REVIEW   Open Access     Cite

Advancements in thermocatalytic ammonia decomposition for hydrogen production

More Information
    1. The current research on thermocatalysts for NH3 decomposition is reviewed.

      Optimization methods for NH3 decomposition thermocatalysts are summarized.

      The types and characteristics of self-heating NH3 decomposition catalysts are outlined.

      Advanced reactors and systems for NH3 decomposition are presented.

  • Ammonia emerges a highly promising carbon-free hydrogen source, presenting a potential solution to the inherent challenges of hydrogen storage and transportation. Currently, the application of thermocatalytic ammonia decomposition for hydrogen production has become a focal point of scientific inquiry. Although several noble metal catalysts and membrane reactors have demonstrated commendable thermocatalytic performance, significant challenges such as high costs and substantial energy consumption persist. This paper first summarizes the current research status of various conventional thermocatalysts for ammonia decomposition, with a particular emphasis on the investigation of active components and supports. Recent findings indicate that state-of-the-art ruthenium-based catalysts can achieve over 90% conversion at temperatures below 400°C, with nearly 100% conversion at 450°C. Additionally, it reviews current research status of a novel self-heating catalyst. Furthermore, this paper collates findings in the domain of ammonia decomposition equipment and systems, emphasizing advancements in pertinent materials, reactor, and system. Subsequently, a brief evaluation of the economic viability of current thermocatalytic ammonia decomposition reveals that ammonia feedstock constitutes over 50% of the overall hydrogen production cost. Finally, we highlight that to firmly establish ammonia as a carbon-free hydrogen source, it is imperative to develop efficient non-noble metal catalysts and highly effective ammonia decomposition reaction systems capable of utilizing renewable energy sources. We believe that this approach represents an inevitable path forward in realizing ammonia’s vast potential as a sustainable and environmentally friendly hydrogen source.
  • 加载中
  • [1] Ang, T.Z., Salem, M., Kamarol, M., et al. (2022). A comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy Strategy Rev. 43 : 100939. DOI: https://doi.org/10.1016/j.esr.2022.100939.

    View in Article Google Scholar

    [2] Hameer, S., and van Niekerk, J.L. (2015). A review of large-scale electrical energy storage. Int. J. Energy Res. 39: 1179−1195. DOI: 10.1002/er.3294.

    View in Article CrossRef Google Scholar

    [3] Sharma, S., and Mortazavi, M. (2023). Pumped thermal energy storage: A review. Int. J. Heat Mass Transfer 213 : 124286. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2023.124286.

    View in Article Google Scholar

    [4] Wang, B., Zhao, S., Wang, S., et al. (2024). Coupling photothermal evaporation into photocatalysis for enhanced hydrogen production from water. The Innovation Energy 1(2): 100018. DOI: 10.59717/j.xinn-energy.2024.100018.

    View in Article CrossRef Google Scholar

    [5] Zainal, B.S., Ker, P.J., Mohamed, H., et al. (2024). Recent advancement and assessment of green hydrogen production technologies. Renew. Sustain. Energy Rev. 189 : 113941. DOI: https://doi.org/10.1016/j.rser.2023.113941.

    View in Article Google Scholar

    [6] Sun, Q., He, J., Nagao, A., et al. (2023). Hydrogen-prompted heterogeneous development of dislocation structure in Ni. Acta Materialia 246 : 118660. DOI: https://doi.org/10.1016/j.actamat.2022.118660.

    View in Article Google Scholar

    [7] Rivard, E., Trudeau, M., and Zaghib, K. (2019). Hydrogen Storage for Mobility: A Review. Materials 12 (12): 1973. DOI: https://doi.org/10.3390/ma12121973.

    View in Article Google Scholar

    [8] Aasadnia, M., and Mehrpooya, M. (2018). Large-scale liquid hydrogen production methods and approaches: A review. Appl. Energy 212 : 57-83. DOI: https://doi.org/10.1016/j.apenergy.2017.12.033.

    View in Article Google Scholar

    [9] Kanaan, R., Affonso Nóbrega, P.H., Achard, P., et al. (2023). Economical assessment comparison for hydrogen reconversion from ammonia using thermal decomposition and electrolysis. Renew. Sustain. Energy Rev. 188 : 113784. DOI: https://doi.org/10.1016/j.rser.2023.113784.

    View in Article Google Scholar

    [10] Yuan, Y., Zhou, L., Robatjazi, H., et al. (2022). Earth-abundant photocatalyst for H2 generation from NH3 with light-emitting diode illumination. Science 378(6622): 889−893. DOI: 10.1126/science.abn5636.

    View in Article CrossRef Google Scholar

    [11] Zhang, M., Chen, Q., Zhou, G., et al. (2024). Low-temperature chemistry in plasma-driven ammonia oxidative pyrolysis. Green Energy Environ. 9 (9): 1477-1488. DOI: https://doi.org/10.1016/j.gee.2023.05.010.

    View in Article Google Scholar

    [12] Jingying, G., Huanhuan, Z., Zikai, S., et al. (2022). Recent progress in nickel-based catalysts for ammonia decomposition to hydrogen. Chem. Ind. Eng. Pro. 41(12): 6319−6337. DOI: 10.16085/j.issn.1000-6613.2022-0442.

    View in Article CrossRef Google Scholar

    [13] Su, Z., Guan, J., Liu, Y., et al. (2024). Research progress of ruthenium-based catalysts for hydrogen production from ammonia decomposition. Int. J. Hydro. Energy 51 : 1019-1043. DOI: https://doi.org/10.1016/j.ijhydene.2023.09.107.

    View in Article Google Scholar

    [14] Liang, D., Feng, C., Xu, L., et al. (2023). Promotion effects of different methods in COx-free hydrogen production from ammonia decomposition. Catal. Sci. Technol. 13 (12): 3614-3628. DOI: https://doi.org/10.1039/d3cy00042g.

    View in Article Google Scholar

    [15] Yu, L., and Abild-Pedersen, F. (2017). Bond Order Conservation Strategies in Catalysis Applied to the NH3 Decomposition Reaction. ACS Catal. 7(1): 864−871. DOI: 10.1021/acscatal.6b03129.

    View in Article CrossRef Google Scholar

    [16] Armenise, S., García-Bordejé, E., Valverde, J.L., et al. (2013). A Langmuir–Hinshelwood approach to the kinetic modelling of catalytic ammonia decomposition in an integral reactor. Phy. Chem. Chem. Phy. 15(29): 12104−12117. DOI: 10.1039/C3CP50715G.

    View in Article CrossRef Google Scholar

    [17] Yin, S.F., Xu, B.Q., Zhou, X.P., et al. (2004). A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Appl. Catal., A 277 (1): 1-9. DOI: https://doi.org/10.1016/j.apcata.2004.09.020.

    View in Article Google Scholar

    [18] Ganley, J.C. (2017). A heterogeneous chemical reactor analysis and design laboratory: The kinetics of ammonia decomposition. Educ. Chem. Eng. 21 : 11-16. DOI: https://doi.org/10.1016/j.ece.2017.08.003.

    View in Article Google Scholar

    [19] Yu, P., Guo, J., Liu, L., et al. (2016). Ammonia Decomposition with Manganese Nitride–Calcium Imide Composites as Efficient Catalysts. Chem. Sus. Chem. 9 (4): 364-369. DOI: https://doi.org/10.1002/cssc.201501498.

    View in Article Google Scholar

    [20] Tsai, W., and Weinberg, W.H. (1987). Steady-state decomposition of ammonia on the ruthenium(001) surface. J. Phy. Chem. 91(20): 5302−5307. DOI: 10.1021/j100304a034.

    View in Article CrossRef Google Scholar

    [21] McCabe, R.W. (1983). Kinetics of ammonia decomposition on nickel. J. Catal. 79 (2): 445-450. DOI: https://doi.org/10.1016/0021-9517(83)90337-8.

    View in Article Google Scholar

    [22] Oyama, S.T. (1992). Kinetics of ammonia decomposition on vanadium nitride. J. Catal. 133 (2): 358-369. DOI: https://doi.org/10.1016/0021-9517(92)90246-E.

    View in Article Google Scholar

    [23] Armenise, S., Cazaña, F., Monzón, A., et al. (2018). In situ generation of COx-free H2 by catalytic ammonia decomposition over Ru-Al-monoliths. Fuel 233 : 851-859. DOI: https://doi.org/10.1016/j.fuel.2018.06.129.

    View in Article Google Scholar

    [24] Chiuta, S., Everson, R.C., Neomagus, H.W.J.P., et al. (2014). A modelling evaluation of an ammonia-fuelled microchannel reformer for hydrogen generation. Int. J. Hydro. Energy 39 (22): 11390-11402. DOI: https://doi.org/10.1016/j.ijhydene.2014.05.146.

    View in Article Google Scholar

    [25] Papapolymerou, G., and Bontozoglou, V. (1997). Decomposition of NH3 on Pd and Ir Comparison with Pt and Rh. J. Mol. Catal. A: Chem. 120 (1): 165-171. DOI: https://doi.org/10.1016/S1381-1169(96)00428-1.

    View in Article Google Scholar

    [26] Zhang, Z., Liguori, S., Fuerst, T.F., et al. (2019). Efficient Ammonia Decomposition in a Catalytic Membrane Reactor To Enable Hydrogen Storage and Utilization. ACS Sustain. Chem. Eng. 7(6): 5975−5985. DOI: 10.1021/acssuschemeng.8b06065.

    View in Article CrossRef Google Scholar

    [27] Djéga-Mariadassou, G., Shin, C.-H., and Bugli, G. (1999). Tamaru's model for ammonia decomposition over titanium oxynitride. J. Mol. Catal. A: Chem. 141 (1): 263-267. DOI: https://doi.org/10.1016/S1381-1169(98)00270-2.

    View in Article Google Scholar

    [28] Lucentini, I., Garcia, X., Vendrell, X., et al. (2021). Review of the Decomposition of Ammonia to Generate Hydrogen. Ind. Eng. Chem. Res. 60(51): 18560−18611. DOI: 10.1021/acs.iecr.1c00843.

    View in Article CrossRef Google Scholar

    [29] Ao, R., Lu, R., Leng, G., et al. (2023). A Review on Numerical Simulation of Hydrogen Production from Ammonia Decomposition. Energies 16: 921. DOI: 10.3390/en16020921.

    View in Article CrossRef Google Scholar

    [30] Fei, C., Wenbo, G., Guo, J., et al. (2021). Emerging Materials and Methods toward Ammonia‐Based Energy Storage and Conversion. Adv. Mat. 33: 2005721. DOI: 10.1002/adma.202005721.

    View in Article CrossRef Google Scholar

    [31] Di Carlo, A., Vecchione, L., and Del Prete, Z. (2014). Ammonia decomposition over commercial Ru/Al2O3 catalyst: An experimental evaluation at different operative pressures and temperatures. Int. J. Hydro. Energy 39 (2): 808-814. DOI: https://doi.org/10.1016/j.ijhydene.2013.10.110.

    View in Article Google Scholar

    [32] Chen, C., Fan, X., Zhou, C., et al. (2023). Hydrogen production from ammonia decomposition over Ni/CeO2 catalyst: Effect of CeO2 morphology. J. Rare Earths 41 (7): 1014-1021. DOI: https://doi.org/10.1016/j.jre.2022.05.001.

    View in Article Google Scholar

    [33] Kim, H.B., and Park, E.D. (2023). Ammonia decomposition over Ru catalysts supported on alumina with different crystalline phases. Catal. Today 411-412 : 113817. DOI: https://doi.org/10.1016/j.cattod.2022.06.032.

    View in Article Google Scholar

    [34] Zheng, W., Zhang, J., Xu, H., et al. (2007). NH3 Decomposition Kinetics on Supported Ru Clusters: Morphology and Particle Size Effect. Catal. Lett. 119: 311−318. DOI: 10.1007/s10562-007-9237-z.

    View in Article CrossRef Google Scholar

    [35] Li, X., Ji, W., Zhao, J., et al. (2005). Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15. J. Catal. 236 (2): 181-189. DOI: https://doi.org/10.1016/j.jcat.2005.09.030.

    View in Article Google Scholar

    [36] García-Bordejé, E., Armenise, S., and Roldán, L. (2014). Toward Practical Application Of H2 Generation From Ammonia Decomposition Guided by Rational Catalyst Design. Catal. Rev. 56(2): 220−237. DOI: 10.1080/01614940.2014.903637.

    View in Article CrossRef Google Scholar

    [37] Liu, P., Sun, L., Zhang, Z., et al. (2023). Hydrogen production from ammonia decomposition catalyzed by Ru nano-particles in alkaline molecular sieves under photothermal conditions. Mol. Catal. 543 : 113160. DOI: https://doi.org/10.1016/j.mcat.2023.113160.

    View in Article Google Scholar

    [38] Gao, Y., Hu, E., Yi, Y., et al. (2023). Plasma-assisted low temperature ammonia decomposition on 3d transition metal (Fe, Co and Ni) doped CeO2 catalysts: Synergetic effect of morphology and co-doping. Fuel Process. Tech. 244 : 107695. DOI: https://doi.org/10.1016/j.fuproc.2023.107695.

    View in Article Google Scholar

    [39] Brunauer, S., Love, K.S., and Keenan, R.G. (1942). Adsorption of Nitrogen and the Mechanism of Ammonia Decomposition Over Iron Catalysts. JACS 64(4): 751−758. DOI: 10.1021/ja01256a005.

    View in Article CrossRef Google Scholar

    [40] Amano, A., and Taylor, H. (1954). The Decomposition of Ammonia on Ruthenium, Rhodium and Palladium Catalysts Supported on Alumina. JACS 76(16): 4201−4204. DOI: 10.1021/ja01645a057.

    View in Article CrossRef Google Scholar

    [41] Mukherjee, S., Devaguptapu, S.V., Sviripa, A., et al. (2018). Low-temperature ammonia decomposition catalysts for hydrogen generation. Appl. Catal. B: Environ. 226 : 162-181. DOI: https://doi.org/10.1016/j.apcatb.2017.12.039.

    View in Article Google Scholar

    [42] Ganley, J.C., Thomas, F.S., Seebauer, E.G., et al. (2004). A Priori Catalytic Activity Correlations: The Difficult Case of Hydrogen Production from Ammonia. Catal. Lett. 96(3): 117−122. DOI: 10.1023/B:CATL.0000030108.50691.d4.

    View in Article CrossRef Google Scholar

    [43] Medford, A.J., Vojvodic, A., Hummelshøj, J.S., et al. (2015). From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328 : 36-42. DOI: https://doi.org/10.1016/j.jcat.2014.12.033.

    View in Article Google Scholar

    [44] Jacobsen, C.J.H., Dahl, S., Clausen, B.S., et al. (2001). Catalyst Design by Interpolation in the Periodic Table: Bimetallic Ammonia Synthesis Catalysts. JACS 123(34): 8404−8405. DOI: 10.1021/ja010963d.

    View in Article CrossRef Google Scholar

    [45] Chang, F., Gao, W., Guo, J., et al. (2021). Emerging Materials and Methods toward Ammonia-Based Energy Storage and Conversion. Adv. Mater. 33 (50): 2005721. DOI: https://doi.org/10.1002/adma.202005721.

    View in Article Google Scholar

    [46] Ji, J., Duan, X., Qian, G., et al. (2014). Towards an efficient CoMo/γ-Al2O3 catalyst using metal amine metallate as an active phase precursor: Enhanced hydrogen production by ammonia decomposition. Int. J. Hydro. Energy 39 (24): 12490-12498. DOI: https://doi.org/10.1016/j.ijhydene.2014.06.081.

    View in Article Google Scholar

    [47] Simonsen, S.B., Chakraborty, D., Chorkendorff, I., et al. (2012). Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition. Appl. Catal., A 447-448 : 22-31. DOI: https://doi.org/10.1016/j.apcata.2012.08.045.

    View in Article Google Scholar

    [48] Lorenzut, B., Montini, T., Bevilacqua, M., et al. (2012). FeMo-based catalysts for H2 production by NH3 decomposition. Appl. Catal. B: Environ. 125 : 409-417. DOI: https://doi.org/10.1016/j.apcatb.2012.06.011.

    View in Article Google Scholar

    [49] Yang, J., He, D., Chen, W., et al. (2017). Bimetallic Ru–Co Clusters Derived from a Confined Alloying Process within Zeolite–Imidazolate Frameworks for Efficient NH3 Decomposition and Synthesis. ACS Appl. Mater. Inter. 9(45): 39450−39455. DOI: 10.1021/acsami.7b14134.

    View in Article CrossRef Google Scholar

    [50] Zhang, J., Müller, J.O., Zheng, W., et al. (2008). Individual Fe−Co Alloy Nanoparticles on Carbon Nanotubes: Structural and Catalytic Properties. Nano Lett. 8(9): 2738−2743. DOI: 10.1021/nl8011984.

    View in Article CrossRef Google Scholar

    [51] Xie, P., Yao, Y., Huang, Z., et al. (2019). Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 10(1): 4011. DOI: 10.1038/s41467-019-11848-9.

    View in Article CrossRef Google Scholar

    [52] Srifa, A., Okura, K., Okanishi, T., et al. (2016). COx-free hydrogen production via ammonia decomposition over molybdenum nitride-based catalysts. Catal. Sci. Techn. 6(20): 7495−7504. DOI: 10.1039/C6CY01566B.

    View in Article CrossRef Google Scholar

    [53] Srifa, A., Okura, K., Okanishi, T., et al. (2017). Hydrogen production by ammonia decomposition over Cs-modified Co3Mo3N catalysts. Appl. Catal. B Environ. 218 : 1-8. DOI: https://doi.org/10.1016/j.apcatb.2017.06.034.

    View in Article Google Scholar

    [54] Wood, T.J., Makepeace, J.W., Hunter, H.M.A., et al. (2015). Isotopic studies of the ammonia decomposition reaction mediated by sodium amide. Phy. Chem. Chem. Phy. 17(35): 22999−23006. DOI: 10.1039/C5CP03560K.

    View in Article CrossRef Google Scholar

    [55] David, W.I.F., Makepeace, J.W., Callear, S.K., et al. (2014). Hydrogen Production from Ammonia Using Sodium Amide. JACS 136(38): 13082−13085. DOI: 10.1021/ja5042836.

    View in Article CrossRef Google Scholar

    [56] Makepeace, J.W., Wood, T.J., Hunter, H.M.A., et al. (2015). Ammonia decomposition catalysis using non-stoichiometric lithium imide. Chem. Sci. 6(7): 3805−3815. DOI: 10.1039/C5SC00205B.

    View in Article CrossRef Google Scholar

    [57] Chang, F., Wu, H., Pluijm, R.V., et al. (2019). Effect of Pore Confinement of NaNH2 and KNH2 on Hydrogen Generation from Ammonia. J. Phys. Chem. C Nanomater Interfaces 123(35): 21487−21496. DOI: 10.1021/acs.jpcc.9b03878.

    View in Article CrossRef Google Scholar

    [58] Guo, J., Chang, F., Wang, P., et al. (2015). Highly Active MnN–Li2NH Composite Catalyst for Producing COx-Free Hydrogen. ACS Catal. 5(5): 2708−2713. DOI: 10.1021/acscatal.5b00278.

    View in Article CrossRef Google Scholar

    [59] Guo, J., Wang, P., Wu, G., et al. (2015). Lithium Imide Synergy with 3d Transition-Metal Nitrides Leading to Unprecedented Catalytic Activities for Ammonia Decomposition. Angew. Chem. Int. Ed. 54 (10): 2950-2954. DOI: https://doi.org/10.1002/anie.201410773.

    View in Article Google Scholar

    [60] Makepeace, J.W., Hunter, H.M.A., Wood, T.J., et al. (2016). Ammonia decomposition catalysis using lithium–calcium imide. Faraday Discuss. 188(0): 525−544. DOI: 10.1039/C5FD00179J.

    View in Article CrossRef Google Scholar

    [61] Yin, S., Zhang, Q., Xu, B., et al. (2004). Investigation on the catalysis of COx-free hydrogen generation from ammonia. J. Catal. 224 (2): 384-396. DOI: https://doi.org/10.1016/j.jcat.2004.03.008.

    View in Article Google Scholar

    [62] Zhang, H., Alhamed, Y., Kojima, Y., et al. (2013). Cobalt Supported on Carbon Nanotubes. An Efficient Catalyst for Ammonia Decomposition. Proc. Bulg. Acad. Sci. 66 (4). DOI: 10.7546/CR-2013-66-4-13101331-7.

    View in Article Google Scholar

    [63] Shin, J., Jung, U., Kim, J., et al. (2024). Elucidating the effect of Ce with abundant surface oxygen vacancies on MgAl2O4-supported Ru-based catalysts for ammonia decomposition. Appl. Catal. B: Environ. 340 : 123234. DOI: https://doi.org/10.1016/j.apcatb.2023.123234.

    View in Article Google Scholar

    [64] Fang, H., Wu, S., Ayvali, T., et al. (2023). Dispersed surface Ru ensembles on MgO(111) for catalytic ammonia decomposition. Nat. Commun. 14(1): 647. DOI: 10.1038/s41467-023-36339-w.

    View in Article CrossRef Google Scholar

    [65] Muroyama, H., Saburi, C., Matsui, T., et al. (2012). Ammonia decomposition over Ni/La2O3 catalyst for on-site generation of hydrogen. Appl. Catal., A 443-444 : 119-124. DOI: https://doi.org/10.1016/j.apcata.2012.07.031.

    View in Article Google Scholar

    [66] Wood, T.J., and Makepeace, J.W. (2018). Assessing Potential Supports for Lithium Amide-imide Ammonia Decomposition Catalysts. ACS Appl. Energy Mater. 1(6): 2657−2663. DOI: 10.1021/acsaem.8b00351.

    View in Article CrossRef Google Scholar

    [67] Lucentini, I., Casanovas, A., and Llorca, J. (2019). Catalytic ammonia decomposition for hydrogen production on Ni, Ru and NiRu supported on CeO2. Int. J. Hydro. Energy 44 (25): 12693-12707. DOI: https://doi.org/10.1016/j.ijhydene.2019.01.154.

    View in Article Google Scholar

    [68] Liu, H., Zhang, Y., Liu, S., et al. (2023). Ni-CeO2 nanocomposite with enhanced metal-support interaction for effective ammonia decomposition to hydrogen. Chem. Eng. J. 473 : 145371. DOI: https://doi.org/10.1016/j.cej.2023.145371.

    View in Article Google Scholar

    [69] Hinrichsen, O., Rosowski, F., Hornung, A., et al. (1997). The Kinetics of Ammonia Synthesis over Ru-Based Catalysts: 1. The Dissociative Chemisorption and Associative Desorption of N2. J. Catal. 165 (1): 33-44. DOI: https://doi.org/10.1006/jcat.1997.1447.

    View in Article Google Scholar

    [70] Wang, S.J., Yin, S.F., Li, L., et al. (2004). Investigation on modification of Ru/CNTs catalyst for the generation of COx-free hydrogen from ammonia. Appl. Catal. B: Environ. 52 (4): 287-299. DOI: https://doi.org/10.1016/j.apcatb.2004.05.002.

    View in Article Google Scholar

    [71] Raróg-Pilecka, W., Miśkiewicz, E., Szmigiel, D., et al. (2005). Structure sensitivity of ammonia synthesis over promoted ruthenium catalysts supported on graphitised carbon. J. Catal. 231 (1): 11-19. DOI: https://doi.org/10.1016/j.jcat.2004.12.005.

    View in Article Google Scholar

    [72] Al-Shafei, E.N., Albahar, M.Z., Albashrayi, R., et al. (2023). The effect of acidic–basic structural modification of nickel-based catalyst for ammonia decomposition for hydrogen generation. Mol. Catal. 550 : 113581. DOI: https://doi.org/10.1016/j.mcat.2023.113581.

    View in Article Google Scholar

    [73] García-García, F.R., Ruiz, A., and Rodriguez-Ramos, I. (2009). Role of B5Type Sites in Ru Catalysts used for the NH3 Decomposition Reaction. Top. Catal. 52: 758−764. DOI: 10.1007/s11244-009-9203-7.

    View in Article CrossRef Google Scholar

    [74] Zhang, J., Xu, H., and Li, W. (2005). Kinetic study of NH3 decomposition over Ni nanoparticles: The role of La promoter, structure sensitivity and compensation effect. Appl. Catal., A 296 (2): 257-267. DOI: https://doi.org/10.1016/j.apcata.2005.08.046.

    View in Article Google Scholar

    [75] Kim, A.-R., Cha, J., Kim, J.S., et al. (2023). Hydrogen production from ammonia decomposition over Ru-rich surface on La2O2CO3-Al2O3 catalyst beads. Catal. Today 411-412 : 113867. DOI: https://doi.org/10.1016/j.cattod.2022.08.009.

    View in Article Google Scholar

    [76] Okura, K., Okanishi, T., Muroyama, H., et al. (2015). Promotion effect of rare-earth elements on the catalytic decomposition of ammonia over Ni/Al2O3 catalyst. Appl. Catal., A 505 : 77-85. DOI: https://doi.org/10.1016/j.apcata.2015.07.020.

    View in Article Google Scholar

    [77] Zhang, J., Xu, H., Jin, X., et al. (2005). Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La–Al2O3 catalysts for NH3 decomposition. Appl. Catal., A 290 (1): 87-96. DOI: https://doi.org/10.1016/j.apcata.2005.05.020.

    View in Article Google Scholar

    [78] Yin, S., Xu, B., Wang, S., et al. (2006). Nanosized Ru on high-surface-area superbasic ZrO2-KOH for efficient generation of hydrogen via ammonia decomposition. Appl. Catal., A 301 (2): 202-210. DOI: https://doi.org/10.1016/j.apcata.2005.12.005.

    View in Article Google Scholar

    [79] Armenise, S., Roldán, L., Marco, Y., et al. (2012). Elucidation of Catalyst Support Effect for NH3 Decomposition Using Ru Nanoparticles on Nitrogen-Functionalized Carbon Nanofiber Monoliths. J. Phys. Chem. C 116(50): 26385−26395. DOI: 10.1021/jp308985x.

    View in Article CrossRef Google Scholar

    [80] Leybo, D.V., Baiguzhina, A.N., Muratov, D.S., et al. (2016). Effects of composition and production route on structure and catalytic activity for ammonia decomposition reaction of ternary Ni–Mo nitride catalysts. Int. J. Hydro. Energy 41 (6): 3854-3860. DOI: https://doi.org/10.1016/j.ijhydene.2015.12.171.

    View in Article Google Scholar

    [81] Bell, T.E., and Torrente-Murciano, L. (2016). H2 Production via Ammonia Decomposition Using Non-Noble Metal Catalysts: A Review. Top. Catal. 59(15): 1438−1457. DOI: 10.1007/s11244-016-0653-4.

    View in Article CrossRef Google Scholar

    [82] Liu, H., Wang, H., Shen, J., et al. (2008). Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing COx-free hydrogen from ammonia. Appl. Catal., A 337 (2): 138-147. DOI: https://doi.org/10.1016/j.apcata.2007.12.006.

    View in Article Google Scholar

    [83] Ju, X., Liu, L., Yu, P., et al. (2017). Mesoporous Ru/MgO prepared by a deposition-precipitation method as highly active catalyst for producing COx-free hydrogen from ammonia decomposition. Appl. Catal. B: Environ. 211 : 167-175. DOI: https://doi.org/10.1016/j.apcatb.2017.04.043.

    View in Article Google Scholar

    [84] Furusawa, T., Shirasu, M., Sugiyama, K., et al. (2016). Preparation of Ru/ZrO2 Catalysts by NaBH4 Reduction and Their Catalytic Activity for NH3 Decomposition To Produce H2. Ind. Eng. Chem. Res. 55(50): 12742−12749. DOI: 10.1021/acs.iecr.6b03265.

    View in Article CrossRef Google Scholar

    [85] Karim, A.M., Prasad, V., Mpourmpakis, G., et al. (2009). Correlating Particle Size and Shape of Supported Ru/γ-Al2O3 Catalysts with NH3 Decomposition Activity. JACS 131(34): 12230−12239. DOI: 10.1021/ja902587k.

    View in Article CrossRef Google Scholar

    [86] Gu, Y., Ma, Y., Long, Z., et al. (2021). One-pot synthesis of supported Ni@Al2O3 catalysts with uniform small-sized Ni for hydrogen generation via ammonia decomposition. Int. J. Hydro. Energy 46 (5): 4045-4054. DOI: https://doi.org/10.1016/j.ijhydene.2020.11.003.

    View in Article Google Scholar

    [87] Sima, D., Wu, H., Tian, K., et al. (2020). Enhanced low temperature catalytic activity of Ni/Al-Ce0.8Zr0.2O2 for hydrogen production from ammonia decomposition. Int. J. Hydro. Energy 45 (16): 9342-9352. DOI: https://doi.org/10.1016/j.ijhydene.2020.01.209.

    View in Article Google Scholar

    [88] Atsumi, R., Noda, R., Takagi, H., et al. (2014). Ammonia decomposition activity over Ni/SiO2 catalysts with different pore diameters. Int. J. Hydro. Energy 39 (26): 13954-13961. DOI: https://doi.org/10.1016/j.ijhydene.2014.07.003.

    View in Article Google Scholar

    [89] Tabassum, H., Mukherjee, S., Chen, J., et al. (2022). Hydrogen generation via ammonia decomposition on highly efficient and stable Ru-free catalysts: approaching complete conversion at 450 °C. Energy Environ. Sci. 15(10): 4190−4200. DOI: 10.1039/D1EE03730G.

    View in Article CrossRef Google Scholar

    [90] Im, Y., Muroyama, H., Matsui, T., et al. (2020). Ammonia decomposition over nickel catalysts supported on alkaline earth metal aluminate for H2 production. Int. J. Hydro. Energy 45 (51):26979-26988. DOI: https://doi.org/10.1016/j.ijhydene.2020.07.014.

    View in Article Google Scholar

    [91] Okura, K., Okanishi, T., Muroyama, H., et al. (2016). Ammonia Decomposition over Nickel Catalysts Supported on Rare-Earth Oxides for the On-Site Generation of Hydrogen. Chem. Cat. Chem. 8 (18): 2988-2995. DOI: https://doi.org/10.1002/cctc.201600610.

    View in Article Google Scholar

    [92] Su, Q., Gu, L., Yao, Y., et al. (2017). Layered double hydroxides derived Nix(MgyAlzOn) catalysts: Enhanced ammonia decomposition by hydrogen spillover effect. Appl. Catal. B: Environ. 201 : 451-460. DOI: https://doi.org/10.1016/j.apcatb.2016.08.051.

    View in Article Google Scholar

    [93] Prins, R. (2012). Hydrogen Spillover. Fact. Fict. Chem. Rev. 112(5): 2714−2738. DOI: 10.1021/cr200346z.

    View in Article CrossRef Google Scholar

    [94] Yao, L.H., Li, Y.X., Zhao, J., et al. (2010). Core–shell structured nanoparticles (M@SiO2, Al2O3, MgO; M=Fe, Co, Ni, Ru) and their application in COx-free H2 production via NH3 decomposition. Catal. Today 158 (3): 401-408. DOI: https://doi.org/10.1016/j.cattod.2010.05.009.

    View in Article Google Scholar

    [95] Zhang, L., Li, M., Ren, T., et al. (2015). Ce-modified Ni nanoparticles encapsulated in SiO2 for COx-free hydrogen production via ammonia decomposition. Int. J. Hydro. Energy 40 (6): 2648-2656. DOI: https://doi.org/10.1016/j.ijhydene.2014.12.079.

    View in Article Google Scholar

    [96] García-García, F.R., Álvarez-Rodríguez, J., Rodríguez-Ramos, I., et al. (2010). The use of carbon nanotubes with and without nitrogen doping as support for ruthenium catalysts in the ammonia decomposition reaction. Carbon 48 (1): 267-276. DOI: https://doi.org/10.1016/j.carbon.2009.09.015.

    View in Article Google Scholar

    [97] Pinzón, M., Avilés-García, O., de la Osa, A.R., et al. (2022). New catalysts based on reduced graphene oxide for hydrogen production from ammonia decomposition. Sustain. Chem. Pharm. 25 : 100615. DOI: https://doi.org/10.1016/j.scp.2022.100615.

    View in Article Google Scholar

    [98] Guo, W., Shafizadeh, A., Shahbeik, H., et al. (2024). Machine learning for predicting catalytic ammonia decomposition: An approach for catalyst design and performance prediction. J. Energy Storage 89 : 111688. DOI: https://doi.org/10.1016/j.est.2024.111688.

    View in Article Google Scholar

    [99] Nagaoka, K., Sato, K., Fukuda, S., et al. (2008). Oxidative Reforming of n-Butane Triggered by Spontaneous Oxidation of CeO2-x at Ambient Temperature. Chem. Mater. 20: 4176−4178. DOI: 10.1021/cm800651m.

    View in Article CrossRef Google Scholar

    [100] Sata, T., and Yoshimura, M. (1968). Some Material Properties of Cerium Sesquioxide. J. Ceramic Assoc., Japan 76: 116−122. DOI: 10.2109/jcersj1950.76.872_116.

    View in Article CrossRef Google Scholar

    [101] Nagaoka, K., Eboshi, T., Takeishi, Y., et al. (2017). Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst. Sci. Adv. 3(4): 1602747. DOI. DOI: 10.1126/sciadv.1602747.

    View in Article CrossRef Google Scholar

    [102] Li, L., Zhao, L., Ma, Z., et al. (2023). Ce0.5Zr0.5O2 solid solutions supported Co-Ni catalyst for ammonia oxidative decomposition to hydrogen. Chem. Eng. J. 475 : 146355. DOI: https://doi.org/10.1016/j.cej.2023.146355.

    View in Article Google Scholar

    [103] Li, L., Zhao, L., Ma, Z., et al. (2024). A new high efficiency catalyst of Co–Ni/CeO2 for hydrogen production by ammonia oxidative decomposition at low temperature. Int. J. Hydro. Energy 50 : 36-47. DOI: https://doi.org/10.1016/j.ijhydene.2023.06.171.

    View in Article Google Scholar

    [104] Matsunaga, T., Matsumoto, S., Tasaki, R., et al. (2020). Oxidation of Ru/Ce0.5Zr0.5O2–x at Ambient Temperature as a Trigger for Carbon-Free H2 Production by Ammonia Oxidative Decomposition. ACS Sustain. Chem. Eng. 8 (35): 13369-13376. DOI: 10.1021/acssuschemeng.0c04126.

    View in Article Google Scholar

    [105] Chen, Y., Juang, C., and Chen, Y. (2021). The Effects of Promoter Cs Loading on the Hydrogen Production from Ammonia Decomposition Using Ru/C Catalyst in a Fixed-Bed Reactor. Catalysts 11 (3): 321. DOI: https://doi.org/10.3390/catal11030321.

    View in Article Google Scholar

    [106] Wang, W., Padban, N., Ye, Z., et al. (1999). Kinetics of Ammonia Decomposition in Hot Gas Cleaning. Ind. Eng. Chem. Res. 38: 4175−4182. DOI: 10.1021/ie990337d.

    View in Article CrossRef Google Scholar

    [107] Badakhsh, A., Cha, J., Park, Y., et al. (2021). Autothermal recirculating reactor (ARR) with Cu-BN composite as a stable reactor material for sustainable hydrogen release from ammonia. J. Power Sources 506 : 230081. DOI: https://doi.org/10.1016/j.jpowsour.2021.230081.

    View in Article Google Scholar

    [108] Feng, P., Lee, M., Wang, D., and Suzuki, Y. (2023). Ammonia thermal decomposition on quartz and stainless steel walls. Int. J. Hydro. Energy 48 (75): 29209-29219. DOI: https://doi.org/10.1016/j.ijhydene.2023.04.106.

    View in Article Google Scholar

    [109] Cerrillo, J.L., Morlanés, N., Kulkarni, S.R., et al. (2022). High purity, self-sustained, pressurized hydrogen production from ammonia in a catalytic membrane reactor. Chem. Eng. J. 431 : 134310. DOI: https://doi.org/10.1016/j.cej.2021.134310.

    View in Article Google Scholar

    [110] Wang, W., Olguin, G., Hotza, D., et al. (2022). Inorganic membranes for in-situ separation of hydrogen and enhancement of hydrogen production from thermochemical reactions. Renew. Sustain. Energy Rev. 160 : 112124. DOI: https://doi.org/10.1016/j.rser.2022.112124.

    View in Article Google Scholar

    [111] Kim, T.W., Lee, E.H., Byun, S., et al. (2022). Highly selective Pd composite membrane on porous metal support for high-purity hydrogen production through effective ammonia decomposition. Energy 260 : 125209. DOI: https://doi.org/10.1016/j.energy.2022.125209.

    View in Article Google Scholar

    [112] Omata, K., Sato, K., Nagaoka, K., et al. (2022). Direct high-purity hydrogen production from ammonia by using a membrane reactor combining V-10mol%Fe hydrogen permeable alloy membrane with Ru/Cs2O/Pr6O11 ammonia decomposition catalyst. Int. J. Hydro. Energy 47 (13): 8372-8381. DOI: https://doi.org/10.1016/j.ijhydene.2021.12.191.

    View in Article Google Scholar

    [113] Bernardo, G., Araújo, T., da Silva Lopes, T., et al. (2020). Recent advances in membrane technologies for hydrogen purification. Int. J. Hydro. Energy 45 (12): 7313-7338. DOI: https://doi.org/10.1016/j.ijhydene.2019.06.162.

    View in Article Google Scholar

    [114] Meng, L., and Tsuru, T. (2016). Hydrogen production from energy carriers by silica-based catalytic membrane reactors. Catal. Today 268 : 3-11. DOI: https://doi.org/10.1016/j.cattod.2015.11.006.

    View in Article Google Scholar

    [115] Rebollo, E., Mortalò, C., Escolástico, S., et al. (2015). Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3-δ and Y- or Gd-doped ceria. Energy Environ. Sci. 8 (12): 3675-3686. DOI: 10.1039/C5EE01793A.

    View in Article Google Scholar

    [116] Yang, M., He, F., Zhou, C., et al. (2021). New perovskite membrane with improved sintering and self-reconstructed surface for efficient hydrogen permeation. J. Membrane Sci. 620 : 118980. DOI: https://doi.org/10.1016/j.memsci.2020.118980.

    View in Article Google Scholar

    [117] Kapteijn, F., Nijhuis, T.A., Heiszwolf, J.J., et al. (2001). New non-traditional multiphase catalytic reactors based on monolithic structures. Catal. Today 66 (2): 133-144. DOI: https://doi.org/10.1016/S0920-5861(00)00614-3.

    View in Article Google Scholar

    [118] Plana, C., Armenise, S., Monzón, A., et al. (2011). Process Optimisation of In Situ H2 Generation From Ammonia Using Ni on Alumina Coated Cordierite Monoliths. Top. Catal. 54(13): 914. DOI: 10.1007/s11244-011-9706-x.

    View in Article CrossRef Google Scholar

    [119] Lucentini, I., García Colli, G., Luzi, C., et al. (2022). Modelling and simulation of catalytic ammonia decomposition over Ni-Ru deposited on 3D-printed CeO2. Chem. Eng. J. 427 : 131756. DOI: https://doi.org/10.1016/j.cej.2021.131756.

    View in Article Google Scholar

    [120] Lucentini, I., Serrano, I., Soler, L., et al. (2020). Ammonia decomposition over 3D-printed CeO2 structures loaded with Ni. Appl. Catal., A 591 : 117382. DOI: https://doi.org/10.1016/j.apcata.2019.117382.

    View in Article Google Scholar

    [121] Collins, J.P., and Way, J.D. (1994). Catalytic decomposition of ammonia in a membrane reactor. J. Membrane Sci. 96 (3): 259-274. DOI: https://doi.org/10.1016/0376-7388(94)00138-3.

    View in Article Google Scholar

    [122] Abashar, M.E.E., Al-Sughair, Y.S., and Al-Mutaz, I.S. (2002). Investigation of low temperature decomposition of ammonia using spatially patterned catalytic membrane reactors. Appl. Catal., A 236 (1): 35-53. DOI: https://doi.org/10.1016/S0926-860X(02)00272-7.

    View in Article Google Scholar

    [123] Itoh, N., Kikuchi, Y., Furusawa, T., et al. (2021). Tube-wall catalytic membrane reactor for hydrogen production by low-temperature ammonia decomposition. Int. J. Hydro. Energy 46 (38): 20257-20265. DOI: https://doi.org/10.1016/j.ijhydene.2020.03.162.

    View in Article Google Scholar

    [124] Clark, D., Malerød-Fjeld, H., Budd, M., et al. (2022). Single-step hydrogen production from NH3, CH4, and biogas in stacked proton ceramic reactors. Science 376(6591): 390−393. DOI. DOI: 10.1126/science.abj3951.

    View in Article CrossRef Google Scholar

    [125] Malerød-Fjeld, H., Clark, D., Yuste-Tirados, I., et al. (2017). Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nat. Energy 2(12): 923−931. DOI: 10.1038/s41560-017-0029-4.

    View in Article CrossRef Google Scholar

    [126] Cechetto, V., Di Felice, L., Gutierrez Martinez, R., et al. (2022). Ultra-pure hydrogen production via ammonia decomposition in a catalytic membrane reactor. Int. J. Hydro. Energy 47 (49): 21220-21230. DOI: https://doi.org/10.1016/j.ijhydene.2022.04.240.

    View in Article Google Scholar

    [127] Chen, W., Chou, W., Chein, R., et al. (2024). Multiple-objective optimization on ammonia decomposition using membrane reactor. Int. J. Hydro. Energy 52 : 1002-1017. DOI: https://doi.org/10.1016/j.ijhydene.2023.05.081.

    View in Article Google Scholar

    [128] Cechetto, V., Felice, L.D., Medrano, J.A., et al. (2021). H2 production via ammonia decomposition in a catalytic membrane reactor. Fuel Process. Techn. 216 :106772. DOI: https://doi.org/10.1016/j.fuproc.2021.106772.

    View in Article Google Scholar

    [129] Jang, J., and Han, M. (2024). Ammonia autothermal reformer with air side-stream distribution for hydrogen production. Int. J. Hydro. Energy 49 : 1468-1481. DOI: https://doi.org/10.1016/j.ijhydene.2023.09.157.

    View in Article Google Scholar

    [130] Xie, T., Xia, S., Kong, R., et al. (2022). Performance analysis of ammonia decomposition endothermic membrane reactor heated by trough solar collector. Energy Reports 8 : 526-538. DOI: https://doi.org/10.1016/j.egyr.2022.03.152.

    View in Article Google Scholar

    [131] Xie, T., Xia, S., Huang, J., et al. (2022). Performance Analysis of a Solar Heating Ammonia Decomposition Membrane Reactor under Co-Current Sweep. Membranes 12 (10): 972. DOI: https://doi.org/10.3390/membranes12100972.

    View in Article Google Scholar

    [132] Xia, Q., Lin, Z., Wang, C., et al. (2024). Solar-driven multichannel membrane reactor for hydrogen production from ammonia decomposition. Fuel 356 : 129591. DOI: https://doi.org/10.1016/j.fuel.2023.129591.

    View in Article Google Scholar

    [133] Makhloufi, C., and Kezibri, N. (2021). Large-scale decomposition of green ammonia for pure hydrogen production. Int. J. Hydro. Energy 46 (70): 34777-34787. DOI: https://doi.org/10.1016/j.ijhydene.2021.07.188.

    View in Article Google Scholar

    [134] Devkota, S., Cha, J.Y., Shin, B.J., et al. (2024). Techno-economic and environmental assessment of hydrogen production through ammonia decomposition. Appl. Energy 358 : 122605. DOI: https://doi.org/10.1016/j.apenergy.2023.122605.

    View in Article Google Scholar

    [135] Lim, D., Kim, A., Cheon, S., et al. (2021). Life cycle techno-economic and carbon footprint analysis of H2 production via NH3 decomposition: A Case study for the Republic of Korea. Energy Convers. Manage. 250 : 114881. DOI: https://doi.org/10.1016/j.enconman.2021.114881.

    View in Article Google Scholar

  • Cite this article:

    Lu Z., Jiang B., Chen Z., et al., (2024). Advancements in thermocatalytic ammonia decomposition for hydrogen production. The Innovation Energy 1(4): 100056. https://doi.org/10.59717/j.xinn-energy.2024.100056
    Lu Z., Jiang B., Chen Z., et al., (2024). Advancements in thermocatalytic ammonia decomposition for hydrogen production. The Innovation Energy 1(4): 100056. https://doi.org/10.59717/j.xinn-energy.2024.100056

Figures(10)     Tables(1)

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(1318) PDF downloads(654) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint