−20466. DOI: 10.1029/1999JB900169. |
[186] | Taylor, B. (2006). The single largest oceanic plateau: Ontong Java–Manihiki–Hikurangi. Earth and Planetary Science Letters 241: 372−380. DOI: 10.1016/j.jpgl.2005.11.049. |
[187] | Campbell, I. H. (2007). Testing the plume theory. Chem Geol 241: 153−176. DOI: 10.1016/j.chemgeo.2007.01.024. |
[188] | Li, X.-H., Li, W.-X., Wang, X.-C. ,et al. (2010). SIMS U–Pb zircon geochronology of porphyry Cu–Au–(Mo) deposits in the Yangtze River Metallogenic Belt, eastern China: Magmatic response to early Cretaceous lithospheric extension. Lithos 119: 427−438. DOI: 10.1016/j.lithos.2010.07.018. |
[189] | Sun, W. D., Xie, Z., Chen, J. F. ,et al. (2003). Os-Os dating of copper and molybdenum deposits along the middle and lower reaches of the Yangtze River, China. Econ. Geol. Bull. Soc. Econ. Geol. 98: 175−180. |
[190] | Tejada, M. L. G., Geldmacher, J., Hauff, F. ,et al. (2016). Geochemistry and age of Shatsky, Hess, and Ojin Rise seamounts: Implications for a connection between the Shatsky and Hess Rises. Geochim Cosmochim Ac 185: 302−327. DOI: 10.1016/j.gca.2016.04.006. |
[191] | Niu, Y., Liu, Y., Xue, Q. ,et al. (2015). Exotic origin of the Chinese continental shelf: new insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic. Science Bulletin 60: 1598−1616. DOI: 10.1007/s11434-015-0891-z. |
[192] | Fu, X., Ding, W., Dadd, K. ,et al. (2022). An exotic origin of the eastern East China Sea basement before~ 150 Ma. Science bulletin 67: 1939−1942. DOI: 10.1016/j.scib.2022.08.029. |
[193] | Li, H. Y., Taylor, R. N., Prytulak, J. ,et al. (2019). Radiogenic isotopes document the start of subduction in the Western Pacific. Earth and Planetary Science Letters 518: 197−210. DOI: 10.1016/j.jpgl.2019.04.041. |
[194] | Larson, R. L.and Erba, E. (1999). Onset of the Mid‐Cretaceous greenhouse in the Barremian‐Aptian: Igneous events and the biological, sedimentary, and geochemical responses. Paleoceanography 14: 663−678. DOI: 10.1029/1999PA900040. |
[195] | Larson, R. L., Pockalny, R. A., Viso, R. F. ,et al. (2002). Mid-Cretaceous tectonic evolution of the Tongareva triple junction in the southwestern Pacific Basin. Geology 30: 67−70. |
[196] | Pietsch, R.and Uenzelmann‐Neben, G. (2015). The Manihiki Plateau—A multistage volcanic emplacement history. Geochemistry, Geophysics, Geosystems 16: 2480−2498. DOI: 10.1002/2015GC005852. |
[197] | Tejada, M. L. G., Mahoney, J. J., Neal, C. R. ,et al. (2002). Basement geochemistry and geochronology of central Malaita, Solomon islands, with implications for the origin and evolution of the Ontong Java Plateau. J. Petrol. 43: 449−484. DOI: 10.1093/petrology/43.3.449. |
[198] | Wong, W. H. (1927). Crustal movements and igneous activities in Eastern China since Mesozoic time. Bull Geol Soc China 6: 9−37. |
[199] | Chen, A. (1998). Geometric and kinematic evolution of basement-cored structures: Intraplate orogenesis within the Yanshan orogen, northern China. Tectonophysics 292: 17−42. DOI: 10.1016/S0040-1951(98)00062-6. |
[200] | Yan, D.-P., Zhou, M.-F., Song, H.-L. ,et al. (2006). Mesozoic extensional structures of the Fangshan tectonic dome and their subsequent reworking during collisional accretion of the North China Block. Journal of the Geological Society 163: 127−142. DOI: 10.1144/0016-764904-154. |
[201] | Wu, F.-Y., Ji, W.-Q., Wang, J.-G. ,et al. (2014). Zircon U–Pb and Hf isotopic constraints on the onset time of India-Asia collision. American Journal of Science 314: 548−579. DOI: 10.2475/02.2014.04. |
[202] | Hao, W., Zhu, R.and Zhu, G. (2021). Jurassic tectonics of the eastern North China Craton: response to initial subduction of the Paleo-Pacific Plate. GSA Bulletin 133: 19−36. DOI: 10.1130/B35585.1. |
[203] | Qiu, H., Lin, W., Chen, Y.and Faure, M. (2023). Jurassic–Early Cretaceous tectonic evolution of the North China Craton and Yanshanian intracontinental orogeny in East Asia: New insights from a general review of stratigraphy, structures, and magmatism. Earth-Sci. Rev., 104320. |
[204] | Guo, J.-F., Ma, Q., Xu, Y.-G. ,et al. (2022). Migration of Middle-Late Jurassic volcanism across the northern North China Craton in response to subduction of Paleo-Pacific Plate. Tectonophysics 833: 229338. DOI: 10.1016/j.tecto.2022.229338. |
[205] | Tang, J., Chen, L., Liu, L. ,et al. (2022). The role of pre-existing weaknesses in intraplate metamorphic core complex formation during slab retreat: 2-D thermomechanical modelling. Geophysical Journal International 231: 1688−1704. DOI: 10.1093/gji/ggac277. |
[206] | Li, S. G., Yang, W., Ke, S. ,et al. (2017). Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Natl. Sci. Rev. 4: 111−120. DOI: 10.1093/nsr/nww070. |
[207] | Liu, L., Liu, L.and Xu, Y.-G. (2021). Mesozoic intraplate tectonism of East Asia due to flat subduction of a composite terrane slab. Earth-Sci. Rev. 214: 103505. DOI: 10.1016/j.earscirev.2021.103505. |
[208] | Wu, F. Y., Ji, W. Q., Sun, D. H. ,et al. (2012). Zircon U-Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China. Lithos 150: 6−25. DOI: 10.1016/j.lithos.2012.03.020. |
[209] | Wang, C., Zhao, X., Liu, Z. ,et al. (2008). Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy of Sciences 105: 4987−4992. DOI: 10.1073/pnas.0703595105. |
Sun W. and Li S. (2023). Reconstruction of the Pacific plate: Constraints from ocean floor and eastern China. The Innovation Geoscience 1(1), 100013. https://doi.org/10.59717/j.xinn-geo.2023.100013 |
The drifting history of the Pacific plate since the Cretaceous indicated by seamount chains
The Shatsky Rise formed between ~ 147 to ~125 Ma
Ages of seamounts near the bending of the Hawaiian-Emperor seamount chain
Drift rates of the Australian plate since the Late Cretaceous
The distribution of magmatism and ore deposits in the southeastern China
Ridge subduction and the LYRB ore deposit belt
Sketched map showing major geologic features of Event A of the Yanshanian Movement
The magnetic anomalies of the Pacific plate
Reconstruction of the Pacific plate
Analogue modelling experiment plausibly explains the tectonic regime of the Yanshanian Movement in the NCC