The current research on thermocatalysts for NH3 decomposition is reviewed.
Optimization methods for NH3 decomposition thermocatalysts are summarized.
The types and characteristics of self-heating NH3 decomposition catalysts are outlined.
Advanced reactors and systems for NH3 decomposition are presented.
[1] | Ang, T.Z., Salem, M., Kamarol, M., et al. (2022). A comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy Strategy Rev. 43 : 100939. DOI: https://doi.org/10.1016/j.esr.2022.100939. |
[2] | Hameer, S., and van Niekerk, J.L. (2015). A review of large-scale electrical energy storage. Int. J. Energy Res. 39: 1179−1195. DOI: 10.1002/er.3294. |
[3] | Sharma, S., and Mortazavi, M. (2023). Pumped thermal energy storage: A review. Int. J. Heat Mass Transfer 213 : 124286. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2023.124286. |
[4] | Wang, B., Zhao, S., Wang, S., et al. (2024). Coupling photothermal evaporation into photocatalysis for enhanced hydrogen production from water. The Innovation Energy 1(2): 100018. DOI: 10.59717/j.xinn-energy.2024.100018. |
[5] | Zainal, B.S., Ker, P.J., Mohamed, H., et al. (2024). Recent advancement and assessment of green hydrogen production technologies. Renew. Sustain. Energy Rev. 189 : 113941. DOI: https://doi.org/10.1016/j.rser.2023.113941. |
[6] | Sun, Q., He, J., Nagao, A., et al. (2023). Hydrogen-prompted heterogeneous development of dislocation structure in Ni. Acta Materialia 246 : 118660. DOI: https://doi.org/10.1016/j.actamat.2022.118660. |
[7] | Rivard, E., Trudeau, M., and Zaghib, K. (2019). Hydrogen Storage for Mobility: A Review. Materials 12 (12): 1973. DOI: https://doi.org/10.3390/ma12121973. |
[8] | Aasadnia, M., and Mehrpooya, M. (2018). Large-scale liquid hydrogen production methods and approaches: A review. Appl. Energy 212 : 57-83. DOI: https://doi.org/10.1016/j.apenergy.2017.12.033. |
[9] | Kanaan, R., Affonso Nóbrega, P.H., Achard, P., et al. (2023). Economical assessment comparison for hydrogen reconversion from ammonia using thermal decomposition and electrolysis. Renew. Sustain. Energy Rev. 188 : 113784. DOI: https://doi.org/10.1016/j.rser.2023.113784. |
[10] | Yuan, Y., Zhou, L., Robatjazi, H., et al. (2022). Earth-abundant photocatalyst for H2 generation from NH3 with light-emitting diode illumination. Science 378(6622): 889−893. DOI: 10.1126/science.abn5636. |
[11] | Zhang, M., Chen, Q., Zhou, G., et al. (2024). Low-temperature chemistry in plasma-driven ammonia oxidative pyrolysis. Green Energy Environ. 9 (9): 1477-1488. DOI: https://doi.org/10.1016/j.gee.2023.05.010. |
[12] | Jingying, G., Huanhuan, Z., Zikai, S., et al. (2022). Recent progress in nickel-based catalysts for ammonia decomposition to hydrogen. Chem. Ind. Eng. Pro. 41(12): 6319−6337. DOI: 10.16085/j.issn.1000-6613.2022-0442. |
[13] | Su, Z., Guan, J., Liu, Y., et al. (2024). Research progress of ruthenium-based catalysts for hydrogen production from ammonia decomposition. Int. J. Hydro. Energy 51 : 1019-1043. DOI: https://doi.org/10.1016/j.ijhydene.2023.09.107. |
[14] | Liang, D., Feng, C., Xu, L., et al. (2023). Promotion effects of different methods in COx-free hydrogen production from ammonia decomposition. Catal. Sci. Technol. 13 (12): 3614-3628. DOI: https://doi.org/10.1039/d3cy00042g. |
[15] | Yu, L., and Abild-Pedersen, F. (2017). Bond Order Conservation Strategies in Catalysis Applied to the NH3 Decomposition Reaction. ACS Catal. 7(1): 864−871. DOI: 10.1021/acscatal.6b03129. |
[16] | Armenise, S., García-Bordejé, E., Valverde, J.L., et al. (2013). A Langmuir–Hinshelwood approach to the kinetic modelling of catalytic ammonia decomposition in an integral reactor. Phy. Chem. Chem. Phy. 15(29): 12104−12117. DOI: 10.1039/C3CP50715G. |
[17] | Yin, S.F., Xu, B.Q., Zhou, X.P., et al. (2004). A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Appl. Catal., A 277 (1): 1-9. DOI: https://doi.org/10.1016/j.apcata.2004.09.020. |
[18] | Ganley, J.C. (2017). A heterogeneous chemical reactor analysis and design laboratory: The kinetics of ammonia decomposition. Educ. Chem. Eng. 21 : 11-16. DOI: https://doi.org/10.1016/j.ece.2017.08.003. |
[19] | Yu, P., Guo, J., Liu, L., et al. (2016). Ammonia Decomposition with Manganese Nitride–Calcium Imide Composites as Efficient Catalysts. Chem. Sus. Chem. 9 (4): 364-369. DOI: https://doi.org/10.1002/cssc.201501498. |
[20] | Tsai, W., and Weinberg, W.H. (1987). Steady-state decomposition of ammonia on the ruthenium(001) surface. J. Phy. Chem. 91(20): 5302−5307. DOI: 10.1021/j100304a034. |
[21] | McCabe, R.W. (1983). Kinetics of ammonia decomposition on nickel. J. Catal. 79 (2): 445-450. DOI: https://doi.org/10.1016/0021-9517(83)90337-8. |
[22] | Oyama, S.T. (1992). Kinetics of ammonia decomposition on vanadium nitride. J. Catal. 133 (2): 358-369. DOI: https://doi.org/10.1016/0021-9517(92)90246-E. |
[23] | Armenise, S., Cazaña, F., Monzón, A., et al. (2018). In situ generation of COx-free H2 by catalytic ammonia decomposition over Ru-Al-monoliths. Fuel 233 : 851-859. DOI: https://doi.org/10.1016/j.fuel.2018.06.129. |
[24] | Chiuta, S., Everson, R.C., Neomagus, H.W.J.P., et al. (2014). A modelling evaluation of an ammonia-fuelled microchannel reformer for hydrogen generation. Int. J. Hydro. Energy 39 (22): 11390-11402. DOI: https://doi.org/10.1016/j.ijhydene.2014.05.146. |
[25] | Papapolymerou, G., and Bontozoglou, V. (1997). Decomposition of NH3 on Pd and Ir Comparison with Pt and Rh. J. Mol. Catal. A: Chem. 120 (1): 165-171. DOI: https://doi.org/10.1016/S1381-1169(96)00428-1. |
[26] | Zhang, Z., Liguori, S., Fuerst, T.F., et al. (2019). Efficient Ammonia Decomposition in a Catalytic Membrane Reactor To Enable Hydrogen Storage and Utilization. ACS Sustain. Chem. Eng. 7(6): 5975−5985. DOI: 10.1021/acssuschemeng.8b06065. |
[27] | Djéga-Mariadassou, G., Shin, C.-H., and Bugli, G. (1999). Tamaru's model for ammonia decomposition over titanium oxynitride. J. Mol. Catal. A: Chem. 141 (1): 263-267. DOI: https://doi.org/10.1016/S1381-1169(98)00270-2. |
[28] | Lucentini, I., Garcia, X., Vendrell, X., et al. (2021). Review of the Decomposition of Ammonia to Generate Hydrogen. Ind. Eng. Chem. Res. 60(51): 18560−18611. DOI: 10.1021/acs.iecr.1c00843. |
[29] | Ao, R., Lu, R., Leng, G., et al. (2023). A Review on Numerical Simulation of Hydrogen Production from Ammonia Decomposition. Energies 16: 921. DOI: 10.3390/en16020921. |
[30] | Fei, C., Wenbo, G., Guo, J., et al. (2021). Emerging Materials and Methods toward Ammonia‐Based Energy Storage and Conversion. Adv. Mat. 33: 2005721. DOI: 10.1002/adma.202005721. |
[31] | Di Carlo, A., Vecchione, L., and Del Prete, Z. (2014). Ammonia decomposition over commercial Ru/Al2O3 catalyst: An experimental evaluation at different operative pressures and temperatures. Int. J. Hydro. Energy 39 (2): 808-814. DOI: https://doi.org/10.1016/j.ijhydene.2013.10.110. |
[32] | Chen, C., Fan, X., Zhou, C., et al. (2023). Hydrogen production from ammonia decomposition over Ni/CeO2 catalyst: Effect of CeO2 morphology. J. Rare Earths 41 (7): 1014-1021. DOI: https://doi.org/10.1016/j.jre.2022.05.001. |
[33] | Kim, H.B., and Park, E.D. (2023). Ammonia decomposition over Ru catalysts supported on alumina with different crystalline phases. Catal. Today 411-412 : 113817. DOI: https://doi.org/10.1016/j.cattod.2022.06.032. |
[34] | Zheng, W., Zhang, J., Xu, H., et al. (2007). NH3 Decomposition Kinetics on Supported Ru Clusters: Morphology and Particle Size Effect. Catal. Lett. 119: 311−318. DOI: 10.1007/s10562-007-9237-z. |
[35] | Li, X., Ji, W., Zhao, J., et al. (2005). Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15. J. Catal. 236 (2): 181-189. DOI: https://doi.org/10.1016/j.jcat.2005.09.030. |
[36] | García-Bordejé, E., Armenise, S., and Roldán, L. (2014). Toward Practical Application Of H2 Generation From Ammonia Decomposition Guided by Rational Catalyst Design. Catal. Rev. 56(2): 220−237. DOI: 10.1080/01614940.2014.903637. |
[37] | Liu, P., Sun, L., Zhang, Z., et al. (2023). Hydrogen production from ammonia decomposition catalyzed by Ru nano-particles in alkaline molecular sieves under photothermal conditions. Mol. Catal. 543 : 113160. DOI: https://doi.org/10.1016/j.mcat.2023.113160. |
[38] | Gao, Y., Hu, E., Yi, Y., et al. (2023). Plasma-assisted low temperature ammonia decomposition on 3d transition metal (Fe, Co and Ni) doped CeO2 catalysts: Synergetic effect of morphology and co-doping. Fuel Process. Tech. 244 : 107695. DOI: https://doi.org/10.1016/j.fuproc.2023.107695. |
[39] | Brunauer, S., Love, K.S., and Keenan, R.G. (1942). Adsorption of Nitrogen and the Mechanism of Ammonia Decomposition Over Iron Catalysts. JACS 64(4): 751−758. DOI: 10.1021/ja01256a005. |
[40] | Amano, A., and Taylor, H. (1954). The Decomposition of Ammonia on Ruthenium, Rhodium and Palladium Catalysts Supported on Alumina. JACS 76(16): 4201−4204. DOI: 10.1021/ja01645a057. |
[41] | Mukherjee, S., Devaguptapu, S.V., Sviripa, A., et al. (2018). Low-temperature ammonia decomposition catalysts for hydrogen generation. Appl. Catal. B: Environ. 226 : 162-181. DOI: https://doi.org/10.1016/j.apcatb.2017.12.039. |
[42] | Ganley, J.C., Thomas, F.S., Seebauer, E.G., et al. (2004). A Priori Catalytic Activity Correlations: The Difficult Case of Hydrogen Production from Ammonia. Catal. Lett. 96(3): 117−122. DOI: 10.1023/B:CATL.0000030108.50691.d4. |
[43] | Medford, A.J., Vojvodic, A., Hummelshøj, J.S., et al. (2015). From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328 : 36-42. DOI: https://doi.org/10.1016/j.jcat.2014.12.033. |
[44] | Jacobsen, C.J.H., Dahl, S., Clausen, B.S., et al. (2001). Catalyst Design by Interpolation in the Periodic Table: Bimetallic Ammonia Synthesis Catalysts. JACS 123(34): 8404−8405. DOI: 10.1021/ja010963d. |
[45] | Chang, F., Gao, W., Guo, J., et al. (2021). Emerging Materials and Methods toward Ammonia-Based Energy Storage and Conversion. Adv. Mater. 33 (50): 2005721. DOI: https://doi.org/10.1002/adma.202005721. |
[46] | Ji, J., Duan, X., Qian, G., et al. (2014). Towards an efficient CoMo/γ-Al2O3 catalyst using metal amine metallate as an active phase precursor: Enhanced hydrogen production by ammonia decomposition. Int. J. Hydro. Energy 39 (24): 12490-12498. DOI: https://doi.org/10.1016/j.ijhydene.2014.06.081. |
[47] | Simonsen, S.B., Chakraborty, D., Chorkendorff, I., et al. (2012). Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition. Appl. Catal., A 447-448 : 22-31. DOI: https://doi.org/10.1016/j.apcata.2012.08.045. |
[48] | Lorenzut, B., Montini, T., Bevilacqua, M., et al. (2012). FeMo-based catalysts for H2 production by NH3 decomposition. Appl. Catal. B: Environ. 125 : 409-417. DOI: https://doi.org/10.1016/j.apcatb.2012.06.011. |
[49] | Yang, J., He, D., Chen, W., et al. (2017). Bimetallic Ru–Co Clusters Derived from a Confined Alloying Process within Zeolite–Imidazolate Frameworks for Efficient NH3 Decomposition and Synthesis. ACS Appl. Mater. Inter. 9(45): 39450−39455. DOI: 10.1021/acsami.7b14134. |
[50] | Zhang, J., Müller, J.O., Zheng, W., et al. (2008). Individual Fe−Co Alloy Nanoparticles on Carbon Nanotubes: Structural and Catalytic Properties. Nano Lett. 8(9): 2738−2743. DOI: 10.1021/nl8011984. |
[51] | Xie, P., Yao, Y., Huang, Z., et al. (2019). Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 10(1): 4011. DOI: 10.1038/s41467-019-11848-9. |
[52] | Srifa, A., Okura, K., Okanishi, T., et al. (2016). COx-free hydrogen production via ammonia decomposition over molybdenum nitride-based catalysts. Catal. Sci. Techn. 6(20): 7495−7504. DOI: 10.1039/C6CY01566B. |
[53] | Srifa, A., Okura, K., Okanishi, T., et al. (2017). Hydrogen production by ammonia decomposition over Cs-modified Co3Mo3N catalysts. Appl. Catal. B Environ. 218 : 1-8. DOI: https://doi.org/10.1016/j.apcatb.2017.06.034. |
[54] | Wood, T.J., Makepeace, J.W., Hunter, H.M.A., et al. (2015). Isotopic studies of the ammonia decomposition reaction mediated by sodium amide. Phy. Chem. Chem. Phy. 17(35): 22999−23006. DOI: 10.1039/C5CP03560K. |
[55] | David, W.I.F., Makepeace, J.W., Callear, S.K., et al. (2014). Hydrogen Production from Ammonia Using Sodium Amide. JACS 136(38): 13082−13085. DOI: 10.1021/ja5042836. |
[56] | Makepeace, J.W., Wood, T.J., Hunter, H.M.A., et al. (2015). Ammonia decomposition catalysis using non-stoichiometric lithium imide. Chem. Sci. 6(7): 3805−3815. DOI: 10.1039/C5SC00205B. |
[57] | Chang, F., Wu, H., Pluijm, R.V., et al. (2019). Effect of Pore Confinement of NaNH2 and KNH2 on Hydrogen Generation from Ammonia. J. Phys. Chem. C Nanomater Interfaces 123(35): 21487−21496. DOI: 10.1021/acs.jpcc.9b03878. |
[58] | Guo, J., Chang, F., Wang, P., et al. (2015). Highly Active MnN–Li2NH Composite Catalyst for Producing COx-Free Hydrogen. ACS Catal. 5(5): 2708−2713. DOI: 10.1021/acscatal.5b00278. |
[59] | Guo, J., Wang, P., Wu, G., et al. (2015). Lithium Imide Synergy with 3d Transition-Metal Nitrides Leading to Unprecedented Catalytic Activities for Ammonia Decomposition. Angew. Chem. Int. Ed. 54 (10): 2950-2954. DOI: https://doi.org/10.1002/anie.201410773. |
[60] | Makepeace, J.W., Hunter, H.M.A., Wood, T.J., et al. (2016). Ammonia decomposition catalysis using lithium–calcium imide. Faraday Discuss. 188(0): 525−544. DOI: 10.1039/C5FD00179J. |
[61] | Yin, S., Zhang, Q., Xu, B., et al. (2004). Investigation on the catalysis of COx-free hydrogen generation from ammonia. J. Catal. 224 (2): 384-396. DOI: https://doi.org/10.1016/j.jcat.2004.03.008. |
[62] | Zhang, H., Alhamed, Y., Kojima, Y., et al. (2013). Cobalt Supported on Carbon Nanotubes. An Efficient Catalyst for Ammonia Decomposition. Proc. Bulg. Acad. Sci. 66 (4). DOI: 10.7546/CR-2013-66-4-13101331-7. |
[63] | Shin, J., Jung, U., Kim, J., et al. (2024). Elucidating the effect of Ce with abundant surface oxygen vacancies on MgAl2O4-supported Ru-based catalysts for ammonia decomposition. Appl. Catal. B: Environ. 340 : 123234. DOI: https://doi.org/10.1016/j.apcatb.2023.123234. |
[64] | Fang, H., Wu, S., Ayvali, T., et al. (2023). Dispersed surface Ru ensembles on MgO(111) for catalytic ammonia decomposition. Nat. Commun. 14(1): 647. DOI: 10.1038/s41467-023-36339-w. |
[65] | Muroyama, H., Saburi, C., Matsui, T., et al. (2012). Ammonia decomposition over Ni/La2O3 catalyst for on-site generation of hydrogen. Appl. Catal., A 443-444 : 119-124. DOI: https://doi.org/10.1016/j.apcata.2012.07.031. |
[66] | Wood, T.J., and Makepeace, J.W. (2018). Assessing Potential Supports for Lithium Amide-imide Ammonia Decomposition Catalysts. ACS Appl. Energy Mater. 1(6): 2657−2663. DOI: 10.1021/acsaem.8b00351. |
[67] | Lucentini, I., Casanovas, A., and Llorca, J. (2019). Catalytic ammonia decomposition for hydrogen production on Ni, Ru and NiRu supported on CeO2. Int. J. Hydro. Energy 44 (25): 12693-12707. DOI: https://doi.org/10.1016/j.ijhydene.2019.01.154. |
[68] | Liu, H., Zhang, Y., Liu, S., et al. (2023). Ni-CeO2 nanocomposite with enhanced metal-support interaction for effective ammonia decomposition to hydrogen. Chem. Eng. J. 473 : 145371. DOI: https://doi.org/10.1016/j.cej.2023.145371. |
[69] | Hinrichsen, O., Rosowski, F., Hornung, A., et al. (1997). The Kinetics of Ammonia Synthesis over Ru-Based Catalysts: 1. The Dissociative Chemisorption and Associative Desorption of N2. J. Catal. 165 (1): 33-44. DOI: https://doi.org/10.1006/jcat.1997.1447. |
[70] | Wang, S.J., Yin, S.F., Li, L., et al. (2004). Investigation on modification of Ru/CNTs catalyst for the generation of COx-free hydrogen from ammonia. Appl. Catal. B: Environ. 52 (4): 287-299. DOI: https://doi.org/10.1016/j.apcatb.2004.05.002. |
[71] | Raróg-Pilecka, W., Miśkiewicz, E., Szmigiel, D., et al. (2005). Structure sensitivity of ammonia synthesis over promoted ruthenium catalysts supported on graphitised carbon. J. Catal. 231 (1): 11-19. DOI: https://doi.org/10.1016/j.jcat.2004.12.005. |
[72] | Al-Shafei, E.N., Albahar, M.Z., Albashrayi, R., et al. (2023). The effect of acidic–basic structural modification of nickel-based catalyst for ammonia decomposition for hydrogen generation. Mol. Catal. 550 : 113581. DOI: https://doi.org/10.1016/j.mcat.2023.113581. |
[73] | García-García, F.R., Ruiz, A., and Rodriguez-Ramos, I. (2009). Role of B5Type Sites in Ru Catalysts used for the NH3 Decomposition Reaction. Top. Catal. 52: 758−764. DOI: 10.1007/s11244-009-9203-7. |
[74] | Zhang, J., Xu, H., and Li, W. (2005). Kinetic study of NH3 decomposition over Ni nanoparticles: The role of La promoter, structure sensitivity and compensation effect. Appl. Catal., A 296 (2): 257-267. DOI: https://doi.org/10.1016/j.apcata.2005.08.046. |
[75] | Kim, A.-R., Cha, J., Kim, J.S., et al. (2023). Hydrogen production from ammonia decomposition over Ru-rich surface on La2O2CO3-Al2O3 catalyst beads. Catal. Today 411-412 : 113867. DOI: https://doi.org/10.1016/j.cattod.2022.08.009. |
[76] | Okura, K., Okanishi, T., Muroyama, H., et al. (2015). Promotion effect of rare-earth elements on the catalytic decomposition of ammonia over Ni/Al2O3 catalyst. Appl. Catal., A 505 : 77-85. DOI: https://doi.org/10.1016/j.apcata.2015.07.020. |
[77] | Zhang, J., Xu, H., Jin, X., et al. (2005). Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La–Al2O3 catalysts for NH3 decomposition. Appl. Catal., A 290 (1): 87-96. DOI: https://doi.org/10.1016/j.apcata.2005.05.020. |
[78] | Yin, S., Xu, B., Wang, S., et al. (2006). Nanosized Ru on high-surface-area superbasic ZrO2-KOH for efficient generation of hydrogen via ammonia decomposition. Appl. Catal., A 301 (2): 202-210. DOI: https://doi.org/10.1016/j.apcata.2005.12.005. |
[79] | Armenise, S., Roldán, L., Marco, Y., et al. (2012). Elucidation of Catalyst Support Effect for NH3 Decomposition Using Ru Nanoparticles on Nitrogen-Functionalized Carbon Nanofiber Monoliths. J. Phys. Chem. C 116(50): 26385−26395. DOI: 10.1021/jp308985x. |
[80] | Leybo, D.V., Baiguzhina, A.N., Muratov, D.S., et al. (2016). Effects of composition and production route on structure and catalytic activity for ammonia decomposition reaction of ternary Ni–Mo nitride catalysts. Int. J. Hydro. Energy 41 (6): 3854-3860. DOI: https://doi.org/10.1016/j.ijhydene.2015.12.171. |
[81] | Bell, T.E., and Torrente-Murciano, L. (2016). H2 Production via Ammonia Decomposition Using Non-Noble Metal Catalysts: A Review. Top. Catal. 59(15): 1438−1457. DOI: 10.1007/s11244-016-0653-4. |
[82] | Liu, H., Wang, H., Shen, J., et al. (2008). Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing COx-free hydrogen from ammonia. Appl. Catal., A 337 (2): 138-147. DOI: https://doi.org/10.1016/j.apcata.2007.12.006. |
[83] | Ju, X., Liu, L., Yu, P., et al. (2017). Mesoporous Ru/MgO prepared by a deposition-precipitation method as highly active catalyst for producing COx-free hydrogen from ammonia decomposition. Appl. Catal. B: Environ. 211 : 167-175. DOI: https://doi.org/10.1016/j.apcatb.2017.04.043. |
[84] | Furusawa, T., Shirasu, M., Sugiyama, K., et al. (2016). Preparation of Ru/ZrO2 Catalysts by NaBH4 Reduction and Their Catalytic Activity for NH3 Decomposition To Produce H2. Ind. Eng. Chem. Res. 55(50): 12742−12749. DOI: 10.1021/acs.iecr.6b03265. |
[85] | Karim, A.M., Prasad, V., Mpourmpakis, G., et al. (2009). Correlating Particle Size and Shape of Supported Ru/γ-Al2O3 Catalysts with NH3 Decomposition Activity. JACS 131(34): 12230−12239. DOI: 10.1021/ja902587k. |
[86] | Gu, Y., Ma, Y., Long, Z., et al. (2021). One-pot synthesis of supported Ni@Al2O3 catalysts with uniform small-sized Ni for hydrogen generation via ammonia decomposition. Int. J. Hydro. Energy 46 (5): 4045-4054. DOI: https://doi.org/10.1016/j.ijhydene.2020.11.003. |
[87] | Sima, D., Wu, H., Tian, K., et al. (2020). Enhanced low temperature catalytic activity of Ni/Al-Ce0.8Zr0.2O2 for hydrogen production from ammonia decomposition. Int. J. Hydro. Energy 45 (16): 9342-9352. DOI: https://doi.org/10.1016/j.ijhydene.2020.01.209. |
[88] | Atsumi, R., Noda, R., Takagi, H., et al. (2014). Ammonia decomposition activity over Ni/SiO2 catalysts with different pore diameters. Int. J. Hydro. Energy 39 (26): 13954-13961. DOI: https://doi.org/10.1016/j.ijhydene.2014.07.003. |
[89] | Tabassum, H., Mukherjee, S., Chen, J., et al. (2022). Hydrogen generation via ammonia decomposition on highly efficient and stable Ru-free catalysts: approaching complete conversion at 450 °C. Energy Environ. Sci. 15(10): 4190−4200. DOI: 10.1039/D1EE03730G. |
[90] | Im, Y., Muroyama, H., Matsui, T., et al. (2020). Ammonia decomposition over nickel catalysts supported on alkaline earth metal aluminate for H2 production. Int. J. Hydro. Energy 45 (51):26979-26988. DOI: https://doi.org/10.1016/j.ijhydene.2020.07.014. |
[91] | Okura, K., Okanishi, T., Muroyama, H., et al. (2016). Ammonia Decomposition over Nickel Catalysts Supported on Rare-Earth Oxides for the On-Site Generation of Hydrogen. Chem. Cat. Chem. 8 (18): 2988-2995. DOI: https://doi.org/10.1002/cctc.201600610. |
[92] | Su, Q., Gu, L., Yao, Y., et al. (2017). Layered double hydroxides derived Nix(MgyAlzOn) catalysts: Enhanced ammonia decomposition by hydrogen spillover effect. Appl. Catal. B: Environ. 201 : 451-460. DOI: https://doi.org/10.1016/j.apcatb.2016.08.051. |
[93] | Prins, R. (2012). Hydrogen Spillover. Fact. Fict. Chem. Rev. 112(5): 2714−2738. DOI: 10.1021/cr200346z. |
[94] | Yao, L.H., Li, Y.X., Zhao, J., et al. (2010). Core–shell structured nanoparticles (M@SiO2, Al2O3, MgO; M=Fe, Co, Ni, Ru) and their application in COx-free H2 production via NH3 decomposition. Catal. Today 158 (3): 401-408. DOI: https://doi.org/10.1016/j.cattod.2010.05.009. |
[95] | Zhang, L., Li, M., Ren, T., et al. (2015). Ce-modified Ni nanoparticles encapsulated in SiO2 for COx-free hydrogen production via ammonia decomposition. Int. J. Hydro. Energy 40 (6): 2648-2656. DOI: https://doi.org/10.1016/j.ijhydene.2014.12.079. |
[96] | García-García, F.R., Álvarez-Rodríguez, J., Rodríguez-Ramos, I., et al. (2010). The use of carbon nanotubes with and without nitrogen doping as support for ruthenium catalysts in the ammonia decomposition reaction. Carbon 48 (1): 267-276. DOI: https://doi.org/10.1016/j.carbon.2009.09.015. |
[97] | Pinzón, M., Avilés-García, O., de la Osa, A.R., et al. (2022). New catalysts based on reduced graphene oxide for hydrogen production from ammonia decomposition. Sustain. Chem. Pharm. 25 : 100615. DOI: https://doi.org/10.1016/j.scp.2022.100615. |
[98] | Guo, W., Shafizadeh, A., Shahbeik, H., et al. (2024). Machine learning for predicting catalytic ammonia decomposition: An approach for catalyst design and performance prediction. J. Energy Storage 89 : 111688. DOI: https://doi.org/10.1016/j.est.2024.111688. |
[99] | Nagaoka, K., Sato, K., Fukuda, S., et al. (2008). Oxidative Reforming of n-Butane Triggered by Spontaneous Oxidation of CeO2-x at Ambient Temperature. Chem. Mater. 20: 4176−4178. DOI: 10.1021/cm800651m. |
[100] | Sata, T., and Yoshimura, M. (1968). Some Material Properties of Cerium Sesquioxide. J. Ceramic Assoc., Japan 76: 116−122. DOI: 10.2109/jcersj1950.76.872_116. |
[101] | Nagaoka, K., Eboshi, T., Takeishi, Y., et al. (2017). Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst. Sci. Adv. 3(4): 1602747. DOI. DOI: 10.1126/sciadv.1602747. |
[102] | Li, L., Zhao, L., Ma, Z., et al. (2023). Ce0.5Zr0.5O2 solid solutions supported Co-Ni catalyst for ammonia oxidative decomposition to hydrogen. Chem. Eng. J. 475 : 146355. DOI: https://doi.org/10.1016/j.cej.2023.146355. |
[103] | Li, L., Zhao, L., Ma, Z., et al. (2024). A new high efficiency catalyst of Co–Ni/CeO2 for hydrogen production by ammonia oxidative decomposition at low temperature. Int. J. Hydro. Energy 50 : 36-47. DOI: https://doi.org/10.1016/j.ijhydene.2023.06.171. |
[104] | Matsunaga, T., Matsumoto, S., Tasaki, R., et al. (2020). Oxidation of Ru/Ce0.5Zr0.5O2–x at Ambient Temperature as a Trigger for Carbon-Free H2 Production by Ammonia Oxidative Decomposition. ACS Sustain. Chem. Eng. 8 (35): 13369-13376. DOI: 10.1021/acssuschemeng.0c04126. |
[105] | Chen, Y., Juang, C., and Chen, Y. (2021). The Effects of Promoter Cs Loading on the Hydrogen Production from Ammonia Decomposition Using Ru/C Catalyst in a Fixed-Bed Reactor. Catalysts 11 (3): 321. DOI: https://doi.org/10.3390/catal11030321. |
[106] | Wang, W., Padban, N., Ye, Z., et al. (1999). Kinetics of Ammonia Decomposition in Hot Gas Cleaning. Ind. Eng. Chem. Res. 38: 4175−4182. DOI: 10.1021/ie990337d. |
[107] | Badakhsh, A., Cha, J., Park, Y., et al. (2021). Autothermal recirculating reactor (ARR) with Cu-BN composite as a stable reactor material for sustainable hydrogen release from ammonia. J. Power Sources 506 : 230081. DOI: https://doi.org/10.1016/j.jpowsour.2021.230081. |
[108] | Feng, P., Lee, M., Wang, D., and Suzuki, Y. (2023). Ammonia thermal decomposition on quartz and stainless steel walls. Int. J. Hydro. Energy 48 (75): 29209-29219. DOI: https://doi.org/10.1016/j.ijhydene.2023.04.106. |
[109] | Cerrillo, J.L., Morlanés, N., Kulkarni, S.R., et al. (2022). High purity, self-sustained, pressurized hydrogen production from ammonia in a catalytic membrane reactor. Chem. Eng. J. 431 : 134310. DOI: https://doi.org/10.1016/j.cej.2021.134310. |
[110] | Wang, W., Olguin, G., Hotza, D., et al. (2022). Inorganic membranes for in-situ separation of hydrogen and enhancement of hydrogen production from thermochemical reactions. Renew. Sustain. Energy Rev. 160 : 112124. DOI: https://doi.org/10.1016/j.rser.2022.112124. |
[111] | Kim, T.W., Lee, E.H., Byun, S., et al. (2022). Highly selective Pd composite membrane on porous metal support for high-purity hydrogen production through effective ammonia decomposition. Energy 260 : 125209. DOI: https://doi.org/10.1016/j.energy.2022.125209. |
[112] | Omata, K., Sato, K., Nagaoka, K., et al. (2022). Direct high-purity hydrogen production from ammonia by using a membrane reactor combining V-10mol%Fe hydrogen permeable alloy membrane with Ru/Cs2O/Pr6O11 ammonia decomposition catalyst. Int. J. Hydro. Energy 47 (13): 8372-8381. DOI: https://doi.org/10.1016/j.ijhydene.2021.12.191. |
[113] | Bernardo, G., Araújo, T., da Silva Lopes, T., et al. (2020). Recent advances in membrane technologies for hydrogen purification. Int. J. Hydro. Energy 45 (12): 7313-7338. DOI: https://doi.org/10.1016/j.ijhydene.2019.06.162. |
[114] | Meng, L., and Tsuru, T. (2016). Hydrogen production from energy carriers by silica-based catalytic membrane reactors. Catal. Today 268 : 3-11. DOI: https://doi.org/10.1016/j.cattod.2015.11.006. |
[115] | Rebollo, E., Mortalò, C., Escolástico, S., et al. (2015). Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3-δ and Y- or Gd-doped ceria. Energy Environ. Sci. 8 (12): 3675-3686. DOI: 10.1039/C5EE01793A. |
[116] | Yang, M., He, F., Zhou, C., et al. (2021). New perovskite membrane with improved sintering and self-reconstructed surface for efficient hydrogen permeation. J. Membrane Sci. 620 : 118980. DOI: https://doi.org/10.1016/j.memsci.2020.118980. |
[117] | Kapteijn, F., Nijhuis, T.A., Heiszwolf, J.J., et al. (2001). New non-traditional multiphase catalytic reactors based on monolithic structures. Catal. Today 66 (2): 133-144. DOI: https://doi.org/10.1016/S0920-5861(00)00614-3. |
[118] | Plana, C., Armenise, S., Monzón, A., et al. (2011). Process Optimisation of In Situ H2 Generation From Ammonia Using Ni on Alumina Coated Cordierite Monoliths. Top. Catal. 54(13): 914. DOI: 10.1007/s11244-011-9706-x. |
[119] | Lucentini, I., García Colli, G., Luzi, C., et al. (2022). Modelling and simulation of catalytic ammonia decomposition over Ni-Ru deposited on 3D-printed CeO2. Chem. Eng. J. 427 : 131756. DOI: https://doi.org/10.1016/j.cej.2021.131756. |
[120] | Lucentini, I., Serrano, I., Soler, L., et al. (2020). Ammonia decomposition over 3D-printed CeO2 structures loaded with Ni. Appl. Catal., A 591 : 117382. DOI: https://doi.org/10.1016/j.apcata.2019.117382. |
[121] | Collins, J.P., and Way, J.D. (1994). Catalytic decomposition of ammonia in a membrane reactor. J. Membrane Sci. 96 (3): 259-274. DOI: https://doi.org/10.1016/0376-7388(94)00138-3. |
[122] | Abashar, M.E.E., Al-Sughair, Y.S., and Al-Mutaz, I.S. (2002). Investigation of low temperature decomposition of ammonia using spatially patterned catalytic membrane reactors. Appl. Catal., A 236 (1): 35-53. DOI: https://doi.org/10.1016/S0926-860X(02)00272-7. |
[123] | Itoh, N., Kikuchi, Y., Furusawa, T., et al. (2021). Tube-wall catalytic membrane reactor for hydrogen production by low-temperature ammonia decomposition. Int. J. Hydro. Energy 46 (38): 20257-20265. DOI: https://doi.org/10.1016/j.ijhydene.2020.03.162. |
[124] | Clark, D., Malerød-Fjeld, H., Budd, M., et al. (2022). Single-step hydrogen production from NH3, CH4, and biogas in stacked proton ceramic reactors. Science 376(6591): 390−393. DOI. DOI: 10.1126/science.abj3951. |
[125] | Malerød-Fjeld, H., Clark, D., Yuste-Tirados, I., et al. (2017). Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nat. Energy 2(12): 923−931. DOI: 10.1038/s41560-017-0029-4. |
[126] | Cechetto, V., Di Felice, L., Gutierrez Martinez, R., et al. (2022). Ultra-pure hydrogen production via ammonia decomposition in a catalytic membrane reactor. Int. J. Hydro. Energy 47 (49): 21220-21230. DOI: https://doi.org/10.1016/j.ijhydene.2022.04.240. |
[127] | Chen, W., Chou, W., Chein, R., et al. (2024). Multiple-objective optimization on ammonia decomposition using membrane reactor. Int. J. Hydro. Energy 52 : 1002-1017. DOI: https://doi.org/10.1016/j.ijhydene.2023.05.081. |
[128] | Cechetto, V., Felice, L.D., Medrano, J.A., et al. (2021). H2 production via ammonia decomposition in a catalytic membrane reactor. Fuel Process. Techn. 216 :106772. DOI: https://doi.org/10.1016/j.fuproc.2021.106772. |
[129] | Jang, J., and Han, M. (2024). Ammonia autothermal reformer with air side-stream distribution for hydrogen production. Int. J. Hydro. Energy 49 : 1468-1481. DOI: https://doi.org/10.1016/j.ijhydene.2023.09.157. |
[130] | Xie, T., Xia, S., Kong, R., et al. (2022). Performance analysis of ammonia decomposition endothermic membrane reactor heated by trough solar collector. Energy Reports 8 : 526-538. DOI: https://doi.org/10.1016/j.egyr.2022.03.152. |
[131] | Xie, T., Xia, S., Huang, J., et al. (2022). Performance Analysis of a Solar Heating Ammonia Decomposition Membrane Reactor under Co-Current Sweep. Membranes 12 (10): 972. DOI: https://doi.org/10.3390/membranes12100972. |
[132] | Xia, Q., Lin, Z., Wang, C., et al. (2024). Solar-driven multichannel membrane reactor for hydrogen production from ammonia decomposition. Fuel 356 : 129591. DOI: https://doi.org/10.1016/j.fuel.2023.129591. |
[133] | Makhloufi, C., and Kezibri, N. (2021). Large-scale decomposition of green ammonia for pure hydrogen production. Int. J. Hydro. Energy 46 (70): 34777-34787. DOI: https://doi.org/10.1016/j.ijhydene.2021.07.188. |
[134] | Devkota, S., Cha, J.Y., Shin, B.J., et al. (2024). Techno-economic and environmental assessment of hydrogen production through ammonia decomposition. Appl. Energy 358 : 122605. DOI: https://doi.org/10.1016/j.apenergy.2023.122605. |
[135] | Lim, D., Kim, A., Cheon, S., et al. (2021). Life cycle techno-economic and carbon footprint analysis of H2 production via NH3 decomposition: A Case study for the Republic of Korea. Energy Convers. Manage. 250 : 114881. DOI: https://doi.org/10.1016/j.enconman.2021.114881. |
Lu Z., Jiang B., Chen Z., et al., (2024). Advancements in thermocatalytic ammonia decomposition for hydrogen production. The Innovation Energy 1(4): 100056. https://doi.org/10.59717/j.xinn-energy.2024.100056 |
Single-metal catalytic activity sequence diagram
Comparison of Catalyst Performance
Comparative chart of ammonia decomposition efficiency among different catalysts
Ni/Al2O3 catalysts for hydrogen production from ammonia decomposition.86
(A) The schematic diagram of the self-heating adsorption stimulation process.101 (B) The schematic diagram of the self-heating oxidation stimulation process.104
Principle and types of membrane reactors
Protonic membrane reformer for production of compressed hydrogen. Ceramic membrane reactors are commonly used in alkane reforming for hydrogen production.125
Principle of autothermal recirculating reactor. Self-heat reactors are typically of a tubular structure, where a portion of the exit gases is burned to provide heat to the system.107
Solar-assisted ammonia decomposition system. An illustration of a centralized solar energy system equipped with a multi-channel membrane reactor for the decomposition of ammonia.132
Sensitivity analysis on LCOH with ±5% variation in the value of several parameters using different ammonia reconversion technologies, for hydrogen refueling station case