We measured the acoustic velocity of CaCO3 under high-pressure and high-temperature conditions.
Distinct velocity drops were observed in amorphous CaCO3 around 3 GPa.
The presence of 1–2 vol.% CaCO3 in the craton would form the seismic mid-lithospheric discontinuities.
[1] | Griffin, W., O’reilly, S.Y., Afonso, J.C., et al. (2009). The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. J. Petrol. 50: 1185−1204. DOI: 10.1093/petrology/egn033. |
[2] | O'Reilly, S.Y., Griffin, W.L., Djomani, Y.H.P., et al. (2001). Are lithospheres forever? Tracking changes in subcontinental lithospheric mantle through time. GSA today 11: 4−10. DOI: 2.0.CO;2.">10.1130/1052-5173(2001)011<0004:ALFTCI>2.0.CO;2. |
[3] | Selway, K., Ford, H., and Kelemen, P. (2015). The seismic mid-lithosphere discontinuity. Earth Planet. Sci. Lett. 414: 45−57. DOI: 10.1016/j.jpgl.2014.12.029. |
[4] | Rader, E., Emry, E., Schmerr, N., et al. (2015). Characterization and petrological constraints of the midlithospheric discontinuity. Geochem. Geophys, Geosyst. 16: 3484−3504. DOI: 10.1002/2015GC005943. |
[5] | Karato, S.i. and Park, J. (2018). On the origin of the upper mantle seismic discontinuities. Lithosph. discont. Lithospheric Discontinuities, Huaiyu Yuan and Barbara Romanowicz. pp.5-34. DOI: 10.1002/9781119249740.ch1. |
[6] | Thybo, H. (2006). The heterogeneous upper mantle low velocity zone. Tectonophysics 416: 53−79. DOI: 10.1016/j.tecto.2005.11.021. |
[7] | Ford, H.A., Fischer, K.M., Abt, D.L., et al. (2010). The lithosphere–asthenosphere boundary and cratonic lithospheric layering beneath Australia from Sp wave imaging. Earth Planet. Sci. Lett. 300: 299−310. DOI: 10.1016/j.jpgl.2010.10.007. |
[8] | Foster, K., Dueker, K., Schmandt, B., et al. (2014). A sharp cratonic lithosphere–asthenosphere boundary beneath the American Midwest and its relation to mantle flow. Earth Planet. Sci. Lett. 402: 82−89. DOI: 10.1016/j.jpgl.2013.11.018. |
[9] | Wirth, E.A. and Long, M.D. (2014). A contrast in anisotropy across mid-lithospheric discontinuities beneath the central United States—A relic of craton formation. Geology 42: 851−854. DOI: 10.1130/G35804.1. |
[10] | Fu, H.Y., Li, Z.H., and Chen, L. (2022). Continental mid‐lithosphere discontinuity: A water collector during craton evolution. Geophys. Res. Lett. 49: e2022GL101569. DOI: 10.1029/2022GL101569. |
[11] | Eeken, T., Goes, S., Pedersen, H.A., et al. (2018). Seismic evidence for depth-dependent metasomatism in cratons. Earth Planet. Sci. Lett. 491: 148−159. DOI: 10.1016/j.jpgl.2018.03.018. |
[12] | Matsukage, K.N., Nishihara, Y., and Karato, S.i. (2005). Seismological signature of chemical differentiation of Earth's upper mantle. J. Geophys. Res.-Sol. Ea. 110 : B12305. DOI: 10.1029/2004JB003504. |
[13] | Aulbach, S., Massuyeau, M., and Gaillard, F. (2017). Origins of cratonic mantle discontinuities: A view from petrology, geochemistry and thermodynamic models. Lithos 268: 364−382. DOI: 10.1016/j.lithos.2016.11.004. |
[14] | Saha, S., Dasgupta, R., and Tsuno, K. (2018). High pressure phase relations of a depleted peridotite fluxed by CO2‐H2O‐bearing siliceous melts and the origin of mid‐lithospheric discontinuity. Geochem. Geophys, Geosyst. 19: 595−620. DOI: 10.1002/2017GC007233. |
[15] | Zhou, W.Y., Hao, M., Zhang, D., et al. (2024). High P‐T sound velocities of amphiboles: Implications for low‐velocity anomalies in metasomatized upper mantle. Geophys. Res. Lett. 51: e2023GL106583. DOI: 10.1029/2023GL106583. |
[16] | Massuyeau, M., Gardés, E., Morizet, Y., et al. (2015). A model for the activity of silica along the carbonatite–kimberlite–mellilitite–basanite melt compositional joint. Chem. Geol. 418: 206−216. DOI: 10.1016/j.chemgeo.2015.07.025. |
[17] | Peng, Y., Manthilake, G., and Mookherjee, M. (2022). Electrical conductivity of metasomatized lithology in subcontinental lithosphere. Am. Mineral. J. Earth Planet. Mater. 107: 413−420. DOI: 10.2138/am-2021-7942. |
[18] | Hu, X., Lin, W., Yang, W., et al. (2020). A review on developments in the electrical structure of craton lithosphere. Sci. China Earth Sci. 63: 1661−1677. DOI: 10.1007/s11430-019-9653-2. |
[19] | Carlson, R.W., Pearson, D.G., and James, D.E. (2005). Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys. 43 : RG1001. DOI: 10.1029/2004RG000156. |
[20] | Foley, S.F. and Fischer, T.P. (2017). An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat. Geosci. 10: 897−902. DOI: 10.1038/s41561-017-0002-7. |
[21] | Hou, M., Zhang, Q., Tao, R., et al. (2019). Temperature-induced amorphization in CaCO3 at high pressure and implications for recycled CaCO3 in subduction zones. Nat. Commun. 10: 1963. DOI: 10.1038/s41467-019-09742-5. |
[22] | Kono, Y., Park, C., Kenney-Benson, C., et al. (2014). Toward comprehensive studies of liquids at high pressures and high temperatures: Combined structure, elastic wave velocity, and viscosity measurements in the Paris–Edinburgh cell. Phys. Earth Planet. Inter. 228: 269−280. DOI: 10.1016/j.pepi.2013.09.006. |
[23] | Suito, K., Namba, J., Horikawa, T., et al. (2001). Phase relations of CaCO3 at high pressure and high temperature. Am. Mineral. 86: 997−1002. DOI: 10.2138/am-2001-8-906. |
[24] | Ahrens, T.J. and Katz, S. (1963). Ultrasonic observation of the calcite‐aragonite transition. J. Geophys. Res.-Sol. Ea. 68: 529−537. DOI: 10.1029/JZ068i002p00529. |
[25] | Liu, J. and Lin, J.F. (2014). Abnormal acoustic wave velocities in basaltic and (Fe, Al)‐bearing silicate glasses at high pressures. Geophys. Res. Lett. 41: 8832−8839. DOI: 10.1002/2014GL062053. |
[26] | Zha, C.-S., Hemley, R.J., Mao, H.-k., et al. (1994). Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering. Phys. Rev. B 50 :13105. DOI: 10.1103/PhysRevB.50.13105. |
[27] | Sanchez-Valle, C. and Bass, J.D. (2010). Elasticity and pressure-induced structural changes in vitreous MgSiO3-enstatite to lower mantle pressures. Earth Planet. Sci. Lett. 295: 523−530. DOI: 10.1016/j.jpgl.2010.04.034. |
[28] | Hammouda, T. and Keshav, S. (2015). Melting in the mantle in the presence of carbon: Review of experiments and discussion on the origin of carbonatites. Chem. Geol. 418: 171−188. DOI: 10.1016/j.chemgeo.2015.05.018. |
[29] | Dasgupta, R., Mallik, A., Tsuno, K., et al. (2013). Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature 493: 211−215. DOI: 10.1038/nature11731. |
[30] | Woolley, A. and Bailey, D. (2012). The crucial role of lithospheric structure in the generation and release of carbonatites: geological evidence. Mineral. Mag. 76: 259−270. DOI: 10.1180/minmag.2012.076.2.02. |
[31] | Hammouda, T., Chantel, J., Manthilake, G., et al. (2014). Hot mantle geotherms stabilize calcic carbonatite magmas up to the surface. Geology 42: 911−914. DOI: 10.1130/G35778.1. |
[32] | Yaxley, G.M., Kjarsgaard, B.A., and Jaques, A.L. (2021). Evolution of carbonatite magmas in the upper mantle and crust. Elements 17: 315−320. DOI: 10.2138/gselements.17.5.315. |
[33] | Weidendorfer, D., Schmidt, M.W., and Mattsson, H.B. (2017). A common origin of carbonatite magmas. Geology 45: 507−510. DOI: 10.1130/G38801.1. |
[34] | Wang, X., Chen, T., Zou, Y., et al. (2015). Elastic wave velocities of peridotite KLB‐1 at mantle pressures and implications for mantle velocity modeling. Geophys. Res. Lett. 42: 3289−3297. DOI: 10.1002/2015GL063436. |
[35] | Weidner, D.J., Li, L., Whitaker, M.L., et al. (2018). Ultrasonic acoustic velocities during partial melting of a mantle peridotite KLB‐1. J. Geophys. Res.-Sol. Ea. 123: 1252−1261. DOI: 10.1002/2017JB014753. |
[36] | Xu, W., Lithgow-Bertelloni, C., Stixrude, L., et al. (2008). The effect of bulk composition and temperature on mantle seismic structure. Earth Planet. Sci. Lett. 275: 70−79. DOI: 10.1016/j.jpgl.2008.08.012. |
[37] | Kono, Y., Irifune, T., Ohfuji, H., et al. (2012). Sound velocities of MORB and absence of a basaltic layer in the mantle transition region. Geophys. Res. Lett. 39 . DOI: 10.1029/2012GL054009. |
[38] | Gwanmesia, G.D., Wang, L., Heady, A., et al. (2014). Elasticity and sound velocities of polycrystalline grossular garnet (Ca3Al2Si3O12) at simultaneous high pressures and high temperatures. Phys. Earth Planet. Inter. 228: 80−87. DOI: 10.1016/j.pepi.2013.09.010. |
[39] | Li, B. and Neuville, D.R. (2010). Elasticity of diopside to 8 GPa and 1073 K and implications for the upper mantle. Phys. Earth Planet. Inter. 183: 398−403. DOI: 10.1016/j.pepi.2010.08.009. |
[40] | Hao, M., Zhang, J.S., Pierotti, C.E., et al. (2019). High‐Pressure single‐crystal elasticity and thermal equation of state of omphacite and their implications for the seismic properties of eclogite in the earth's interior. J. Geophys. Res.-Sol. Ea. 124: 2368−2377. DOI: 10.1029/2018JB016964. |
[41] | Yaxley, G.M., Brey, G.P., and Petrology (2004). Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites. Contrib. Mineral. 146 : 606-619. DOI: 10.1016/j.jpgl.2008.08.012. |
[42] | Soltys, A., Giuliani, A., Phillips, D., et al. (2016). In-situ assimilation of mantle minerals by kimberlitic magmas—Direct evidence from a garnet wehrlite xenolith entrained in the Bultfontein kimberlite (Kimberley, South Africa). Lithos 256: 182−196. DOI: 10.1016/j.lithos.2016.04.011. |
[43] | Ringwood, A.E. (1991). Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim. Cosmochim. Acta 55: 2083−2110. DOI: 10.1016/0016-7037(91)90090-R. |
[44] | Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc.-Sec. A 65: 349. DOI: 10.1088/0370-1298/65/5/307. |
[45] | Watanabe, T., Shirasugi, Y., and Michibayashi, K. (2014). A new method for calculating seismic velocities in rocks containing strongly dimensionally anisotropic mineral grains and its application to antigorite-bearing serpentinite mylonites. Earth Planet. Sci. Lett. 391: 24−35. DOI: 10.1016/j.jpgl.2014.01.025. |
[46] | Pollack, H.N., Hurter, S.J., and Johnson, J.R. (1993). Heat flow from the Earth's interior: Analysis of the global data set. Rev. Geophys. 31: 267−280. DOI: 10.1029/93RG01249. |
[47] | Dasgupta, R., Hirschmann, M.M., and Withers, A.C. (2004). Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet. Sci. Lett. 227: 73−85. DOI: 10.1016/j.jpgl.2004.08.004. |
Hou M., Hao M., Liu J., et al., (2024). Evidence for amorphous calcium carbonate originated mid-lithospheric discontinuities. The Innovation Geoscience 2(4): 100098. https://doi.org/10.59717/j.xinn-geo.2024.100098 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
Acoustic velocity measurements of CaCO3 at high pressure and temperature
The acoustic velocities of aragonite/calcite (A) and amorphous CaCO3 (B) at elevated pressures and temperatures
The seismic velocities of the pyrolite + 2 vol.% amorphous CaCO3 along a typical craton geotherm with a surface heat flux of 40 mW/m2
The stability field of amorphous CaCO3 constrained by its phase diagram,21 craton geotherms (surface heat fluxes of 35, 40, and 45 mW/m2),46 and the solidi of carbonated eclogites41 and peridotite29 (up) and the schematic of CaCO3-originated seismic abnormalities in the cratonic lithosphere (down)