REVIEW   Open Access     Cite

Revealing the phonon properties for thermoelectric materials by neutron scattering

More Information
  • Corresponding author: jma3@sjtu.edu.cn
    1. Crystal structure correlations between high-performance thermoelectric material families are overviewed.

      Phonon properties and origins investigated by neutron scattering are summarized.

      Challenges and perspectives are introduced and envisioned.

  • Thermoelectric (TE) materials are widely investigated for their ability to directly interconvert electrical and thermal energy, with applications in waste-heat recovery, renewable energy and energy storage. As a quantum many-body problem in strongly correlated systems, exploring the elementary excitations and the complex couplings is crucial for designing and optimizing efficient energy-conversion materials. For TE materials, electronic manipulation and thermal transport engineering are two effective strategies for enhancing heat-to-electricity conversion efficiency. The lattice thermal conductivity, κlat, is the only independent parameter for optimizing the TE performance and attracts the interest of both theorists and experimentalists. Phonon engineering is essential to effectively manage lattice thermal transport. Recent progress in theoretical models and experimental techniques enables us not only to directly simulate and capture the phonon properties but also to establish clear physical pictures of phonon engineering to understand these advanced functional TE materials. An overview of employing the neutron scattering technique to investigate phonon engineering is introduced.
  • 加载中
  • [1] Chu, S., and Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature 488(7411): 294−303. DOI: 10.1038/nature11475.

    View in Article CrossRef Google Scholar

    [2] Wang, Y., Alonso, J.M., and Ruan, X. (2017). A Review of LED Drivers and Related Technologies. IEEE Trans. Ind. Electron. 64(7): 5754−5765. DOI: 10.1109/tie.2017.2677335.

    View in Article CrossRef Google Scholar

    [3] Xiao, Y., Xue, Q., Liu, X., et al. (2024). Lead-free perovskite LEDs powered by cyanuric acid. The Innovation 5(1): 100553. DOI: 10.1016/j.xinn.2023.100553.

    View in Article CrossRef Google Scholar

    [4] Zhang, F., Miao, X., van Dijk, N., et al. (2024). Advanced Magnetocaloric Materials for Energy Conversion: Recent Progress, Opportunities, and Perspective. Adv. Energy Mater. 14(21): 2400369. DOI: 10.1002/aenm.202400369.

    View in Article CrossRef Google Scholar

    [5] Woolley, E., Luo, Y., and Simeone, A. (2018). Industrial waste heat recovery: A systematic approach. Sustain. Energy Technol. Assess. 29: 50−59. DOI: 10.1016/j.seta.2018.07.001.

    View in Article CrossRef Google Scholar

    [6] He, J., and Tritt, T.M. (2017). Advances in thermoelectric materials research: Looking back and moving forward. Science 357(6358): eaak9997. DOI: 10.1126/science.aak9997.

    View in Article CrossRef Google Scholar

    [7] Sootsman, J.R., Chung, D.Y., and Kanatzidis, M.G. (2009). New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. Engl. 48(46): 8616−8639. DOI: 10.1002/anie.200900598.

    View in Article CrossRef Google Scholar

    [8] Bell, L.E. (2008). Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 321(5895): 1457−1461. DOI: 10.1126/science.1158899.

    View in Article CrossRef Google Scholar

    [9] Ma, D., Ma, Y., Ma, J., et al. (2024). Energy conversion materials need phonons. The Innovation 5 (6). DOI: 10.1016/j.xinn.2024.100709.

    View in Article Google Scholar

    [10] Wood, C. (1988). Materials for thermoelectric energy conversion. Rep. Prog. Phys. 51(4): 459−539. DOI: 10.1088/0034-4885/51/4/001.

    View in Article CrossRef Google Scholar

    [11] Snyder, G.J., and Toberer, E.S. (2008). Complex thermoelectric materials. Nat. Mater. 7(2): 105−114. DOI: 10.1038/nmat2090.

    View in Article CrossRef Google Scholar

    [12] Pei, Y., Shi, X., LaLonde, A., et al. (2011). Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473(7345): 66−69. DOI: 10.1038/nature09996.

    View in Article CrossRef Google Scholar

    [13] Pei, Y., Wang, H., and Snyder, G.J. (2012). Band Engineering of Thermoelectric Materials. Adv. Mater. 24(46): 6125−6135. DOI: 10.1002/adma.201202919.

    View in Article CrossRef Google Scholar

    [14] Qian, X., Zhou, J., and Chen, G. (2021). Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20(9): 1188−1202. DOI: 10.1038/s41563-021-00918-3.

    View in Article CrossRef Google Scholar

    [15] Ma, J. (2022). Phonon Engineering of Micro‐ and Nanophononic Crystals and Acoustic Metamaterials: A Review. Small Sci. 3(1): 2200052. DOI: 10.1002/smsc.202200052.

    View in Article CrossRef Google Scholar

    [16] Maldovan, M. (2013). Sound and heat revolutions in phononics. Nature 503(7475): 209−217. DOI: 10.1038/nature12608.

    View in Article CrossRef Google Scholar

    [17] Allen, P.B., Feldman, J.L., Fabian, J., and Wooten, F. (2009). Diffusons, locons and propagons: Character of atomic vibrations in amorphous Si. Philos. Mag. B 79(11-12): 1715−1731. DOI: 10.1080/13642819908223054.

    View in Article CrossRef Google Scholar

    [18] Ziman, J.M. (2001). Electrons and Phonons: The Theory of Transport Phenomena in Solids. In (Clarendon Press,Oxford).

    View in Article Google Scholar

    [19] Uoyama, H., Goushi, K., Shizu, K., et al. (2012). Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492(7428): 234−238. DOI: 10.1038/nature11687.

    View in Article CrossRef Google Scholar

    [20] Xiong, Z.H., Wu, D., Valy Vardeny, Z., and Shi, J. (2004). Giant magnetoresistance in organic spin-valves. Nature 427(6977): 821−824. DOI: 10.1038/nature02325.

    View in Article CrossRef Google Scholar

    [21] Roy, K., Padmanabhan, M., Goswami, S., et al. (2013). Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 8(11): 826−830. DOI: 10.1038/nnano.2013.206.

    View in Article CrossRef Google Scholar

    [22] Cao, Y., Jiang, K.a., Zhao, Z., and Wang, H. (2023). Laser-amplified nonvolatile charge trapping effect in semiconductor quantum dot structures. Optica 10(7): 897−904. DOI: 10.1364/optica.492416.

    View in Article CrossRef Google Scholar

    [23] Peierls, R. (2006). Zur kinetischen Theorie der Wärmeleitung in Kristallen. Ann. Phys. 395(8): 1055−1101. DOI: 10.1002/andp.19293950803.

    View in Article CrossRef Google Scholar

    [24] Callaway, J. (1959). Model for Lattice Thermal Conductivity at Low Temperatures. Phys. Rev. 113(4): 1046−1051. DOI: 10.1103/PhysRev.113.1046.

    View in Article CrossRef Google Scholar

    [25] Allen, P.B., and Feldman, J.L. (1993). Thermal conductivity of disordered harmonic solids. Phys. Rev. B 48(17): 12581−12588. DOI: 10.1103/PhysRevB.48.12581.

    View in Article CrossRef Google Scholar

    [26] Somayajulu, G.R. (1958). Dependence of Force Constant on Electronegativity, Bond Strength, and Bond Order VII. J. Chem. Phys. 28(5): 814−821. DOI: 10.1063/1.1744276.

    View in Article CrossRef Google Scholar

    [27] Epp, J. (2016). 4 - X-ray diffraction (XRD) techniques for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods, G. Hübschen, I. Altpeter, R. Tschuncky, and H.-G. Herrmann, eds. (Woodhead Publishing), pp. 81-124. 10.1016/B978-0-08-100040-3.00004-3.

    View in Article Google Scholar

    [28] Meisburger, S.P., Case, D.A., and Ando, N. (2023). Robust total X-ray scattering workflow to study correlated motion of proteins in crystals. Nat. Commun. 14 (1). DOI: 10.1038/s41467-023-36734-3.

    View in Article Google Scholar

    [29] Frenkel, A.I. (2012). Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chem. Soc. Rev. 41 (24). DOI: 10.1039/c2cs35174a.

    View in Article Google Scholar

    [30] Zhou, Y., Chen, L., Wang, Y., et al. (2023). ANi(5)Bi(5.6+delta) (A = K, Rb, and Cs): Quasi-One-Dimensional Metals Featuring [Ni(5)Bi(5.6+delta)](-) Double-Walled Column with Strong Diamagnetism. Inorg. Chem. 62 (9):3788-3798. DOI: 10.1021/acs.inorgchem.2c03870.

    View in Article Google Scholar

    [31] Hu, L., Zhu, J., Duan, C., et al. (2023). Revealing the Pnma crystal structure and ion-transport mechanism of the Li3YCl6 solid electrolyte. Cell Rep. Phys. Sci. 4(6): 101428. DOI: 10.1016/j.xcrp.2023.101428.

    View in Article CrossRef Google Scholar

    [32] Ren, Q., Gupta, M.K., Jin, M., et al. (2023). Extreme phonon anharmonicity underpins superionic diffusion and ultralow thermal conductivity in argyrodite Ag8SnSe6. Nat. Mater. 22: 999−1006. DOI: 10.1038/s41563-023-01560-x.

    View in Article CrossRef Google Scholar

    [33] Li, B., Wang, H., Kawakita, Y., et al. (2018). Liquid-like thermal conduction in intercalated layered crystalline solids. Nat. Mater. 17(3): 226−230. DOI: 10.1038/s41563-017-0004-2.

    View in Article CrossRef Google Scholar

    [34] de Groot, F.M.F., Haverkort, M.W., Elnaggar, H., et al. (2024). Resonant inelastic X-ray scattering. Nat. Rev. Methods Primers 4(1): 45. DOI: 10.1038/s43586-024-00322-6.

    View in Article CrossRef Google Scholar

    [35] Das, R.S., and Agrawal, Y.K. (2011). Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc. 57(2): 163−176. DOI: 10.1016/j.vibspec.2011.08.003.

    View in Article CrossRef Google Scholar

    [36] Bramwell, S.T., and Keimer, B. (2014). Neutron scattering from quantum condensed matter. Nat. Mater. 13(8): 763−767. DOI: 10.1038/nmat4045.

    View in Article CrossRef Google Scholar

    [37] Cahill, D.G., Ford, W.K., Goodson, K.E., et al. (2003). Nanoscale thermal transport. J. Appl. Phys. 93(2): 793−818. DOI: 10.1063/1.1524305.

    View in Article CrossRef Google Scholar

    [38] Siegrist, T., Merkelbach, P., and Wuttig, M. (2012). Phase Change Materials: Challenges on the Path to a Universal Storage Device. Annu. Rev. Condens. Matter Phys. 3(1): 215−237. DOI: 10.1146/annurev-conmatphys-020911-125105.

    View in Article CrossRef Google Scholar

    [39] Du, X., Li, J., Niu, G., et al. (2021). Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging. Nat. Commun. 12(1): 3348. DOI: 10.1038/s41467-021-23788-4.

    View in Article CrossRef Google Scholar

    [40] Padture, N.P., Gell, M., and Jordan, E.H. (2002). Thermal Barrier Coatings for Gas-Turbine Engine Applications. Science 296(5566): 280−284. DOI: 10.1126/science.1068609.

    View in Article CrossRef Google Scholar

    [41] Yang, X., Zheng, X., Liu, Q., et al. (2020). Experimental Study on Thermal Conductivity and Rectification in Suspended Monolayer MoS2. ACS Appl. Mater. Interfaces 12(25): 28306−28312. DOI: 10.1021/acsami.0c07544.

    View in Article CrossRef Google Scholar

    [42] Li, B., Wang, L., and Casati, G. (2006). Negative differential thermal resistance and thermal transistor. Appl. Phys. Lett. 88(14): 143501. DOI: 10.1063/1.2191730.

    View in Article CrossRef Google Scholar

    [43] Guenneau, S., Amra, C., and Veynante, D. (2012). Transformation thermodynamics: cloaking and concentrating heat flux. Opt. Express 20(7): 8207−8218. DOI: 10.1364/oe.20.008207.

    View in Article CrossRef Google Scholar

    [44] Simoncelli, M., Marzari, N., and Mauri, F. (2019). Unified theory of thermal transport in crystals and glasses. Nat. Phys. 15(8): 809−813. DOI: 10.1038/s41567-019-0520-x.

    View in Article CrossRef Google Scholar

    [45] Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., and Chen, G. (2009). Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2(5): 466−479. DOI: 10.1039/b822664b.

    View in Article CrossRef Google Scholar

    [46] Zhao, M., Pan, W., Wan, C., et al. (2017). Defect engineering in development of low thermal conductivity materials: A review. J. Eur. Ceram. Soc. 37(1): 1−13. DOI: 10.1016/j.jeurceramsoc.2016.07.036.

    View in Article CrossRef Google Scholar

    [47] Clarke, D.R. (2003). Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163-164: 67−74. DOI: 10.1016/s0257-8972(02)00593-5.

    View in Article CrossRef Google Scholar

    [48] Kurosaki, K., Kosuga, A., Muta, H., et al. (2005). Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity. Appl. Phys. Lett. 87(6): 8. DOI: 10.1063/1.2009828.

    View in Article CrossRef Google Scholar

    [49] Akhmedova, G.A., and Abdinov, D.S. (2009). Effect of thallium doping on the thermal conductivity of PbTe single crystals. Inorg. Mater. 45(8): 854−858. DOI: 10.1134/s0020168509080056.

    View in Article CrossRef Google Scholar

    [50] Wu, W., Liu, W., and Yu, F. (2020). Enhancement of thermoelectric performance through synergy of Pb acceptor doping and superstructure modulation for p-type Bi2Te3. In. J. Mater. Sci. Mater. Electron., pp. 1200-1209. 10.1007/s10854-019-02631-z.

    View in Article Google Scholar

    [51] Bate, R.T., Carter, D.L., and Wrobel, J.S. (1970). Paraelectric Behavior of PbTe. Phys. Rev. Lett. 25(3): 159−162. DOI: 10.1103/PhysRevLett.25.159.

    View in Article CrossRef Google Scholar

    [52] Waghmare, U.V., Spaldin, N.A., Kandpal, H.C., and Seshadri, R. (2003). First-principles indicators of metallicity and cation off-centricity in the IV-VI rocksalt chalcogenides of divalent Ge, Sn, and Pb. Phys. Rev. B 67(12): 125111. DOI: 10.1103/PhysRevB.67.125111.

    View in Article CrossRef Google Scholar

    [53] Kwei, G.H., Lawson, A.C., Billinge, S.J.L., and Cheong, S.W. (2002). Structures of the ferroelectric phases of barium titanate. J. Phys. Chem. 97(10): 2368−2377. DOI: 10.1021/j100112a043.

    View in Article CrossRef Google Scholar

    [54] Zhang, Y., Ke, X., Kent, P.R.C., et al. (2011). Anomalous Lattice Dynamics near the Ferroelectric Instability in PbTe. Phys. Rev. Lett. 107(17): 175503. DOI: 10.1103/PhysRevLett.107.175503.

    View in Article CrossRef Google Scholar

    [55] Božin, E.S., Malliakas, C.D., Souvatzis, P., et al. (2010). Entropically Stabilized Local Dipole Formation in Lead Chalcogenides. Science 330(6011): 1660−1663. DOI: 10.1126/science.1192759.

    View in Article CrossRef Google Scholar

    [56] Li, C.W., Ma, J., Cao, H.B., et al. (2014). Anharmonicity and atomic distribution of SnTe and PbTe thermoelectrics. Phys. Rev. B 90(21): 214303. DOI: 10.1103/PhysRevB.90.214303.

    View in Article CrossRef Google Scholar

    [57] Yu, Y., Cagnoni, M., Cojocaru‐Mirédin, O., and Wuttig, M. (2019). Chalcogenide Thermoelectrics Empowered by an Unconventional Bonding Mechanism. Adv. Funct. Mater. 30(8): 1904862. DOI: 10.1002/adfm.201904862.

    View in Article CrossRef Google Scholar

    [58] An, J., Subedi, A., and Singh, D.J. (2008). Ab initio phonon dispersions for PbTe. Solid State Commun. 148(9-10): 417−419. DOI: 10.1016/j.ssc.2008.09.027.

    View in Article CrossRef Google Scholar

    [59] Zhang, Y., Ke, X., Chen, C., et al. (2009). Thermodynamic properties of PbTe, PbSe, and PbS: First-principles study. Phys. Rev. B 80(2): 024304. DOI: 10.1103/PhysRevB.80.024304.

    View in Article CrossRef Google Scholar

    [60] Shiga, T., Shiomi, J., Ma, J., et al. (2012). Microscopic mechanism of low thermal conductivity in lead telluride. Phys. Rev. B 85(15): 155203. DOI: 10.1103/PhysRevB.85.155203.

    View in Article CrossRef Google Scholar

    [61] Delaire, O., Ma, J., Marty, K., et al. (2011). Giant anharmonic phonon scattering in PbTe. Nat. Mater. 10(8): 614−619. DOI: 10.1038/nmat3035.

    View in Article CrossRef Google Scholar

    [62] Jensen, K.M.Ø., Božin, E.S., Malliakas, C.D., et al. (2012). Lattice dynamics reveals a local symmetry breaking in the emergent dipole phase of PbTe. Phys. Rev. B 86(8): 085313. DOI: 10.1103/PhysRevB.86.085313.

    View in Article CrossRef Google Scholar

    [63] Burns, G. (1976). Dirty displacive ferroelectrics. Phys. Rev. B 13(1): 215−226. DOI: 10.1103/PhysRevB.13.215.

    View in Article CrossRef Google Scholar

    [64] Ai, X., Chen, Y., and Marianetti, C.A. (2014). Slave mode expansion for obtaining ab initio interatomic potentials. Phys. Rev. B 90(1): 014308. DOI: 10.1103/PhysRevB.90.014308.

    View in Article CrossRef Google Scholar

    [65] Chen, Y., Ai, X., and Marianetti, C.A. (2014). First-principles approach to nonlinear lattice dynamics: anomalous spectra in PbTe. Phys. Rev. Lett. 113(10): 105501. DOI: 10.1103/PhysRevLett.113.105501.

    View in Article CrossRef Google Scholar

    [66] Li, C.W., Hellman, O., Ma, J., et al. (2014). Phonon Self-Energy and Origin of Anomalous Neutron Scattering Spectra in SnTe and PbTe Thermoelectrics. Phys. Rev. Lett. 112(17): 175501. DOI: 10.1103/PhysRevLett.112.175501.

    View in Article CrossRef Google Scholar

    [67] Kobayashi, K.L.I., Kato, Y., Katayama, Y., and Komatsubara, K.F. (1976). Carrier-Concentration-Dependent Phase Transition in SnTe. Phys. Rev. Lett. 37(12): 772−774. DOI: 10.1103/PhysRevLett.37.772.

    View in Article CrossRef Google Scholar

    [68] Pandit, A., Haleoot, R., and Hamad, B. (2021). Thermal conductivity and enhanced thermoelectric performance of SnTe bilayer. J. Mater. Sci. 56(17): 10424−10437. DOI: 10.1007/s10853-021-05926-x.

    View in Article CrossRef Google Scholar

    [69] Knox, K.R., Bozin, E.S., Malliakas, C.D., et al. (2014). Local off-centering symmetry breaking in the high-temperature regime of SnTe. Phys. Rev. B 89(1): 014102. DOI: 10.1103/PhysRevB.89.014102.

    View in Article CrossRef Google Scholar

    [70] Maradudin, A.A., and Fein, A.E. (1962). Scattering of Neutrons by an Anharmonic Crystal. Phys. Rev. 128(6): 2589−2608. DOI: 10.1103/PhysRev.128.2589.

    View in Article CrossRef Google Scholar

    [71] Cowley, R.A. (1968). Anharmonic crystals. Rep. Prog. Phys. 31(1): 123−166. DOI: 10.1088/0034-4885/31/1/303.

    View in Article CrossRef Google Scholar

    [72] Maradudin, A.A., Fein, A.E., and Vineyard, G.H. (2006). On the evaluation of phonon widths and shifts. Phys. Status Solidi B 2(11): 1479−1492. DOI: 10.1002/pssb.19620021106.

    View in Article CrossRef Google Scholar

    [73] Chattopadhyay, T., Boucherle, J.X., and vonSchnering, H.G. (1987). Neutron diffraction study on the structural phase transition in GeTe. J. Phys. C: Solid State Phys. 20(10): 1431−1440. DOI: 10.1088/0022-3719/20/10/012.

    View in Article CrossRef Google Scholar

    [74] Jeong, K., Park, S., Park, D., et al. (2017). Evolution of crystal structures in GeTe during phase transition. Sci. Rep. 7(1): 955. DOI: 10.1038/s41598-017-01154-z.

    View in Article CrossRef Google Scholar

    [75] Fons, P., Kolobov, A.V., Krbal, M., et al. (2010). Phase transition in crystalline GeTe: Pitfalls of averaging effects. Phys. Rev. B 82(15): 155209. DOI: 10.1103/PhysRevB.82.155209.

    View in Article CrossRef Google Scholar

    [76] Li, J., Zhang, X., Wang, X., et al. (2018). High-Performance GeTe Thermoelectrics in Both Rhombohedral and Cubic Phases. JACS 140(47): 16190−16197. DOI: 10.1021/jacs.8b09147.

    View in Article CrossRef Google Scholar

    [77] Zhang, X., Bu, Z., Lin, S., et al. (2020). GeTe Thermoelectrics. Joule 4(5): 986−1003. DOI: 10.1016/j.joule.2020.03.004.

    View in Article CrossRef Google Scholar

    [78] Xing, T., Zhu, C., Song, Q., et al. (2021). Ultralow Lattice Thermal Conductivity and Superhigh Thermoelectric Figure-of-Merit in (Mg, Bi) Co-Doped GeTe. Adv. Mater. 33(17): e2008773. DOI: 10.1002/adma.202008773.

    View in Article CrossRef Google Scholar

    [79] Wu, D., Zhao, L.-D., Hao, S., et al. (2014). Origin of the High Performance in GeTe-Based Thermoelectric Materials upon Bi2Te3 Doping. JACS 136(32): 11412−11419. DOI: 10.1021/ja504896a.

    View in Article CrossRef Google Scholar

    [80] Liu, Z., Sun, J., Mao, J., et al. (2018). Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping. PNAS 115(21): 5332−5337. DOI: 10.1073/pnas.1802020115.

    View in Article CrossRef Google Scholar

    [81] Liu, Z., Sato, N., Guo, Q., et al. (2020). Shaping the role of germanium vacancies in germanium telluride: metastable cubic structure stabilization, band structure modification, and stable N-type conduction. NPG Asia Mater. 12(1): 66. DOI: 10.1038/s41427-020-00247-y.

    View in Article CrossRef Google Scholar

    [82] Liu, W.D., Wang, D.Z., Liu, Q., et al. (2020). High‐Performance GeTe‐Based Thermoelectrics: from Materials to Devices. Adv. Energy Mater. 10(19): 2000367. DOI: 10.1002/aenm.202000367.

    View in Article CrossRef Google Scholar

    [83] Lucovsky, G., and White, R.M. (1973). Effects of Resonance Bonding on the Properties of Crystalline and Amorphous Semiconductors. Phys. Rev. B 8(2): 660−667. DOI: 10.1103/PhysRevB.8.660.

    View in Article CrossRef Google Scholar

    [84] Mitrofanov, K.V., Kolobov, A.V., Fons, P., et al. (2014). Ge L3-edge x-ray absorption near-edge structure study of structural changes accompanying conductivity drift in the amorphous phase of Ge2Sb2Te5. J. Appl. Phys. 115 (17). DOI: 10.1063/1.4874415.

    View in Article Google Scholar

    [85] Polatoglou, H.M., Theodorou, G., and Economou, N.A. (1983). Bonding in cubic and rhombohedral GeTe. J. Phys. C: Solid State Phys. 16(5): 817−827. DOI: 10.1088/0022-3719/16/5/009.

    View in Article CrossRef Google Scholar

    [86] Raty, J.Y., Godlevsky, V., Ghosez, P., et al. (2000). Evidence of a Reentrant Peierls Distortion in Liquid GeTe. Phys. Rev. Lett. 85(9): 1950−1953. DOI: 10.1103/PhysRevLett.85.1950.

    View in Article CrossRef Google Scholar

    [87] Raty, J.-Y., and Wuttig, M. (2020). The interplay between Peierls distortions and metavalent bonding in IV–VI compounds: comparing GeTe with related monochalcogenides. J. Phys. D: Appl. Phys. 53 (23). DOI: 10.1088/1361-6463/ab7e66.

    View in Article Google Scholar

    [88] Kimber, S.A.J., Zhang, J., Liang, C.H., et al. (2023). Dynamic crystallography reveals spontaneous anisotropy in cubic GeTe. Nat. Mater. 22(3): 311−315. DOI: 10.1038/s41563-023-01483-7.

    View in Article CrossRef Google Scholar

    [89] Wang, C., Wu, J., Zeng, Z., et al. (2021). Soft-mode dynamics in the ferroelectric phase transition of GeTe. npj Comput. Mater. 7(1): 118. DOI: 10.1038/s41524-021-00588-4.

    View in Article CrossRef Google Scholar

    [90] Siegrist, T., Jost, P., Volker, H., et al. (2011). Disorder-induced localization in crystalline phase-change materials. Nat. Mater. 10(3): 202−208. DOI: 10.1038/nmat2934.

    View in Article CrossRef Google Scholar

    [91] Zhang, W., Thiess, A., Zalden, P., et al. (2012). Role of vacancies in metal–insulator transitions of crystalline phase-change materials. Nat. Mater. 11(11): 952−956. DOI: 10.1038/nmat3456.

    View in Article CrossRef Google Scholar

    [92] Matsunaga, T., Fons, P., Kolobov, A.V., et al. (2011). The order-disorder transition in GeTe: Views from different length-scales. Appl. Phys. Lett. 99(23): 231907. DOI: 10.1063/1.3665067.

    View in Article CrossRef Google Scholar

    [93] Xu, M., Lei, Z., Yuan, J., et al. (2018). Structural disorder in the high-temperature cubic phase of GeTe. RSC Adv. 8(31): 17435−17442. DOI: 10.1039/c8ra02561d.

    View in Article CrossRef Google Scholar

    [94] Chapman, K.W., Lapidus, S.H., and Chupas, P.J. (2015). Applications of principal component analysis to pair distribution function data. J. Appl. Crystallogr. 48(6): 1619−1626. DOI: 10.1107/s1600576715016532.

    View in Article CrossRef Google Scholar

    [95] Chatterji, T., Kumar, C.M.N., and Wdowik, U.D. (2015). Anomalous temperature-induced volume contraction in GeTe. Phys. Rev. B 91(5): 054110. DOI: 10.1103/PhysRevB.91.054110.

    View in Article CrossRef Google Scholar

    [96] Wang, T., Zhang, C., Yang, J.-Y., and Liu, L. (2021). Engineering the electronic band structure and thermoelectric performance of GeTe via lattice structure manipulation from first-principles. PCCP 23(41): 23576−23585. DOI: 10.1039/d1cp03728e.

    View in Article CrossRef Google Scholar

    [97] Miyata, K., and Zhu, X.Y. (2018). Ferroelectric large polarons. Nat. Mater. 17(5): 379−381. DOI: 10.1038/s41563-018-0068-7.

    View in Article CrossRef Google Scholar

    [98] Kadlec, F., Kadlec, C., Kužel, P., and Petzelt, J. (2011). Study of the ferroelectric phase transition in germanium telluride using time-domain terahertz spectroscopy. Phys. Rev. B 84(20): 205209. DOI: 10.1103/PhysRevB.84.205209.

    View in Article CrossRef Google Scholar

    [99] Polking, M.J., Urban, J.J., Milliron, D.J., et al. (2011). Size-Dependent Polar Ordering in Colloidal GeTe Nanocrystals. Nano Lett. 11(3): 1147−1152. DOI: 10.1021/nl104075v.

    View in Article CrossRef Google Scholar

    [100] Chatterji, T., Rols, S., and Wdowik, U.D. (2018). Dynamics of the phase-change material GeTe across the structural phase transition. Front. Phys. 14(2): 23601. DOI: 10.1007/s11467-018-0864-1.

    View in Article CrossRef Google Scholar

    [101] Guin, S.N., Chatterjee, A., Negi, D.S., et al. (2013). High thermoelectric performance in tellurium free p-type AgSbSe2. Energy Environ. Sci. 6(9): 2603−2608. DOI: 10.1039/c3ee41935e.

    View in Article CrossRef Google Scholar

    [102] Morelli, D.T., Jovovic, V., and Heremans, J.P. (2008). Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. Phys. Rev. Lett. 101(3): 035901. DOI: 10.1103/PhysRevLett.101.035901.

    View in Article CrossRef Google Scholar

    [103] Nielsen, M.D., Ozolins, V., and Heremans, J.P. (2013). Lone pair electrons minimize lattice thermal conductivity. Energy Environ. Sci. 6(2): 570−578. DOI: 10.1039/c2ee23391f.

    View in Article CrossRef Google Scholar

    [104] Berri, S., Maouche, D., and Medkour, Y. (2012). Ab initio study of the structural, electronic and elastic properties of AgSbTe2, AgSbSe2, Pr3AlC, Ce3AlC, Ce3AlN, La3AlC and La3AlN compounds. Physica B 407(17): 3320−3327. DOI: 10.1016/j.physb.2012.04.011.

    View in Article CrossRef Google Scholar

    [105] Sugar, J.D., and Medlin, D.L. (2009). Precipitation of Ag2Te in the thermoelectric material AgSbTe2. J. Alloys Compd. 478(1-2): 75−82. DOI: 10.1016/j.jallcom.2008.11.054.

    View in Article CrossRef Google Scholar

    [106] Wolfe, R., Wernick, J.H., and Haszko, S.E. (1960). Anomalous Hall Effect in AgSbTe2. J. Appl. Phys. 31(11): 1959−1964. DOI: 10.1063/1.1735479.

    View in Article CrossRef Google Scholar

    [107] Ma, J., Delaire, O., May, A.F., et al. (2013). Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2. Nat. Nanotechnol. 8(6): 445−451. DOI: 10.1038/nnano.2013.95.

    View in Article CrossRef Google Scholar

    [108] Barabash, S.V., and Ozolins, V. (2010). Order, miscibility, and electronic structure of Ag(Bi,Sb)Te2 alloys and (Ag,Bi,Sb)Te precipitates in rocksalt matrix: A first-principles study. Phys. Rev. B 81(7): 075212. DOI: 10.1103/PhysRevB.81.075212.

    View in Article CrossRef Google Scholar

    [109] Barabash, S.V., Ozolins, V., and Wolverton, C. (2008). First-Principles Theory of Competing Order Types, Phase Separation, and Phonon Spectra in Thermoelectric AgPbmSbTem+2 Alloys. Phys. Rev. Lett. 101(15): 155704. DOI: 10.1103/PhysRevLett.101.155704.

    View in Article CrossRef Google Scholar

    [110] Hoang, K., Mahanti, S.D., Salvador, J.R., and Kanatzidis, M.G. (2007). Atomic Ordering and Gap Formation in Ag-Sb-Based Ternary Chalcogenides. Phys. Rev. Lett. 99(15): 156403. DOI: 10.1103/PhysRevLett.99.156403.

    View in Article CrossRef Google Scholar

    [111] Ma, J., Delaire, O., Specht, E.D., et al. (2014). Phonon scattering rates and atomic ordering in Ag1−xSb1+xTe2+x(x=0,0.1,0.2) investigated with inelastic neutron scattering and synchrotron diffraction. Phys. Rev. B 90 (13):134303 DOI: 10.1103/PhysRevB.90.134303.

    View in Article Google Scholar

    [112] Graf, T., Felser, C., and Parkin, S.S.P. (2011). Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39(1): 1−50. DOI: 10.1016/j.progsolidstchem.2011.02.001.

    View in Article CrossRef Google Scholar

    [113] Zeier, W.G., Schmitt, J., Hautier, G., et al. (2016). Engineering half-Heusler thermoelectric materials using Zintl chemistry. Nat. Rev. Mater. 1(6): 16032. DOI: 10.1038/natrevmats.2016.32.

    View in Article CrossRef Google Scholar

    [114] Xie, H., Wang, H., Pei, Y., et al. (2013). Beneficial Contribution of Alloy Disorder to Electron and Phonon Transport in Half‐Heusler Thermoelectric Materials. Adv. Funct. Mater. 23(41): 5123−5130. DOI: 10.1002/adfm.201300663.

    View in Article CrossRef Google Scholar

    [115] Fu, C., Zhu, T., Liu, Y., et al. (2015). Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1. Energy Environ. Sci. 8(1): 216−220. DOI: 10.1039/c4ee03042g.

    View in Article CrossRef Google Scholar

    [116] Xie, W., Weidenkaff, A., Tang, X., et al. (2012). Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds. Nanomaterials 2(4): 379−412. DOI: 10.3390/nano2040379.

    View in Article CrossRef Google Scholar

    [117] Liu, Y., Sahoo, P., Makongo, J.P.A., et al. (2013). Large Enhancements of Thermopower and Carrier Mobility in Quantum Dot Engineered Bulk Semiconductors. JACS 135(20): 7486−7495. DOI: 10.1021/ja311059m.

    View in Article CrossRef Google Scholar

    [118] Anand, S., Xia, K., I. Hegde, V., et al. (2018). A valence balanced rule for discovery of 18-electron half-Heuslers with defects. Energy Environ. Sci. 11(6): 1480−1488. DOI: 10.1039/C8EE00306H.

    View in Article CrossRef Google Scholar

    [119] Zeier, W.G., Anand, S., Huang, L., et al. (2017). Using the 18-Electron Rule To Understand the Nominal 19-Electron Half-Heusler NbCoSb with Nb Vacancies. Chem. Mater. 29(3): 1210−1217. DOI: 10.1021/acs.chemmater.6b04583.

    View in Article CrossRef Google Scholar

    [120] Xia, K., Nan, P., Tan, S., et al. (2019). Short-range order in defective half-Heusler thermoelectric crystals. Energy Environ. Sci. 12(5): 1568−1574. DOI: 10.1039/c8ee03654c.

    View in Article CrossRef Google Scholar

    [121] Xia, K., Liu, Y., Anand, S., et al. (2018). Enhanced Thermoelectric Performance in 18‐Electron Nb0.8CoSb Half‐Heusler Compound with Intrinsic Nb Vacancies. Adv. Funct. Mater. 28 (9):1705845. DOI: 10.1002/adfm.201705845.

    View in Article Google Scholar

    [122] Rausch, E., Castegnaro, M.V., Bernardi, F., et al. (2016). Short and long range order of Half-Heusler phases in (Ti,Zr,Hf)CoSb thermoelectric compounds. Acta Mater. 115: 308−313. DOI: 10.1016/j.actamat.2016.05.041.

    View in Article CrossRef Google Scholar

    [123] Ren, W., Xue, W., Guo, S., et al. (2023). Vacancy-mediated anomalous phononic and electronic transport in defective half-Heusler ZrNiBi. Nat. Commun. 14(1): 4722. DOI: 10.1038/s41467-023-40492-7.

    View in Article CrossRef Google Scholar

    [124] Sakurada, S., and Shutoh, N. (2005). Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Appl. Phys. Lett. 86(8): 082105. DOI: 10.1063/1.1868063.

    View in Article CrossRef Google Scholar

    [125] Yang, J., Li, H., Wu, T., et al. (2008). Evaluation of Half‐Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties. Adv. Funct. Mater. 18(19): 2880−2888. DOI: 10.1002/adfm.200701369.

    View in Article CrossRef Google Scholar

    [126] Li, Z., Xue, W., Han, S., et al. (2023). Ni atomic disorder in ZrNiSn revealed by scanning transmission electron microscopy. Mater. Today Phys. 34: 101072. DOI: 10.1016/j.mtphys.2023.101072.

    View in Article CrossRef Google Scholar

    [127] Sekimoto, T., Kurosaki, K., Muta, H., and Yamanaka, S. (2007). High-Thermoelectric Figure of Merit Realized in p-Type Half-Heusler Compounds: ZrCoSnxSb1-x. Jpn. J. Appl. Phys. 46(27): 673−675. DOI: 10.1143/jjap.46.L673.

    View in Article CrossRef Google Scholar

    [128] Fu, C.G., Bai, S.Q., Liu, Y.T., et al. (2015). Realizing high figure of merit in heavy-band -type half-Heusler thermoelectric materials. Nat. Commun. 6: 8144. DOI: ARTN 8144 10.1038/ncomms9144. DOI: 10.1038/ncomms9144.

    View in Article CrossRef Google Scholar

    [129] Uher, C., Yang, J., Hu, S., et al. (1999). Transport properties of pure and dopedMNiSn (M=Zr, Hf). Phys. Rev. B 59(13): 8615−8621. DOI: 10.1103/PhysRevB.59.8615.

    View in Article CrossRef Google Scholar

    [130] Yan, X., Liu, W., Wang, H., et al. (2012). Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1−xTixCoSb0.8Sn0.2. Energy Environ. Sci. 5 (6). DOI: 10.1039/c2ee21554c.

    View in Article Google Scholar

    [131] Ren, Q., Fu, C., Qiu, Q., et al. (2020). Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials. Nat. Commun. 11(1): 3142. DOI: 10.1038/s41467-020-16913-2.

    View in Article CrossRef Google Scholar

    [132] Caillat, T., Borshchevsky, A., and Fleurial, J.P. (1996). Properties of single crystalline semiconducting CoSb3. J. Appl. Phys. 80(8): 4442−4449. DOI: 10.1063/1.363405.

    View in Article CrossRef Google Scholar

    [133] Zawadzki, W. (1974). Electron transport phenomena in small-gap semiconductors. Adv. Phys. 23(3): 435−522. DOI: 10.1080/00018737400101371.

    View in Article CrossRef Google Scholar

    [134] Ahn, D. (1991). Theory of polar-optical-phonon scattering in a semiconductor quantum wire. J. Appl. Phys. 69(6): 3596−3600. DOI: 10.1063/1.348504.

    View in Article CrossRef Google Scholar

    [135] Kohn, W. (1959). Image of the Fermi Surface in the Vibration Spectrum of a Metal. Phys. Rev. Lett. 2(9): 393−394. DOI: 10.1103/PhysRevLett.2.393.

    View in Article CrossRef Google Scholar

    [136] Han, S., Dai, S.N., Ma, J., et al. (2023). Strong phonon softening and avoided crossing in aliovalence-doped heavy-band thermoelectrics. Nat. Phys. 19(11): 1649−1657. DOI: 10.1038/s41567-023-02188-z.

    View in Article CrossRef Google Scholar

    [137] Christensen, M., Abrahamsen, A.B., Christensen, N.B., et al. (2008). Avoided crossing of rattler modes in thermoelectric materials. Nat. Mater. 7(10): 811−815. DOI: 10.1038/nmat2273.

    View in Article CrossRef Google Scholar

    [138] Qi, J., Dong, B., Zhang, Z., et al. (2020). Dimer rattling mode induced low thermal conductivity in an excellent acoustic conductor. Nat. Commun. 11(1): 5197. DOI: 10.1038/s41467-020-19044-w.

    View in Article CrossRef Google Scholar

    [139] Dutta, M., Samanta, M., Ghosh, T., et al. (2021). Evidence of Highly Anharmonic Soft Lattice Vibrations in a Zintl Rattler. Angew Chem. Int. Ed. Engl. 60(8): 4259−4265. DOI: 10.1002/anie.202013923.

    View in Article CrossRef Google Scholar

    [140] Liu, P.-F., Li, X., Li, J., et al. (2024). Strong low-energy rattling modes enabled liquid-like ultralow thermal conductivity in a well-ordered solid. Nation. Sci. Rev. 11(12): nwae216 . DOI: 10.1093/nsr/nwae216.

    View in Article CrossRef Google Scholar

    [141] Lai, W., Wang, Y., Morelli, D.T., and Lu, X. (2015). From Bonding Asymmetry to Anharmonic Rattling in Cu12Sb4S13Tetrahedrites: When Lone-Pair Electrons Are Not So Lonely. Adv. Funct. Mater. 25(24): 3648−3657. DOI: 10.1002/adfm.201500766.

    View in Article CrossRef Google Scholar

    [142] Qiu, W., Xi, L., Wei, P., et al. (2014). Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy. PNAS 111(42): 15031−15035. DOI: 10.1073/pnas.1410349111.

    View in Article CrossRef Google Scholar

    [143] Schnering, H.G.v., and Wiedemeier, H. (1981). The high temperature structure of ß-SnS and ß-SnSe and the B16-to-B33 type λ-transition path. Z. Krist.-Cryst. Mater. 156(1-4): 143−150. DOI. DOI: 10.1524/zkri.1981.156.14.143.

    View in Article CrossRef Google Scholar

    [144] Chattopadhyay, T., Werner, A., von Schnering, H.G., and Pannetier, J. (1984). Temperature and pressure induced phase transition in IV-VI compounds. Rev. Phys. Appl. 19(9): 807−813. DOI: 10.1051/rphysap:01984001909080700.

    View in Article CrossRef Google Scholar

    [145] Chattopadhyay, T., Pannetier, J., and Von Schnering, H.G. (1986). Neutron diffraction study of the structural phase transition in SnS and SnSe. J. Phys. Chem. Solids 47(9): 879−885. DOI: 10.1016/0022-3697(86)90059-4.

    View in Article CrossRef Google Scholar

    [146] Yang, S., Liu, Y., Wu, M., et al. (2017). Highly-anisotropic optical and electrical properties in layered SnSe. Nano Res. 11(1): 554−564. DOI: 10.1007/s12274-017-1712-2.

    View in Article CrossRef Google Scholar

    [147] Yan, Y., Abbas, G., Li, F., et al. (2022). Self‐Driven High Performance Broadband Photodetector Based on SnSe/InSe van der Waals Heterojunction. Adv. Mater. Interfaces 9(12): 2102068. DOI: 10.1002/admi.202102068.

    View in Article CrossRef Google Scholar

    [148] Zhao, L.-D., Lo, S.-H., Zhang, Y., et al. (2014). Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496): 373−377. DOI: 10.1038/nature13184.

    View in Article CrossRef Google Scholar

    [149] Zhao, L.-D., Tan, G., Hao, S., et al. (2016). Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 351(6269): 141−144. DOI: 10.1126/science.aad3749.

    View in Article CrossRef Google Scholar

    [150] Chang, C., Wu, M., He, D., et al. (2018). 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 360(6390): 778−783. DOI: 10.1126/science.aaq1479.

    View in Article CrossRef Google Scholar

    [151] Vasudevan, R., Zhang, L., Ren, Q., et al. (2022). Secondary phase effect on the thermoelectricity by doping Ag in SnSe. J. Alloys Compd. 923: 166251. DOI: 10.1016/j.jallcom.2022.166251.

    View in Article CrossRef Google Scholar

    [152] Chen, C.-L., Wang, H., Chen, Y.-Y., et al. (2014). Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J. Mater. Chem. A 2(29): 11171−11176. DOI: 10.1039/c4ta01643b.

    View in Article CrossRef Google Scholar

    [153] Jiang, B., Neu, J., Olds, D., et al. (2023). The curious case of the structural phase transition in SnSe insights from neutron total scattering. Nat. Commun. 14 (1). DOI: 10.1038/s41467-023-38454-0.

    View in Article Google Scholar

    [154] Hong, J., and Delaire, O. (2019). Phase transition and anharmonicity in SnSe. Mater. Today Phys. 10: 100093. DOI: 10.1016/j.mtphys.2019.100093.

    View in Article CrossRef Google Scholar

    [155] Li, C.W., Hong, J., May, A.F., et al. (2015). Orbitally driven giant phonon anharmonicity in SnSe. Nat. Phys. 11(12): 1063−1069. DOI: 10.1038/nphys3492.

    View in Article CrossRef Google Scholar

    [156] Xiao, Y., Chang, C., Pei, Y., et al. (2016). Origin of low thermal conductivity in SnSe. Phys. Rev. B 94(12): 125203. DOI: 10.1103/PhysRevB.94.125203.

    View in Article CrossRef Google Scholar

    [157] Scott, J.F. (1974). Soft-mode spectroscopy: Experimental studies of structural phase transitions. Rev. Mod. Phys. 46(1): 83−128. DOI: 10.1103/RevModPhys.46.83.

    View in Article CrossRef Google Scholar

    [158] Cochran, W. (1959). Crystal Stability and the Theory of Ferroelectricity. Phys. Rev. Lett. 3(9): 412−414. DOI: 10.1103/PhysRevLett.3.412.

    View in Article CrossRef Google Scholar

    [159] Pawley, G.S., Cochran, W., Cowley, R.A., and Dolling, G. (1966). Diatomic Ferroelectrics. Phys. Rev. Lett. 17(14): 753−755. DOI: 10.1103/PhysRevLett.17.753.

    View in Article CrossRef Google Scholar

    [160] Carrete, J., Mingo, N., and Curtarolo, S. (2014). Low thermal conductivity and triaxial phononic anisotropy of SnSe. Appl. Phys. Lett. 105(10): 101907. DOI: 10.1063/1.4895770.

    View in Article CrossRef Google Scholar

    [161] Lanigan-Atkins, T., Yang, S., Niedziela, J.L., et al. (2020). Extended anharmonic collapse of phonon dispersions in SnS and SnSe. Nat. Commun. 11(1): 4430. DOI: 10.1038/s41467-020-18121-4.

    View in Article CrossRef Google Scholar

    [162] Liu, H., Shi, X., Xu, F., et al. (2012). Copper ion liquid-like thermoelectrics. Nat. Mater. 11(5): 422−425. DOI: 10.1038/nmat3273.

    View in Article CrossRef Google Scholar

    [163] Ohno, S., and Okada, T. (2002). Electrical properties of liquid Au-Si alloys. J. Non-Cryst. Solids 312-14: 376−379. DOI: Pii S0022-3093(02)01756-8 Doi 10.1016/S0022-3093(02)01756-8.

    View in Article Google Scholar

    [164] Niedziela, J.L., Bansal, D., May, A.F., et al. (2018). Selective breakdown of phonon quasiparticles across superionic transition in CuCrSe2. Nat. Phys. 15(1): 73−78. DOI: 10.1038/s41567-018-0298-2.

    View in Article CrossRef Google Scholar

    [165] Ding, J., Niedziela, J.L., Bansal, D., et al. (2020). Anharmonic lattice dynamics and superionic transition in AgCrSe2. PNAS 117(8): 3930−3937. DOI: 10.1073/pnas.1913916117.

    View in Article CrossRef Google Scholar

    [166] Voneshen, D.J., Walker, H.C., Refson, K., and Goff, J.P. (2017). Hopping Time Scales and the Phonon-Liquid Electron-Crystal Picture in Thermoelectric Copper Selenide. Phys. Rev. Lett. 118(14): 145901. DOI: 10.1103/PhysRevLett.118.145901.

    View in Article CrossRef Google Scholar

    [167] Jin, M., Lin, S., Li, W., et al. (2019). Fabrication and Thermoelectric Properties of Single-Crystal Argyrodite Ag8SnSe6. Chem. Mater. 31(7): 2603−2610. DOI: 10.1021/acs.chemmater.9b00393.

    View in Article CrossRef Google Scholar

    [168] Shen, X., Xia, Y., Yang, C.C., et al. (2020). High Thermoelectric Performance in Sulfide‐Type Argyrodites Compound Ag8Sn(S1−xSex)6 Enabled by Ultralow Lattice Thermal Conductivity and Extended Cubic Phase Regime. Adv. Funct. Mater. 30(21): 2000526. DOI: 10.1002/adfm.202000526.

    View in Article CrossRef Google Scholar

    [169] Zhang, Z., and Nazar, L.F. (2022). Exploiting the paddle-wheel mechanism for the design of fast ion conductors. Nat. Rev. Mater. 7(5): 389−405. DOI: 10.1038/s41578-021-00401-0.

    View in Article CrossRef Google Scholar

    [170] Gupta, M.K., Ding, J., Osti, N.C., et al. (2021). Fast Na diffusion and anharmonic phonon dynamics in superionic Na3PS4. Energy Environ. Sci. 14(12): 6554−6563. DOI: 10.1039/d1ee01509e.

    View in Article CrossRef Google Scholar

    [171] Zhao, K., Qiu, P., Shi, X., and Chen, L. (2019). Recent Advances in Liquid‐Like Thermoelectric Materials. Adv. Funct. Mater. 30(8): 1903867. DOI: 10.1002/adfm.201903867.

    View in Article CrossRef Google Scholar

    [172] Sales, B.C., Mandrus, D., and Williams, R.K. (1996). Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials. Science 272(5266): 1325−1328. DOI: 10.1126/science.272.5266.1325.

    View in Article CrossRef Google Scholar

    [173] Li, W., Lin, S., Weiss, M., et al. (2018). Crystal Structure Induced Ultralow Lattice Thermal Conductivity in Thermoelectric Ag9AlSe6. Adv. Energy Mater. 8(18): 1800030. DOI: 10.1002/aenm.201800030.

    View in Article CrossRef Google Scholar

    [174] Jin, Z., Xiong, Y., Zhao, K., et al. (2021). Abnormal thermal conduction in argyrodite-type Ag9FeS6-Te materials. Mater. Today Phys. 19: 100410. DOI: 10.1016/j.mtphys.2021.100410.

    View in Article CrossRef Google Scholar

    [175] Nesper, R. (2014). The Zintl-Klemm Concept - A Historical Survey. Z. Anorg. Allg. Chem. 640(14): 2639−2648. DOI: 10.1002/zaac.201400403.

    View in Article CrossRef Google Scholar

    [176] Kauzlarich, S.M., Brown, S.R., and Snyder, G.J. (2007). Zintl phases for thermoelectric devices. Dalton Trans. 21(21): 2099−2107. DOI: 10.1039/b702266b.

    View in Article CrossRef Google Scholar

    [177] Bhardwaj, A., Chauhan, N.S., and Misra, D.K. (2015). Significantly enhanced thermoelectric figure of merit of p-type Mg3Sb2-based Zintl phase compounds via nanostructuring and employing high energy mechanical milling coupled with spark plasma sintering. J. Mater. Chem. A 3(20): 10777−10786. DOI: 10.1039/c5ta02155c.

    View in Article CrossRef Google Scholar

    [178] Peng, W., Petretto, G., Rignanese, G.-M., et al. (2018). An Unlikely Route to Low Lattice Thermal Conductivity: Small Atoms in a Simple Layered Structure. Joule 2(9): 1879−1893. DOI: 10.1016/j.joule.2018.06.014.

    View in Article CrossRef Google Scholar

    [179] Zhang, J., Song, L., and Iversen, B.B. (2019). Insights into the design of thermoelectric Mg3Sb2 and its analogs by combining theory and experiment. npj Comput. Mater. 5(1): 76. DOI: 10.1038/s41524-019-0215-y.

    View in Article CrossRef Google Scholar

    [180] Zhang, J., Song, L., Sist, M., et al. (2018). Chemical bonding origin of the unexpected isotropic physical properties in thermoelectric Mg(3)Sb(2) and related materials. Nat. Commun. 9(1): 4716. DOI: 10.1038/s41467-018-06980-x.

    View in Article CrossRef Google Scholar

    [181] Ding, J., Lanigan-Atkins, T., Calderón-Cueva, M., et al. (2021). Soft anharmonic phonons and ultralow thermal conductivity in Mg3(Sb, Bi)2 thermoelectrics. Sci. Adv. 7(21): eabg1449. DOI. DOI: 10.1126/sciadv.abg1449.

    View in Article CrossRef Google Scholar

    [182] Wang, C., Wang, Q., Zhang, Q., et al. (2022). Intrinsic Zn Vacancies-Induced Wavelike Tunneling of Phonons and Ultralow Lattice Thermal Conductivity in Zintl Phase Sr2ZnSb2. Chem. Mater. 34(17): 7837−7844. DOI: 10.1021/acs.chemmater.2c01430.

    View in Article CrossRef Google Scholar

    [183] Chen, C., Xue, W., Li, S., et al. (2019). Zintl-phase Eu2ZnSb2: A promising thermoelectric material with ultralow thermal conductivity. PNAS 116(8): 2831−2836. DOI: 10.1073/pnas.1819157116.

    View in Article CrossRef Google Scholar

    [184] Yao, H., Chen, C., Xue, W., et al. (2021). Vacancy ordering induced topological electronic transition in bulk Eu2ZnSb2. Sci. Adv. 7(6): eabd6162. DOI. DOI: 10.1126/sciadv.abd6162.

    View in Article CrossRef Google Scholar

    [185] Chen, C., Feng, Z., Yao, H., et al. (2021). Intrinsic nanostructure induced ultralow thermal conductivity yields enhanced thermoelectric performance in Zintl phase Eu2ZnSb2. Nat. Commun. 12(1): 5718. DOI: 10.1038/s41467-021-25483-w.

    View in Article CrossRef Google Scholar

    [186] Chanakian, S., Peng, W., Meschke, V., et al. (2023). Investigating the Role of Vacancies on the Thermoelectric Properties of EuCuSb-Eu2ZnSb2 Alloys. Angew Chem. Int. Ed. Engl. 62(29): e202301176. DOI: 10.1002/anie.202301176.

    View in Article CrossRef Google Scholar

    [187] Zhu, J., Ren, Q., Chen, C., et al. (2024). Vacancies tailoring lattice anharmonicity of Zintl-type thermoelectrics. Nat. Commun. 15(1): 2618. DOI: 10.1038/s41467-024-46895-4.

    View in Article CrossRef Google Scholar

    [188] Lubchenko, V., and Wolynes, P.G. (2003). The origin of the boson peak and thermal conductivity plateau in low-temperature glasses. PNAS 100(4): 1515−1518. DOI: 10.1073/pnas.252786999.

    View in Article CrossRef Google Scholar

    [189] LaLonde, A.D., Pei, Y., Wang, H., and Jeffrey Snyder, G. (2011). Lead telluride alloy thermoelectrics. Mater. Today 14(11): 526−532. DOI: 10.1016/s1369-7021(11)70278-4.

    View in Article CrossRef Google Scholar

    [190] Wei, T.-R., Wu, C.-F., Li, F., and Li, J.-F. (2018). Low-cost and environmentally benign selenides as promising thermoelectric materials. J. Materiomics 4(4): 304−320. DOI: 10.1016/j.jmat.2018.07.001.

    View in Article CrossRef Google Scholar

    [191] Rogl, G., and Rogl, P. (2017). Skutterudites, a most promising group of thermoelectric materials. Curr. Opin. Green Sustainable Chem. 4: 50−57. DOI: 10.1016/j.cogsc.2017.02.006.

    View in Article CrossRef Google Scholar

    [192] Christensen, M., Johnsen, S., and Iversen, B.B. (2010). Thermoelectric clathrates of type I. Dalton Trans. 39(4): 978−992. DOI: 10.1039/b916400f.

    View in Article CrossRef Google Scholar

    [193] Shuai, J., Mao, J., Song, S., et al. (2017). Recent progress and future challenges on thermoelectric Zintl materials. Mater. Today Phys. 1: 74−95. DOI: 10.1016/j.mtphys.2017.06.003.

    View in Article CrossRef Google Scholar

    [194] Chen, M., Wu, J., Huang, Q., et al. (2021). The Transport Properties of Quasi–One-Dimensional Ba3Co2O6(CO3)0.7. Front. Phys. 9 :785801. DOI: 10.3389/fphy.2021.785801.

    View in Article Google Scholar

    [195] Yin, Y., Tudu, B., and Tiwari, A. (2017). Recent advances in oxide thermoelectric materials and modules. Vacuum 146: 356−374. DOI: 10.1016/j.vacuum.2017.04.015.

    View in Article CrossRef Google Scholar

    [196] Liu, W.D., Chen, Z.G., and Zou, J. (2018). Eco‐Friendly Higher Manganese Silicide Thermoelectric Materials: Progress and Future Challenges. Adv. Energy Mater. 8(19): 1800056. DOI: 10.1002/aenm.201800056.

    View in Article CrossRef Google Scholar

    [197] Zhang, Y., He, X., Chen, Z., et al. (2019). Unsupervised discovery of solid-state lithium ion conductors. Nat. Commun. 10(1): 5260. DOI: 10.1038/s41467-019-13214-1.

    View in Article CrossRef Google Scholar

    [198] He, X., Bai, Q., Liu, Y., et al. (2019). Crystal Structural Framework of Lithium Super‐Ionic Conductors. Adv. Energy Mater. 9(43): 1902078. DOI: 10.1002/aenm.201902078.

    View in Article CrossRef Google Scholar

    [199] Xie, L., Yin, L., Yu, Y., et al. (2023). Screening strategy for developing thermoelectric interface materials. Science 382(6673): 921−928. DOI: 10.1126/science.adg8392.

    View in Article CrossRef Google Scholar

    [200] Jia, T., Feng, Z., Guo, S., et al. (2020). Screening Promising Thermoelectric Materials in Binary Chalcogenides through High-Throughput Computations. ACS Appl. Mater. Interfaces 12(10): 11852−11864. DOI: 10.1021/acsami.9b23297.

    View in Article CrossRef Google Scholar

    [201] Chen, X.-Q., Liu, J., and Li, J. (2021). Topological phononic materials: Computation and data. The Innovation 2(3): 100134. DOI: 10.1016/j.xinn.2021.100134.

    View in Article CrossRef Google Scholar

    [202] Tokura, Y. (2003). Correlated-Electron Physics in Transition-Metal Oxides. Phys. Today 56(7): 50−55. DOI: 10.1063/1.1603080.

    View in Article CrossRef Google Scholar

    [203] Imada, M., Fujimori, A., and Tokura, Y. (1998). Metal-insulator transitions. Rev. Mod. Phys. 70(4): 1039−1263. DOI: 10.1103/RevModPhys.70.1039.

    View in Article CrossRef Google Scholar

    [204] Wu, F., MacDonald, A.H., and Martin, I. (2018). Theory of Phonon-Mediated Superconductivity in Twisted Bilayer Graphene. Phys. Rev. Lett. 121(25): 257001. DOI: 10.1103/PhysRevLett.121.257001.

    View in Article CrossRef Google Scholar

    [205] Gu, Q., and Wen, H.-H. (2022). Superconductivity in nickel-based 112 systems. The Innovation 3(1): 100202. DOI: 10.1016/j.xinn.2021.100202.

    View in Article CrossRef Google Scholar

    [206] Bansal, D., Hong, J., Li, C.W., et al. (2016). Phonon anharmonicity and negative thermal expansion in SnSe. Phys. Rev. B 94(5): 054307. DOI: 10.1103/PhysRevB.94.054307.

    View in Article CrossRef Google Scholar

    [207] Lin, Y., Wang, J., Dai, W., et al. (2024). A full solid-state conceptual magnetocaloric refrigerator based on hybrid regeneration. The Innovation 5(4): 100645. DOI: 10.1016/j.xinn.2024.100645.

    View in Article CrossRef Google Scholar

    [208] Yadav, K., Kaur, G., Sharma, M.K., et al. (2020). Magnetocaloric effect and spin-phonon correlations in RFe0.5Cr0.5O3 (R = Er and Yb) compounds. Phys. Lett. A 384 (26):126638. DOI: 10.1016/j.physleta.2020.126638.

    View in Article Google Scholar

    [209] Wang, P., Ge, J., Li, J., et al. (2021). Intrinsic magnetic topological insulators. The Innovation 2(2): 100098. DOI: 10.1016/j.xinn.2021.100098.

    View in Article CrossRef Google Scholar

    [210] Juraschek, D.M., Fechner, M., Balatsky, A.V., et al. (2017). Dynamical multiferroicity. Phys. Rev. Mater. 1(1): 014401. DOI: 10.1103/PhysRevMaterials.1.014401.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Zhu J., Shen X., Ding J., et al., (2024). Revealing the phonon properties for thermoelectric materials by neutron scattering. The Innovation Energy 1(4): 100049. https://doi.org/10.59717/j.xinn-energy.2024.100049
    Zhu J., Shen X., Ding J., et al., (2024). Revealing the phonon properties for thermoelectric materials by neutron scattering. The Innovation Energy 1(4): 100049. https://doi.org/10.59717/j.xinn-energy.2024.100049

Figures(9)     Tables(1)

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(1499) PDF downloads(616) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint