We measured the acoustic velocity of CaCO3 under high-pressure and high-temperature conditions.
Distinct velocity drops were observed in amorphous CaCO3 around 3 GPa.
The presence of 1–2 vol.% CaCO3 in the craton would form the seismic mid-lithospheric discontinuities.
[1] | Griffin, W., O’reilly, S.Y., Afonso, J.C., et al. (2009). The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. J. Petrol. 50: 1185−1204. DOI: 10.1093/petrology/egn033. |
[2] | O'Reilly, S.Y., Griffin, W.L., Djomani, Y.H.P., et al. (2001). Are lithospheres forever? Tracking changes in subcontinental lithospheric mantle through time. GSA today 11: 4−10. DOI: 2.0.CO;2.">10.1130/1052-5173(2001)011<0004:ALFTCI>2.0.CO;2. |
[3] | Selway, K., Ford, H., and Kelemen, P. (2015). The seismic mid-lithosphere discontinuity. Earth Planet. Sci. Lett. 414: 45−57. DOI: 10.1016/j.jpgl.2014.12.029. |
[4] | Rader, E., Emry, E., Schmerr, N., et al. (2015). Characterization and petrological constraints of the midlithospheric discontinuity. Geochem. Geophys, Geosyst. 16: 3484−3504. DOI: 10.1002/2015GC005943. |
[5] | Karato, S.i. and Park, J. (2018). On the origin of the upper mantle seismic discontinuities. Lithosph. discont. Lithospheric Discontinuities, Huaiyu Yuan and Barbara Romanowicz. pp.5-34. DOI: 10.1002/9781119249740.ch1. |
[6] | Thybo, H. (2006). The heterogeneous upper mantle low velocity zone. Tectonophysics 416: 53−79. DOI: 10.1016/j.tecto.2005.11.021. |
[7] | Ford, H.A., Fischer, K.M., Abt, D.L., et al. (2010). The lithosphere–asthenosphere boundary and cratonic lithospheric layering beneath Australia from Sp wave imaging. Earth Planet. Sci. Lett. 300: 299−310. DOI: 10.1016/j.jpgl.2010.10.007. |
[8] | Foster, K., Dueker, K., Schmandt, B., et al. (2014). A sharp cratonic lithosphere–asthenosphere boundary beneath the American Midwest and its relation to mantle flow. Earth Planet. Sci. Lett. 402: 82−89. DOI: 10.1016/j.jpgl.2013.11.018. |
[9] | Wirth, E.A. and Long, M.D. (2014). A contrast in anisotropy across mid-lithospheric discontinuities beneath the central United States—A relic of craton formation. Geology 42: 851−854. DOI: 10.1130/G35804.1. |
[10] | Fu, H.Y., Li, Z.H., and Chen, L. (2022). Continental mid‐lithosphere discontinuity: A water collector during craton evolution. Geophys. Res. Lett. 49: e2022GL101569. DOI: 10.1029/2022GL101569. |
[11] | Eeken, T., Goes, S., Pedersen, H.A., et al. (2018). Seismic evidence for depth-dependent metasomatism in cratons. Earth Planet. Sci. Lett. 491: 148−159. DOI: 10.1016/j.jpgl.2018.03.018. |
[12] | Matsukage, K.N., Nishihara, Y., and Karato, S.i. (2005). Seismological signature of chemical differentiation of Earth's upper mantle. J. Geophys. Res.-Sol. Ea. 110 : B12305. DOI: 10.1029/2004JB003504. |
[13] | Aulbach, S., Massuyeau, M., and Gaillard, F. (2017). Origins of cratonic mantle discontinuities: A view from petrology, geochemistry and thermodynamic models. Lithos 268: 364−382. DOI: 10.1016/j.lithos.2016.11.004. |
[14] | Saha, S., Dasgupta, R., and Tsuno, K. (2018). High pressure phase relations of a depleted peridotite fluxed by CO2‐H2O‐bearing siliceous melts and the origin of mid‐lithospheric discontinuity. Geochem. Geophys, Geosyst. 19: 595−620. DOI: 10.1002/2017GC007233. |
[15] | Zhou, W.Y., Hao, M., Zhang, D., et al. (2024). High P‐T sound velocities of amphiboles: Implications for low‐velocity anomalies in metasomatized upper mantle. Geophys. Res. Lett. 51: e2023GL106583. DOI: 10.1029/2023GL106583. |
[16] | Massuyeau, M., Gardés, E., Morizet, Y., et al. (2015). A model for the activity of silica along the carbonatite–kimberlite–mellilitite–basanite melt compositional joint. Chem. Geol. 418: 206−216. DOI: 10.1016/j.chemgeo.2015.07.025. |
[17] | Peng, Y., Manthilake, G., and Mookherjee, M. (2022). Electrical conductivity of metasomatized lithology in subcontinental lithosphere. Am. Mineral. J. Earth Planet. Mater. 107: 413−420. DOI: 10.2138/am-2021-7942. |
[18] | Hu, X., Lin, W., Yang, W., et al. (2020). A review on developments in the electrical structure of craton lithosphere. Sci. China Earth Sci. 63: 1661−1677. DOI: 10.1007/s11430-019-9653-2. |
[19] | Carlson, R.W., Pearson, D.G., and James, D.E. (2005). Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys. 43 : RG1001. DOI: 10.1029/2004RG000156. |
[20] | Foley, S.F. and Fischer, T.P. (2017). An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat. Geosci. 10: 897−902. DOI: 10.1038/s41561-017-0002-7. |
[21] | Hou, M., Zhang, Q., Tao, R., et al. (2019). Temperature-induced amorphization in CaCO3 at high pressure and implications for recycled CaCO3 in subduction zones. Nat. Commun. 10: 1963. DOI: 10.1038/s41467-019-09742-5. |
[22] | Kono, Y., Park, C., Kenney-Benson, C., et al. (2014). Toward comprehensive studies of liquids at high pressures and high temperatures: Combined structure, elastic wave velocity, and viscosity measurements in the Paris–Edinburgh cell. Phys. Earth Planet. Inter. 228: 269−280. DOI: 10.1016/j.pepi.2013.09.006. |
[23] | Suito, K., Namba, J., Horikawa, T., et al. (2001). Phase relations of CaCO3 at high pressure and high temperature. Am. Mineral. 86: 997−1002. DOI: 10.2138/am-2001-8-906. |
[24] | Ahrens, T.J. and Katz, S. (1963). Ultrasonic observation of the calcite‐aragonite transition. J. Geophys. Res.-Sol. Ea. 68: 529−537. DOI: 10.1029/JZ068i002p00529. |
[25] | Liu, J. and Lin, J.F. (2014). Abnormal acoustic wave velocities in basaltic and (Fe, Al)‐bearing silicate glasses at high pressures. Geophys. Res. Lett. 41: 8832−8839. DOI: 10.1002/2014GL062053. |
[26] | Zha, C.-S., Hemley, R.J., Mao, H.-k., et al. (1994). Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering. Phys. Rev. B 50 :13105. DOI: 10.1103/PhysRevB.50.13105. |
[27] | Sanchez-Valle, C. and Bass, J.D. (2010). Elasticity and pressure-induced structural changes in vitreous MgSiO3-enstatite to lower mantle pressures. Earth Planet. Sci. Lett. 295: 523−530. DOI: 10.1016/j.jpgl.2010.04.034. |
[28] | Hammouda, T. and Keshav, S. (2015). Melting in the mantle in the presence of carbon: Review of experiments and discussion on the origin of carbonatites. Chem. Geol. 418: 171−188. DOI: 10.1016/j.chemgeo.2015.05.018. |
[29] | Dasgupta, R., Mallik, A., Tsuno, K., et al. (2013). Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature 493: 211−215. DOI: 10.1038/nature11731. |
[30] | Woolley, A. and Bailey, D. (2012). The crucial role of lithospheric structure in the generation and release of carbonatites: geological evidence. Mineral. Mag. 76: 259−270. DOI: 10.1180/minmag.2012.076.2.02. |
[31] | Hammouda, T., Chantel, J., Manthilake, G., et al. (2014). Hot mantle geotherms stabilize calcic carbonatite magmas up to the surface. Geology 42: 911−914. DOI: 10.1130/G35778.1. |
[32] | Yaxley, G.M., Kjarsgaard, B.A., and Jaques, A.L. (2021). Evolution of carbonatite magmas in the upper mantle and crust. Elements 17: 315−320. DOI: 10.2138/gselements.17.5.315. |
[33] | Weidendorfer, D., Schmidt, M.W., and Mattsson, H.B. (2017). A common origin of carbonatite magmas. Geology 45: 507−510. DOI: 10.1130/G38801.1. |
[34] | Wang, X., Chen, T., Zou, Y., et al. (2015). Elastic wave velocities of peridotite KLB‐1 at mantle pressures and implications for mantle velocity modeling. Geophys. Res. Lett. 42: 3289−3297. DOI: 10.1002/2015GL063436. |
[35] | Weidner, D.J., Li, L., Whitaker, M.L., et al. (2018). Ultrasonic acoustic velocities during partial melting of a mantle peridotite KLB‐1. J. Geophys. Res.-Sol. Ea. 123: 1252−1261. DOI: 10.1002/2017JB014753. |
[36] | Xu, W., Lithgow-Bertelloni, C., Stixrude, L., et al. (2008). The effect of bulk composition and temperature on mantle seismic structure. Earth Planet. Sci. Lett. 275: 70−79. DOI: 10.1016/j.jpgl.2008.08.012. |
[37] | Kono, Y., Irifune, T., Ohfuji, H., et al. (2012). Sound velocities of MORB and absence of a basaltic layer in the mantle transition region. Geophys. Res. Lett. 39 . DOI: 10.1029/2012GL054009. |
[38] | Gwanmesia, G.D., Wang, L., Heady, A., et al. (2014). Elasticity and sound velocities of polycrystalline grossular garnet (Ca3Al2Si3O12) at simultaneous high pressures and high temperatures. Phys. Earth Planet. Inter. 228: 80−87. DOI: 10.1016/j.pepi.2013.09.010. |
[39] | Li, B. and Neuville, D.R. (2010). Elasticity of diopside to 8 GPa and 1073 K and implications for the upper mantle. Phys. Earth Planet. Inter. 183: 398−403. DOI: 10.1016/j.pepi.2010.08.009. |
[40] | Hao, M., Zhang, J.S., Pierotti, C.E., et al. (2019). High‐Pressure single‐crystal elasticity and thermal equation of state of omphacite and their implications for the seismic properties of eclogite in the earth's interior. J. Geophys. Res.-Sol. Ea. 124: 2368−2377. DOI: 10.1029/2018JB016964. |
[41] | Yaxley, G.M., Brey, G.P., and Petrology (2004). Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites. Contrib. Mineral. 146 : 606-619. DOI: 10.1016/j.jpgl.2008.08.012. |
[42] | Soltys, A., Giuliani, A., Phillips, D., et al. (2016). In-situ assimilation of mantle minerals by kimberlitic magmas—Direct evidence from a garnet wehrlite xenolith entrained in the Bultfontein kimberlite (Kimberley, South Africa). Lithos 256: 182−196. DOI: 10.1016/j.lithos.2016.04.011. |
[43] | Ringwood, A.E. (1991). Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim. Cosmochim. Acta 55: 2083−2110. DOI: 10.1016/0016-7037(91)90090-R. |
[44] | Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc.-Sec. A 65: 349. DOI: 10.1088/0370-1298/65/5/307. |
[45] | Watanabe, T., Shirasugi, Y., and Michibayashi, K. (2014). A new method for calculating seismic velocities in rocks containing strongly dimensionally anisotropic mineral grains and its application to antigorite-bearing serpentinite mylonites. Earth Planet. Sci. Lett. 391: 24−35. DOI: 10.1016/j.jpgl.2014.01.025. |
[46] | Pollack, H.N., Hurter, S.J., and Johnson, J.R. (1993). Heat flow from the Earth's interior: Analysis of the global data set. Rev. Geophys. 31: 267−280. DOI: 10.1029/93RG01249. |
[47] | Dasgupta, R., Hirschmann, M.M., and Withers, A.C. (2004). Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet. Sci. Lett. 227: 73−85. DOI: 10.1016/j.jpgl.2004.08.004. |
Hou M., Hao M., Liu J., et al., (2024). Evidence for amorphous calcium carbonate originated mid-lithospheric discontinuities. The Innovation Geoscience 2(4): 100098. https://doi.org/10.59717/j.xinn-geo.2024.100098 |
Acoustic velocity measurements of CaCO3 at high pressure and temperature
The acoustic velocities of aragonite/calcite (A) and amorphous CaCO3 (B) at elevated pressures and temperatures
The seismic velocities of the pyrolite + 2 vol.% amorphous CaCO3 along a typical craton geotherm with a surface heat flux of 40 mW/m2
The stability field of amorphous CaCO3 constrained by its phase diagram,21 craton geotherms (surface heat fluxes of 35, 40, and 45 mW/m2),46 and the solidi of carbonated eclogites41 and peridotite29 (up) and the schematic of CaCO3-originated seismic abnormalities in the cratonic lithosphere (down)