This overview summarizes the main findings from the new lunar soil samples collected by the Chang’e-5 mission.
The soil is mature, which contains basalt and mineral fragments, impact melt breccia, agglutinates, and glasses.
Analysis of basalt fragments reveals that the Moon was still volcanically active two billion years ago.
The soil, dominated by local materials, provides a unique example to study meteorite impact and solar wind irradiation.
[1] | Kring, D.A., Durda, D.D. (2012). A global lunar landing site study to provide the scientific context for exploration of the Moon (Lunar and Planetary Institute). |
[2] | National Research Council (2007). The scientific context for exploration of the Moon (The National Academies Press). |
[3] | Giguere, T.A., Taylor, G.J., Hawke, B.R., et al. (2000). The titanium contents of lunar mare basalts. Meteorit. Planet. Sci. 35: 193−200. DOI: 10.1111/j.1945-5100.2000.tb01985.x. |
[4] | Tartèse, R., Anand, M., Gattacceca, J., et al. (2019). Constraining the evolutionary history of the Moon and the inner solar system: A case for new returned lunar samples. Space Sci. Rev. 215: 54. DOI: 10.1007/s11214-019-0622-x. |
[5] | Xiao, L., Head, J.W. (2020). Geological characteristics of the Moon. |
[6] | Hu, H., Pei, Z., Li, C., et al. (2021). Overall design of unmanned lunar sampling and return project—Chang’e-5 mission. Sci. Sin. Technol. 51: 1275−1286. DOI: 10.1360/SST-2021-0155. |
[7] | Yang, M., Zhang, G., Zhang, W., et al. (2021). Technical design and implementation of Chang’e-5 robotic sample return mission on lunar surface. Sci. Sin. Technol. 51: 738−752. DOI: 10.1360/SST-2021-0111. |
[8] | Li, C., Hu, H., Yang, M.-F., et al. (2022). Characteristics of the lunar samples returned by the Chang’E-5 mission. Natl. Sci. Rev. 9: nwab188. DOI: 10.1093/nsr/nwab188. |
[9] | Qian, Y.Q., Xiao, L., Zhao, S.Y., et al. (2018). Geology and scientific significance of the Rümker region in northern Oceanus Procellarum: China’s Chang’E-5 landing region. J. Geophys. Res. Planets 123: 1407−1430. |
[10] | Hiesinger, H., Head, J.W., Wolf, U., et al. (2011). Ages and stratigraphy of lunar mare basalts: A synthesis. Spec. Pap. Geol. Soc. Am. 477: 1−51. |
[11] | Du, J., Fa, W., Gong, S., et al. (2022). Thicknesses of mare basalts in the Chang’E-5 landing region: Implications for the late-stage volcanism on the Moon. J. Geophys. Res. Planets 127: e2022JE007314. |
[12] | Qian, Y., Xiao, L., Head, J.W., et al. (2021). Young lunar mare basalts in the Chang’e-5 sample return region, northern Oceanus Procellarum. Earth Planet. Sci. Lett. 555: 116702. DOI: 10.1016/j.jpgl.2020.116702. |
[13] | Giguere, T.A., Boyce, J.M., Gillis-Davis, J.J., et al. (2022). Lava flow ages in northeastern Oceanus Procellarum: The need for calibrating crater counting procedures. Icarus 375: 114838. DOI: 10.1016/j.icarus.2021.114838. |
[14] | Jia, M., Yue, Z., Di, K., et al. (2020). A catalogue of impact craters larger than 200 m and surface age analysis in the Chang’e-5 landing area. Earth Planet. Sci. Lett. 541: 116272. DOI: 10.1016/j.jpgl.2020.116272. |
[15] | Morota, T., Haruyama, J., Ohtake, M., et al. (2011). Timing and characteristics of the latest mare eruption on the Moon. Earth Planet. Sci. Lett. 302: 255−266. DOI: 10.1016/j.jpgl.2010.12.028. |
[16] | Cao, K., Dong, M., She, Z., et al. (2022). A novel method for simultaneous analysis of particle size and mineralogy for Chang’E-5 lunar soil with minimum sample consumption. Sci. China Earth Sci. 65: 1704−1714. DOI: 10.1007/s11430-022-9966-5. |
[17] | Fu, X., Yin, C., Jolliff, B.L., et al. (2022). Understanding the mineralogy and geochemistry of Chang’E-5 soil and implications for its geological significances. Icarus, 115254. |
[18] | Yao, Y., Xiao, C., Wang, P., et al. (2022). Instrumental neutron activation analysis of Chang’E-5 lunar regolith samples. J. Am. Chem. Soc. 144: 5478−5484. DOI: 10.1021/jacs.1c13604. |
[19] | Zhang, H., Zhang, X., Zhang, G., et al. (2021). Size, morphology, and composition of lunar samples returned by Chang’E-5 mission. Sci. China Phys. Mech. Astron. 65: 229511. |
[20] | Zong, K., Wang, Z., Li, J., et al. (2022). Bulk compositions of the Chang’E-5 lunar soil: Insights into chemical homogeneity, exotic addition, and origin of landing site basalts. Geochim. Cosmochim. Acta 335: 284−296. DOI: 10.1016/j.gca.2022.06.037. |
[21] | Che, X., Nemchin, A., Liu, D., et al. (2021). Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5. Science 374: 887−890. DOI: 10.1126/science.abl7957. |
[22] | He, Q., Li, Y., Baziotis, I., et al. (2022). Detailed petrogenesis of the unsampled Oceanus Procellarum: The case of the Chang’e-5 mare basalts. Icarus 383: 115082. DOI: 10.1016/j.icarus.2022.115082. |
[23] | Hu, S., He, H., Ji, R., et al. (2021). A dry lunar mantle reservoir for young mare basalts of Chang’e-5. Nature 600: 49−53. DOI: 10.1038/s41586-021-04107-9. |
[24] | Ji, J., He, H., Hu, S., et al. (2022). Magmatic chlorine isotope fractionation recorded in apatite from Chang’e-5 basalts. Earth Planet. Sci. Lett. 591: 117636. DOI: 10.1016/j.jpgl.2022.117636. |
[25] | Jiang, Y., Li, Y., Liao, S., et al. (2022). Mineral chemistry and 3D tomography of a Chang’E 5 high-Ti basalt: implication for the lunar thermal evolution history. Sci. Bull. 67: 755−761. DOI: 10.1016/j.scib.2021.12.006. |
[26] | Li, Q.-L., Zhou, Q., Liu, Y., et al. (2021). Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature 600: 54−58. DOI: 10.1038/s41586-021-04100-2. |
[27] | Liu, D., Wang, X., Liu, J., et al. (2022). Spectral interpretation of late-stage mare basalt mineralogy unveiled by Chang’E-5 samples. Nat. Commun. 13: 5965. DOI: 10.1038/s41467-022-33670-6. |
[28] | Qian, Y., She, Z., He, Q., et al. (2023). Mineralogy and chronology of the young mare volcanism in the Procellarum-KREEP-Terrane. Nat. Astron. 7, 287–297. |
[29] | Su, B., Yuan, J., Chen, Y., et al. (2022). Fusible mantle cumulates trigger young mare volcanism on the cooling Moon. Sci. Adv. 8: eabn2103. DOI: 10.1126/sciadv.abn2103. |
[30] | Tian, H., Yang, W., Zhang, D., et al. (2022). Petrogenesis of Chang’E-5 mare basalts: Clues from the trace elements. Am. Mineral. (in press). |
[31] | Tian, H.-C., Wang, H., Chen, Y., et al. (2021). Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane. Nature 600: 59−63. DOI: 10.1038/s41586-021-04119-5. |
[32] | Wang, Z., Wang, W.-(RZ), Tian, W., et al. (2023). Cooling rate of clinopyroxene reveals the thickness and effusion volume of Chang’E-5 basaltic flow units. Icarus 394: 115406. DOI: 10.1016/j.icarus.2022.115406. |
[33] | Zhang, D., Su, B., Chen, Y., et al. (2022). Titanium in olivine reveals low-Ti origin of the Chang’E-5 lunar basalts. Lithos 414–415, 106639. |
[34] | Long, T., Qian, Y., Norman, M.D., et al. (2022). Constraining the formation and transport of lunar impact glasses using the ages and chemical compositions of Chang’e-5 glass beads. Sci. Adv. 8: eabq2542. DOI: 10.1126/sciadv.abq2542. |
[35] | Yan, P., Xiao, Z., Wu, Y., et al. (2022). Intricate regolith reworking processes revealed by microstructures on lunar impact glasses. J. Geophys. Res. Planets 127: e2022JE007260. |
[36] | Yang, W., Chen, Y., Wang, H., et al. (2022). Geochemistry of impact glasses in the Chang’e-5 regolith: Constraints on impact melting and the petrogenesis of local basalt. Geochim. Cosmochim. Acta 335: 183−196. DOI: 10.1016/j.gca.2022.08.030. |
[37] | Gu, L., Chen, Y., Xu, Y., et al. (2022). Space weathering of the Chang’e-5 lunar sample from a mid-high latitude region on the Moon. Geophys. Res. Lett. 49: e2022GL097875. |
[38] | Guo, J.-G., Ying, T., Gao, H., et al. (2022). Surface microstructures of lunar soil returned by Chang’e-5 mission reveal an intermediate stage in space weathering process. Sci. Bull. 67: 1696−1701. DOI: 10.1016/j.scib.2022.06.019. |
[39] | Guo, Z., Li, C., Li, Y., et al. (2022). Nanophase iron particles derived from fayalitic olivine decomposition in Chang’E-5 lunar soil: Implications for thermal effects during impacts. Geophys. Res. Lett. 49: e2021GL097323. |
[40] | Li, C., Guo, Z., Li, Y., et al. (2022). Impact-driven disproportionation origin of nanophase iron particles in Chang’e-5 lunar soil sample. Nat. Astron. 6: 1156−1162. DOI: 10.1038/s41550-022-01763-3. |
[41] | Mo, B., Guo, Z., Li, Y., et al. (2022). In situ investigation of the valence states of iron-bearing phases in Chang’E-5 lunar soil using FIB, AES, and TEM-EELS Techniques. At. Spectrosc. 43: 53−59. |
[42] | Xu, Y., Tian, H.-C., Zhang, C., et al. (2022). High abundance of solar wind-derived water in lunar soils from the middle latitude. Proc. Natl. Acad. Sci. 119: e2214395119. DOI: 10.1073/pnas.2214395119. |
[43] | Zhou, C., Tang, H., Li, X., et al. (2022). Chang’E-5 samples reveal high water content in lunar minerals. Nat. Commun. 13: 5336. DOI: 10.1038/s41467-022-33095-1. |
[44] | Li, J.H., Yang, W., Li, X.Y., et al. (2022). The Chang’e-5 lunar samples stimulate the development of microanalysis techniques. At. Spectrosc. 43: 1−5. |
[45] | Li, J.-H., Li, Q.-L., Zhao, L., et al. (2022). Rapid screening of Zr-containing particles from Chang’e-5 lunar soil samples for isotope geochronology: Technical roadmap for future study. Geosci. Front. 13: 101367. DOI: 10.1016/j.gsf.2022.101367. |
[46] | Yang, W., Li, J.H., Li, X.Y., et al. (2022). Microanalysis techniques guarantee long-term research On Chang’e-5 lunar samples. At. Spectrosc. 43: 266−271. DOI: 10.46770/AS.2022.025. |
[47] | Lucey, P.G., Blewett, D.T., Jolliff, B.L. (2000). Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. J. Geophys. Res. Planets 105: 20297−20305. DOI: 10.1029/1999JE001117. |
[48] | Carrier, W.D., Olhoeft, G.R., Mendell, W. (1991). Physical properties of the lunar surface. In Lunar Sourcebook: A user’s guide to the Moon (Cambridge University Press), pp. 475–594. |
[49] | McKay, D.S., Fruland, R.M., Heiken, G.H. (1974). Grain size and the evolution of lunar soils. In 5th Lunar Science Conference, pp. 887–906. |
[50] | Cadenhead, D.A., Stetter, J.R. (1975). Specific gravities of lunar materials using helium pycnometry. In 6th Lunar Science Conference, pp. 3199–3206. |
[51] | Gammage, R.B., Holmes, H.F. (1975). Specific surface area as a maturity index of lunar fines. Earth Planet. Sci. Lett. 27: 424−426. DOI: 10.1016/0012-821X(75)90061-8. |
[52] | Holmes, H.F., Fuller, E.L.Jr., Gammage, R.B. (1973). Interaction of gases with lunar materials: Apollo 12, 14, and 16 Samples. In 4th Lunar Science Conference, pp. 2413-2423. |
[53] | Robens, E., Bischoff, A., Schreiber, A., Unger, K.K. (2008). Investigation of surface properties of lunar regolith part III. J. Therm. Anal. Calorim. 94: 627−631. DOI: 10.1007/s10973-008-9352-0. |
[54] | Staid, M.I., Pieters, C.M., Besse, S., et al. (2011). The mineralogy of late stage lunar volcanism as observed by the Moon Mineralogy Mapper on Chandrayaan-1. J. Geophys. Res. Planets 116. |
[55] | Xu, R., Li, C., Yuan, L., et al. (2022). Lunar mineralogical spectrometer on Chang’E-5 mission. Space Sci. Rev. 218: 41. DOI: 10.1007/s11214-022-00910-6. |
[56] | Xu, J., Wang, M., Lin, H., et al. (2022). In-Situ photometric properties of lunar regolith revealed by lunar mineralogical spectrometer on board Chang’E-5 lander. Geophys. Res. Lett. 49: e2021GL096876. |
[57] | Yang, Y., Jiang, T., Liu, Y., et al. (2022). A micro mid-infrared spectroscopic study of Chang’e-5 sample. J. Geophys. Res. Planets 127: e2022JE007453. |
[58] | Pieters, C.M., Taylor, L.A., Noble, S.K., et al. (2000). Space weathering on airless bodies: Resolving a mystery with lunar samples. Meteorit. Planet. Sci. 35: 1101−1107. DOI: 10.1111/j.1945-5100.2000.tb01496.x. |
[59] | Pieters, C.M., Boardman, J., Buratti, B., et al. (2009). The Moon Mineralogy Mapper (M3) on Chandrayaan-1. Curr. Sci. 96: 500−505. |
[60] | Pieters, C.M., Noble, S.K. (2016). Space weathering on airless bodies. J. Geophys. Res. Planets 121: 1865−1884. DOI: 10.1002/2016JE005128. |
[61] | Wu, X., Liu, Y., Yang, Y., et al. (2022). Mineralogy and regolith maturity at the Chang’E-5 landing site inferred from the Lunar Mineralogical Spectrometer. Earth Planet. Sci. Lett. 594: 117747. DOI: 10.1016/j.jpgl.2022.117747. |
[62] | Trang, D., Lucey, P.G. (2019). Improved space weathering maps of the lunar surface through radiative transfer modeling of Kaguya multiband imager data. Icarus 321: 307−323. DOI: 10.1016/j.icarus.2018.11.014. |
[63] | Lu, X., Chen, J., Ling, Z., et al. (2023). Mature lunar soils from Fe-rich and young mare basalts in the Chang’e-5 regolith samples. Nat. Astron. 7: 142−151. |
[64] | Lin, H., Li, S., Xu, R., et al. (2022). In situ detection of water on the Moon by the Chang’E-5 lander. Sci. Adv. 8: eabl9174. DOI: 10.1126/sciadv.abl9174. |
[65] | Li, S., Milliken, R.E. (2016). An empirical thermal correction model for Moon Mineralogy Mapper data constrained by laboratory spectra and Diviner temperatures. J. Geophys. Res. Planets 121: 2081−2107. DOI: 10.1002/2016JE005035. |
[66] | Lin, H., Li, S., Lin, Y., et al. (2021). Thermal modeling of the lunar regolith at the Chang’E-4 landing site. Geophys. Res. Lett. 48: e2020GL091687. |
[67] | McKay, D.S., Heiken, G.H., Basu, A., et al. (1991). The lunar regolith. In Lunar Sourcebook: A user’s guide to the Moon (Cambridge University Press), pp. 285–356. |
[68] | Yang, W., Wang, Y., Gao, L., et al. (2022). Sci-tech arts on Chang’e-5 lunar soil. The Innovation 3: 100300. |
[69] | Sheng, S., Chen, Y., Zhang, B., et al. (2022). First location and characterization of lunar highland clasts in Chang’E-5 breccias using TIMA-SEM-EPMA. At. Spectrosc. 43: 351−362. DOI: 10.46770/AS.2022.030. |
[70] | Yang, J., Ju, D., Pang, R., et al. (2023). Significance of silicate liquid immiscibility for the origin of young highly evolved lithic clasts in Chang’E-5 regolith. Geochim. Cosmochim. Acta 340: 189−205. DOI: 10.1016/j.gca.2022.11.008. |
[71] | Zeng, X., Li, X., Liu, J. (2022). Exotic clasts in Chang’e-5 regolith indicative of unexplored terrane on the Moon. Nat. Astron. 7: 152−159. |
[72] | Jiang, Y., Kang, J., Liao, S., et al. (2023). Fe and Mg isotope compositions indicate a hybrid mantle source for young chang’e 5 mare basalts. Astrophys. J. Lett. 945: L26. DOI: 10.3847/2041-8213/acbd31. |
[73] | Yuan, J., Huang, H., Chen, Y., et al. (2023). Automatic bulk composition analysis of lunar basalts: novel big-data algorithm for energy-dispersive x-ray spectroscopy. ACS Earth Space Chem. 7: 370−378. DOI: 10.1021/acsearthspacechem.2c00260. |
[74] | Neal, C.R., Taylor, L.A. (1992). Petrogenesis of mare basalts: A record of lunar volcanism. Geochim. Cosmochim. Acta 56: 2177−2211. DOI: 10.1016/0016-7037(92)90184-K. |
[75] | Shearer, C.K., Hess, P.C., Wieczorek, M.A., et al. (2006). Thermal and magmatic evolution of the Moon. Rev. Mineral. Geochem. 60: 365−518. DOI: 10.2138/rmg.2006.60.4. |
[76] | Warner, R.D., Nehru, C.E., Keil, K. (1978). Opaque oxide mineral crystallization in lunar high-titanium mare basalts. Am. Mineral. 63: 1209−1224. |
[77] | Yue, Z., Di, K., Michael, G., et al. (2022). Martian surface dating model refinement based on Chang’E-5 updated lunar chronology function. Earth Planet. Sci. Lett. 595: 117765. DOI: 10.1016/j.jpgl.2022.117765. |
[78] | Yue, Z., Di, K., Wan, W., et al. (2022). Updated lunar cratering chronology model with the radiometric age of Chang’e-5 samples. Nat. Astron. 6: 541−545. DOI: 10.1038/s41550-022-01604-3. |
[79] | Neukum, G. (1983). Meteorite Bombardment and Dating of Planetary Surfaces. |
[80] | Papike, J.J., Hodges, F.N., Bence, A.E., et al. (1976). Mare basalts: crystal chemistry, mineralogy, and petrology. Rev. Geophys. 14: 475−540. DOI: 10.1029/RG014i004p00475. |
[81] | Borg, L.E., Shearer, C.K., Asmerom, Y., Papike, J.J. (2004). Prolonged KREEP magmatism on the Moon indicated by the youngest dated lunar igneous rock. Nature 432: 209−211. DOI: 10.1038/nature03070. |
[82] | Snyder, G.A., Taylor, L.A., Neal, C.R. (1992). A chemical model for generating the sources of mare basalts: Combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim. Cosmochim. Acta 56: 3809−3823. DOI: 10.1016/0016-7037(92)90172-F. |
[83] | Borg, L.E., Gaffney, A.M., Shearer, C.K., DePaolo, D.J., et al. (2009). Mechanisms for incompatible-element enrichment on the Moon deduced from the lunar basaltic meteorite Northwest Africa 032. Geochim. Cosmochim. Acta 73: 3963−3980. DOI: 10.1016/j.gca.2009.03.039. |
[84] | Luo, B., Wang, Z., Song, J., et al. (2023). The magmatic architecture and evolution of the Chang’e-5 lunar basalts. Nat. Geosci. 16: 301−308. DOI: 10.1038/s41561-023-01146-x. |
[85] | Yang, W., Lin, Y. (2021). New lunar samples returned by Chang’e-5: Opportunities for new discoveries and international collaboration. The Innovation 2: 100070. |
[86] | Filiberto, J., Treiman, A.H. (2009). Martian magmas contained abundant chlorine, but little water. Geology 37: 1087−1090. |
[87] | Liu, X., Hao, J., Li, R.-Y., et al. (2022). Sulfur isotopic fractionation of the youngest Chang’e-5 Basalts: Constraints on the magma degassing and geochemical features of the mantle source. Geophys. Res. Lett. 49: e2022GL099922. |
[88] | Gargano, A., Sharp, Z., Shearer, C., et al. (2020). The Cl isotope composition and halogen contents of Apollo-return samples. Proc. Natl. Acad. Sci. 117: 23418−23425. DOI: 10.1073/pnas.2014503117. |
[89] | Sharp, Z.D., Shearer, C.K., McKeegan, K.D., et al. (2010). The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science 329: 1050−1053. DOI: 10.1126/science.1192606. |
[90] | Boyce, J.W., Tomlinson, S.M., McCubbin, F.M., et al. (2014). The Lunar Apatite Paradox. Science 344: 400−402. DOI: 10.1126/science.1250398. |
[91] | McCubbin, F.M., Vander Kaaden, K.E., Tartèse, R., et al. (2015). Experimental investigation of F, Cl, and OH partitioning between apatite and Fe-rich basaltic melt at 1.0–1.2 GPa and 950–1000 °C†. Am. Mineral. 100, 1790–1802. |
[92] | McCubbin, F.M., Kaaden, K.E.V., Tartèse, R., et al. (2015). Magmatic volatiles (H, C, N, F, S, Cl) in the lunar mantle, crust, and regolith: Abundances, distributions, processes, and reservoirs. Am. Mineral. 100: 1668−1707. DOI: 10.2138/am-2015-4934CCBYNCND. |
[93] | Delano, J.W. (1986). Pristine lunar glasses: Criteria, data, and implications. J. Geophys. Res. Solid Earth 91: 201−213. DOI: 10.1029/JB091iB04p0D201. |
[94] | Korotev, R.L., Zeigler, R.A., Floss, C. (2010). On the origin of impact glass in the Apollo 16 regolith. Geochim. Cosmochim. Acta 74: 7362−7388. DOI: 10.1016/j.gca.2010.09.020. |
[95] | Norman, M.D., Jourdan, F., Hui, S.S.M. (2019). Impact history and regolith evolution on the Moon: Geochemistry and ages of glasses from the Apollo 16 site. J. Geophys. Res. Planets 124: 3167−3180. DOI: 10.1029/2019JE006053. |
[96] | Naney, M.T., Crowl, D.M., Papike, J.J. (1976). The Apollo 16 drill core: Statistical analysis of glass chemistry and the characterization of a high alumina-silica poor (HASP) glass. Lunar Planet. Sci. Conf. Proc. 1: 155−184. |
[97] | Delano, J.W., Lindsley, D.H., Rudowski, R. (1982). Glasses of impact origin from Apollo 11, 12, 15, and 16: Evidence for fractional vaporization and mare/highland mixing. Lunar Planet. Sci. Conf. Proc. 1: 339−370. |
[98] | Delano, J.W., Zellner, N.E.B., BarraA, F., et al. (2007). An integrated approach to understanding Apollo 16 impact glasses: Chemistry, isotopes, and shape. Meteorit. Planet. Sci. 42: 993−1004. DOI: 10.1111/j.1945-5100.2007.tb01146.x. |
[99] | Huang, Y.-H., Minton, D.A., Zellner, N.E.B., et al. (2018). No change in the recent lunar impact flux required based on modeling of impact glass spherule age distributions. Geophys. Res. Lett. 45: 6805−6813. DOI: 10.1029/2018GL077254. |
[100] | Norman, M.D., Adena, K.J.D., Christy, A.G. (2012). Provenance and Pb isotopic ages of lunar volcanic and impact glasses from the Apollo 17 landing site. Aust. J. Earth Sci. 59: 291−306. DOI: 10.1080/08120099.2011.615471. |
[101] | Zellner, N.E.B. (2019). Lunar impact glasses: probing the Moon’s surface and constraining its impact history. J. Geophys. Res. Planets 124: 2686−2702. DOI: 10.1029/2019JE006050. |
[102] | Zellner, N.E.B., Delano, J.W. (2015). 40Ar/39Ar ages of lunar impact glasses: Relationships among Ar diffusivity, chemical composition, shape, and size. Geochim. Cosmochim. Acta 161: 203−218. DOI: 10.1016/j.gca.2015.04.013. |
[103] | Zellner, N.E.B., Spudis, P.D., Delano, J.W., Whittet, D.C.B. (2002). Impact glasses from the Apollo 14 landing site and implications for regional geology. J. Geophys. Res. Planets 107: 12−1. |
[104] | McDonough, W.F., Sun, S. -s. (1995). The composition of the Earth. Chem. Evol. Mantle 120: 223−253. |
[105] | Warren, P.H., Taylor, G.J. (2014). 2.9 - The Moon. In Treatise on Geochemistry (Second Edition), H. D. Holland and K. K. Turekian, eds. (Elsevier), pp. 213–250. |
[106] | Anders, E., Ganapathy, R., Krähenbühl, U., Morgan, J.W. (1973). Meteoritic material on the Moon. The Moon 8: 3−24. DOI: 10.1007/BF00562747. |
[107] | Wasson, J.T., Boynton, W.V., Chou, C.-L., Baedecker, P.A. (1975). Compositional evidence regarding the influx of interplanetary materials onto the lunar surface. The Moon 13: 121−141. DOI: 10.1007/BF00567511. |
[108] | Cao, H., Wang, C., Chen, J., et al. (2022). A Raman spectroscopic and microimage analysis perspective of the Chang’e-5 lunar samples. Geophys. Res. Lett. 49: e2022GL099282. |
[109] | Pang, R., Yang, J., Du, W., et al. (2022). New occurrence of seifertite and stishovite in Chang’E-5 regolith. Geophys. Res. Lett. 49: e2022GL098722. |
[110] | Xing, W., Lin, Y., Zhang, C., et al. (2020). Discovery of reidite in the lunar meteorite Sayh al Uhaymir 169. Geophys. Res. Lett. 47: e2020GL089583. |
[111] | Fu, X., Hou, X., Zhang, J., et al. (2021). Possible non-mare lithologies in the regolith at the Chang’E-5 landing site: Evidence from remote sensing data. J. Geophys. Res. Planets 126: e2020JE006797. |
[112] | Hou, X., Fu, X., Qiao, L., et al. (2022). Absolute model ages of three craters in the vicinity of the Chang’E-5 landing site and their geologic implications. Icarus 372: 114730. DOI: 10.1016/j.icarus.2021.114730. |
[113] | Jia, B., Fa, W., Zhang, M., et al. (2022). On the provenance of the Chang’E-5 lunar samples. Earth Planet. Sci. Lett. 596: 117791. DOI: 10.1016/j.jpgl.2022.117791. |
[114] | Qian, Y., Xiao, L., Head, J.W., et al. (2021). Copernican-Aged (<200 Ma) impact ejecta at the Chang’e-5 landing site: Statistical evidence from crater morphology, morphometry, and degradation models. Geophys. Res. Lett. 48: e2021GL095341. |
[115] | Xie, M., Xiao, Z., Zhang, Xu, A. (2020). The provenance of regolith at the Chang’e-5 candidate landing region. J. Geophys. Res. Planets 125: e2019JE006112. |
[116] | Guo, Z., Li, C., Li, Y., et al. (2023). Vapor-deposited digenite in Chang’e-5 lunar soil. Sci. Bull. 68, 723–729. |
[117] | Guo, Z., Li, C., Li, Y., et al. (2022). Sub-microscopic magnetite and metallic iron particles formed by eutectic reaction in Chang’E-5 lunar soil. Nat. Commun. 13: 7177. DOI: 10.1038/s41467-022-35009-7. |
[118] | Keller, L.P., McKay, D.S. (1993). Discovery of vapor deposits in the lunar regolith. Science 261: 1305−1307. DOI: 10.1126/science.261.5126.1305. |
[119] | Xian, H., Zhu, J., Yang, Y., et al. (2023). Ubiquitous and progressively increasing ferric iron content on the lunar surfaces revealed by the Chang’e-5 sample. Nat. Astron. 7: 280−286. DOI: 10.1038/s41550-022-01855-0. |
[120] | Gu, Y., Sun, J., Xiao, Q., et al. (2022). Morphology of lunar soil returned by chang’e-5 mission and implications for space weathering. Earth Sci. 47: 4145−4160. |
[121] | Li, C., Li, Y., Wei, K., et al. (2023). Study on surface characteristics of Chang’E-5 fine grained lunar soil. Sci. Sin. Phys. Mech. Astron. 53: 239603. DOI: 10.1360/SSPMA-2022-0343. |
[122] | Carter, J.L., MacGregor, I.D. (1970). Mineralogy, petrology and surface features of some Apollo 11 samples. Geochim. Cosmochim. Acta Suppl. 1: 247. |
[123] | Carter, J.L. (1971). Chemistry and surface morphology of fragments from Apollo 12 soil. Lunar Planet. Sci. Conf. Proc. 2: 873. |
[124] | Carter, J.L. (1973). Chemistry and surface morphology of soil particles from Luna 20 LRL sample 22003. Geochim. Cosmochim. Acta 37: 795−803. DOI: 10.1016/0016-7037(73)90175-0. |
[125] | Carter, J.L., McKay, D.S. (1971). Influence of target temperature on crater morphology and implications on the origin of craters on lunar glass spheres. Lunar Planet. Sci. Conf. Proc. 2: 2653. |
[126] | Carter, J.L., McKay, D.S. (1972). Metallic mounds produced by reduction of material of simulated lunar composition and implications on the origin of metallic mounds on lunar glasses. Lunar Planet. Sci. Conf. Proc. 3: 953. |
[127] | Li, A., Chen, X., Song, L., et al. (2022). Taking advantage of glass: capturing and retaining the helium gas on the Moon. Mater. Futur. 1: 035101. DOI: 10.1088/2752-5724/ac74af. |
[128] | Jones, B.M., Aleksandrov, A., Hibbitts, K., et al. (2018). Solar wind-induced water cycle on the Moon. Geophys. Res. Lett. 45: 10,959−10,967. |
[129] | Li, S., Milliken, R.E. (2017). Water on the surface of the Moon as seen by the Moon Mineralogy Mapper: Distribution, abundance, and origins. Sci. Adv. 3: e1701471. DOI: 10.1126/sciadv.1701471. |
[130] | Wöhler, C., Grumpe, A., Berezhnoy, A.A., et al. (2017). Temperature regime and water/hydroxyl behavior in the crater Boguslawsky on the Moon. Icarus 285: 118−136. DOI: 10.1016/j.icarus.2016.12.026. |
[131] | Liu, J., Liu, B., Ren, X., et al. (2022). Evidence of water on the lunar surface from Chang’E-5 in-situ spectra and returned samples. Nat. Commun. 13: 3119. DOI: 10.1038/s41467-022-30807-5. |
[132] | He, H., Ji, J., Zhang, Y., et al. (2023). A solar wind-derived water reservoir on the Moon hosted by impact glass beads. Nat. Geosci. 16: 294−300. DOI: 10.1038/s41561-023-01159-6. |
[133] | Benna, M., Hurley, D.M., Stubbs, T.J., et al. (2019). Lunar soil hydration constrained by exospheric water liberated by meteoroid impacts. Nat. Geosci. 12: 333−338. DOI: 10.1038/s41561-019-0345-3. |
[134] | Saal, A.E., Hauri, E.H., Cascio, M.L., et al. (2008). Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454: 192−195. DOI: 10.1038/nature07047. |
[135] | Li, Q.L. (2015). Characteristics and analytical methods of the U-Pb dating system. Bull. Mineral. Petrol. Geochem. 34: 491−500. |
[136] | Hochella, M.F., Lower, S.K., Maurice, P.A., et al. (2008). Nanominerals, mineral nanoparticles, and earth systems. Science 319: 1631−1635. DOI: 10.1126/science.1141134. |
[137] | Li, J.H., Pan, Y.X. (2015). Applications of transmission electron microscopy in the earth sciences. Sci. Sin. Terrae 45: 1359−1382. DOI: 10.1360/zd2015-45-9-1359. |
[138] | Liu, Y., Zhang, C., Zhang, D., et al. (2022). Non-destructive micro X-ray fluorescence quantitative analysis of geological materials. At. Spectrosc. 43: 378−387. |
[139] | Yuan, J.Y., Chen, Y., Zhang, D., et al. (2022). Quantitative analysis of bulk composition of small-size lunar samples using energy dispersive x-ray spectroscopy. At. Spectrosc. 43: 292−302. |
[140] | Zhang, D., Chen, Y., Yang, W., et al. (2022). High-precision measurement of trace level Na. In and Ni in lunar glass using electron probe microanalysis. At. Spectrosc. 43: 28−41. |
[141] | Hao, J., Hu, S., Li, R.Y., et al. (2022). High precision and resolution chlorine isotopic analysis of apatite using NanoSIMS. At. Spectrosc. 43: 321−328. |
[142] | Li, Y., Tang, G.Q., Hsu, W.B., Wu, Y.H. (2022). In situ SIMS carbon isotopic analysis of carbon-bearing minerals in nantan and aletai iron meteorites: Implications on genesis. At. Spectrosc. 43: 329−336. |
[143] | Liu, Y., Li, X.H., Savage, P.S., et al. (2022). New quartz and zircon si isotopic reference materials for precise and accurate SIMS isotopic microanalysis. At. Spectrosc. 43: 99−106. |
[144] | Zhang, C., Li, J.H. (2022). Non-destructive identification and quantification of ilmenite from a single particle of the Chang’e-5 lunar soil sample. At. Spectrosc. 43: 284−291. |
[145] | Greer, J., Rout, Surya.S., et al. (2020). Atom probe tomography of space-weathered lunar ilmenite grain surfaces. Meteorit. Planet. Sci. 55: 426−440. DOI: 10.1111/maps.13443. |
[146] | Wang, J., Li, J.H. (2022). Scanning transmission X-ray microscopy at the Canadian Light Source: Progress and selected applications in geoscience. At. Spectrosc. 43: 84−98. |
[147] | Miller, M.K., Forbes, R.G. (2009). Atom probe tomography. Mater. Charact. 60: 461−469. DOI: 10.1016/j.matchar.2009.02.007. |
Chen Y., Hu S., Li J., et al., (2023). Chang’e-5 lunar samples shed new light on the Moon. The Innovation Geoscience 1(1), 100014. https://doi.org/10.59717/j.xinn-geo.2023.100014 |
The CE-5 landing site and scooped sampling on the Moon
Photos, spectra, and physical properties of the CE-5 soil
Microscope photos and Back-scatter electron (BSE) images of the particles in the CE-5 soil
Mineral and whole-rock chemistry of the CE-5 basalt fragments
Age of the CE-5 basalt and calibration of the lunar crater chronology model
Interpretive diagram showing the geochemical characteristics of the CE-5 basalt and its origin.
Textures, chemical compositions and ages of the CE-5 impact glasses
The provenance of the CE-5 soil
Conceptual diagrams depicting the space weathering processes, effects, and products observed at the CE-5 landing site (defined by refs.37–43,116–119)