Report   Open Access     Cite

Evidence for amorphous calcium carbonate originated mid-lithospheric discontinuities

    Show all affliationsShow less
More Information
  • Corresponding authors: Jinzhang@tamu.edu (J. Z.);  jinliu@ysu.edu.cn(J. L.); 
    1. We measured the acoustic velocity of CaCO3 under high-pressure and high-temperature conditions.

      Distinct velocity drops were observed in amorphous CaCO3 around 3 GPa.

      The presence of 1–2 vol.% CaCO3 in the craton would form the seismic mid-lithospheric discontinuities.

  • The cratonic lithosphere is a vast host for deep recycled carbon, trapping up to several weight percent CO2 at depths overlapping the seismic mid-lithospheric discontinuities (MLDs). However, the role of carbonates, especially for the latest discovered amorphous calcium carbonate (CaCO3), is underestimated in the formation of MLDs. Using the pulse-echo-overlap method in a Paris-Edinburgh press coupled with synchrotron X-ray diffraction, we explored the acoustic velocities of CaCO3 under high pressure-temperature (P-T) conditions relevant to the cratonic lithosphere. Two anomalous velocity drops were observed associated with the phase transition from aragonite to amorphous phase and with the pressure-induced velocity drop in the amorphous phase around 3 GPa, respectively. Both drops are comparable with approximately 35% and 52% reductions for compressional (VP) and shear (VS) wave velocities, respectively. The VP and VS values of the amorphous CaCO3 above 3 GPa are about 1/2 and 1/3 of those of the major upper-mantle minerals, respectively. These velocity reductions caused by the presence of CaCO3 would readily cause MLDs at depths of 70–120 km dependent on the geotherm even if only 1–2 vol.% CaCO3 is present in the cratonic lithosphere.
  • 加载中
  • [1] Griffin, W., O’reilly, S.Y., Afonso, J.C., et al. (2009). The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. J. Petrol. 50: 1185−1204. DOI: 10.1093/petrology/egn033.

    View in Article CrossRef Google Scholar

    [2] O'Reilly, S.Y., Griffin, W.L., Djomani, Y.H.P., et al. (2001). Are lithospheres forever? Tracking changes in subcontinental lithospheric mantle through time. GSA today 11: 4−10. DOI: 2.0.CO;2.">10.1130/1052-5173(2001)011<0004:ALFTCI>2.0.CO;2.

    View in Article CrossRef Google Scholar

    [3] Selway, K., Ford, H., and Kelemen, P. (2015). The seismic mid-lithosphere discontinuity. Earth Planet. Sci. Lett. 414: 45−57. DOI: 10.1016/j.jpgl.2014.12.029.

    View in Article CrossRef Google Scholar

    [4] Rader, E., Emry, E., Schmerr, N., et al. (2015). Characterization and petrological constraints of the midlithospheric discontinuity. Geochem. Geophys, Geosyst. 16: 3484−3504. DOI: 10.1002/2015GC005943.

    View in Article CrossRef Google Scholar

    [5] Karato, S.i. and Park, J. (2018). On the origin of the upper mantle seismic discontinuities. Lithosph. discont. Lithospheric Discontinuities, Huaiyu Yuan and Barbara Romanowicz. pp.5-34. DOI: 10.1002/9781119249740.ch1.

    View in Article Google Scholar

    [6] Thybo, H. (2006). The heterogeneous upper mantle low velocity zone. Tectonophysics 416: 53−79. DOI: 10.1016/j.tecto.2005.11.021.

    View in Article CrossRef Google Scholar

    [7] Ford, H.A., Fischer, K.M., Abt, D.L., et al. (2010). The lithosphere–asthenosphere boundary and cratonic lithospheric layering beneath Australia from Sp wave imaging. Earth Planet. Sci. Lett. 300: 299−310. DOI: 10.1016/j.jpgl.2010.10.007.

    View in Article CrossRef Google Scholar

    [8] Foster, K., Dueker, K., Schmandt, B., et al. (2014). A sharp cratonic lithosphere–asthenosphere boundary beneath the American Midwest and its relation to mantle flow. Earth Planet. Sci. Lett. 402: 82−89. DOI: 10.1016/j.jpgl.2013.11.018.

    View in Article CrossRef Google Scholar

    [9] Wirth, E.A. and Long, M.D. (2014). A contrast in anisotropy across mid-lithospheric discontinuities beneath the central United States—A relic of craton formation. Geology 42: 851−854. DOI: 10.1130/G35804.1.

    View in Article CrossRef Google Scholar

    [10] Fu, H.Y., Li, Z.H., and Chen, L. (2022). Continental mid‐lithosphere discontinuity: A water collector during craton evolution. Geophys. Res. Lett. 49: e2022GL101569. DOI: 10.1029/2022GL101569.

    View in Article CrossRef Google Scholar

    [11] Eeken, T., Goes, S., Pedersen, H.A., et al. (2018). Seismic evidence for depth-dependent metasomatism in cratons. Earth Planet. Sci. Lett. 491: 148−159. DOI: 10.1016/j.jpgl.2018.03.018.

    View in Article CrossRef Google Scholar

    [12] Matsukage, K.N., Nishihara, Y., and Karato, S.i. (2005). Seismological signature of chemical differentiation of Earth's upper mantle. J. Geophys. Res.-Sol. Ea. 110 : B12305. DOI: 10.1029/2004JB003504.

    View in Article Google Scholar

    [13] Aulbach, S., Massuyeau, M., and Gaillard, F. (2017). Origins of cratonic mantle discontinuities: A view from petrology, geochemistry and thermodynamic models. Lithos 268: 364−382. DOI: 10.1016/j.lithos.2016.11.004.

    View in Article CrossRef Google Scholar

    [14] Saha, S., Dasgupta, R., and Tsuno, K. (2018). High pressure phase relations of a depleted peridotite fluxed by CO2‐H2O‐bearing siliceous melts and the origin of mid‐lithospheric discontinuity. Geochem. Geophys, Geosyst. 19: 595−620. DOI: 10.1002/2017GC007233.

    View in Article CrossRef Google Scholar

    [15] Zhou, W.Y., Hao, M., Zhang, D., et al. (2024). High P‐T sound velocities of amphiboles: Implications for low‐velocity anomalies in metasomatized upper mantle. Geophys. Res. Lett. 51: e2023GL106583. DOI: 10.1029/2023GL106583.

    View in Article CrossRef Google Scholar

    [16] Massuyeau, M., Gardés, E., Morizet, Y., et al. (2015). A model for the activity of silica along the carbonatite–kimberlite–mellilitite–basanite melt compositional joint. Chem. Geol. 418: 206−216. DOI: 10.1016/j.chemgeo.2015.07.025.

    View in Article CrossRef Google Scholar

    [17] Peng, Y., Manthilake, G., and Mookherjee, M. (2022). Electrical conductivity of metasomatized lithology in subcontinental lithosphere. Am. Mineral. J. Earth Planet. Mater. 107: 413−420. DOI: 10.2138/am-2021-7942.

    View in Article CrossRef Google Scholar

    [18] Hu, X., Lin, W., Yang, W., et al. (2020). A review on developments in the electrical structure of craton lithosphere. Sci. China Earth Sci. 63: 1661−1677. DOI: 10.1007/s11430-019-9653-2.

    View in Article CrossRef Google Scholar

    [19] Carlson, R.W., Pearson, D.G., and James, D.E. (2005). Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys. 43 : RG1001. DOI: 10.1029/2004RG000156.

    View in Article Google Scholar

    [20] Foley, S.F. and Fischer, T.P. (2017). An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat. Geosci. 10: 897−902. DOI: 10.1038/s41561-017-0002-7.

    View in Article CrossRef Google Scholar

    [21] Hou, M., Zhang, Q., Tao, R., et al. (2019). Temperature-induced amorphization in CaCO3 at high pressure and implications for recycled CaCO3 in subduction zones. Nat. Commun. 10: 1963. DOI: 10.1038/s41467-019-09742-5.

    View in Article CrossRef Google Scholar

    [22] Kono, Y., Park, C., Kenney-Benson, C., et al. (2014). Toward comprehensive studies of liquids at high pressures and high temperatures: Combined structure, elastic wave velocity, and viscosity measurements in the Paris–Edinburgh cell. Phys. Earth Planet. Inter. 228: 269−280. DOI: 10.1016/j.pepi.2013.09.006.

    View in Article CrossRef Google Scholar

    [23] Suito, K., Namba, J., Horikawa, T., et al. (2001). Phase relations of CaCO3 at high pressure and high temperature. Am. Mineral. 86: 997−1002. DOI: 10.2138/am-2001-8-906.

    View in Article CrossRef Google Scholar

    [24] Ahrens, T.J. and Katz, S. (1963). Ultrasonic observation of the calcite‐aragonite transition. J. Geophys. Res.-Sol. Ea. 68: 529−537. DOI: 10.1029/JZ068i002p00529.

    View in Article CrossRef Google Scholar

    [25] Liu, J. and Lin, J.F. (2014). Abnormal acoustic wave velocities in basaltic and (Fe, Al)‐bearing silicate glasses at high pressures. Geophys. Res. Lett. 41: 8832−8839. DOI: 10.1002/2014GL062053.

    View in Article CrossRef Google Scholar

    [26] Zha, C.-S., Hemley, R.J., Mao, H.-k., et al. (1994). Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering. Phys. Rev. B 50 :13105. DOI: 10.1103/PhysRevB.50.13105.

    View in Article Google Scholar

    [27] Sanchez-Valle, C. and Bass, J.D. (2010). Elasticity and pressure-induced structural changes in vitreous MgSiO3-enstatite to lower mantle pressures. Earth Planet. Sci. Lett. 295: 523−530. DOI: 10.1016/j.jpgl.2010.04.034.

    View in Article CrossRef Google Scholar

    [28] Hammouda, T. and Keshav, S. (2015). Melting in the mantle in the presence of carbon: Review of experiments and discussion on the origin of carbonatites. Chem. Geol. 418: 171−188. DOI: 10.1016/j.chemgeo.2015.05.018.

    View in Article CrossRef Google Scholar

    [29] Dasgupta, R., Mallik, A., Tsuno, K., et al. (2013). Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature 493: 211−215. DOI: 10.1038/nature11731.

    View in Article CrossRef Google Scholar

    [30] Woolley, A. and Bailey, D. (2012). The crucial role of lithospheric structure in the generation and release of carbonatites: geological evidence. Mineral. Mag. 76: 259−270. DOI: 10.1180/minmag.2012.076.2.02.

    View in Article CrossRef Google Scholar

    [31] Hammouda, T., Chantel, J., Manthilake, G., et al. (2014). Hot mantle geotherms stabilize calcic carbonatite magmas up to the surface. Geology 42: 911−914. DOI: 10.1130/G35778.1.

    View in Article CrossRef Google Scholar

    [32] Yaxley, G.M., Kjarsgaard, B.A., and Jaques, A.L. (2021). Evolution of carbonatite magmas in the upper mantle and crust. Elements 17: 315−320. DOI: 10.2138/gselements.17.5.315.

    View in Article CrossRef Google Scholar

    [33] Weidendorfer, D., Schmidt, M.W., and Mattsson, H.B. (2017). A common origin of carbonatite magmas. Geology 45: 507−510. DOI: 10.1130/G38801.1.

    View in Article CrossRef Google Scholar

    [34] Wang, X., Chen, T., Zou, Y., et al. (2015). Elastic wave velocities of peridotite KLB‐1 at mantle pressures and implications for mantle velocity modeling. Geophys. Res. Lett. 42: 3289−3297. DOI: 10.1002/2015GL063436.

    View in Article CrossRef Google Scholar

    [35] Weidner, D.J., Li, L., Whitaker, M.L., et al. (2018). Ultrasonic acoustic velocities during partial melting of a mantle peridotite KLB‐1. J. Geophys. Res.-Sol. Ea. 123: 1252−1261. DOI: 10.1002/2017JB014753.

    View in Article CrossRef Google Scholar

    [36] Xu, W., Lithgow-Bertelloni, C., Stixrude, L., et al. (2008). The effect of bulk composition and temperature on mantle seismic structure. Earth Planet. Sci. Lett. 275: 70−79. DOI: 10.1016/j.jpgl.2008.08.012.

    View in Article CrossRef Google Scholar

    [37] Kono, Y., Irifune, T., Ohfuji, H., et al. (2012). Sound velocities of MORB and absence of a basaltic layer in the mantle transition region. Geophys. Res. Lett. 39 . DOI: 10.1029/2012GL054009.

    View in Article Google Scholar

    [38] Gwanmesia, G.D., Wang, L., Heady, A., et al. (2014). Elasticity and sound velocities of polycrystalline grossular garnet (Ca3Al2Si3O12) at simultaneous high pressures and high temperatures. Phys. Earth Planet. Inter. 228: 80−87. DOI: 10.1016/j.pepi.2013.09.010.

    View in Article CrossRef Google Scholar

    [39] Li, B. and Neuville, D.R. (2010). Elasticity of diopside to 8 GPa and 1073 K and implications for the upper mantle. Phys. Earth Planet. Inter. 183: 398−403. DOI: 10.1016/j.pepi.2010.08.009.

    View in Article CrossRef Google Scholar

    [40] Hao, M., Zhang, J.S., Pierotti, C.E., et al. (2019). High‐Pressure single‐crystal elasticity and thermal equation of state of omphacite and their implications for the seismic properties of eclogite in the earth's interior. J. Geophys. Res.-Sol. Ea. 124: 2368−2377. DOI: 10.1029/2018JB016964.

    View in Article CrossRef Google Scholar

    [41] Yaxley, G.M., Brey, G.P., and Petrology (2004). Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites. Contrib. Mineral. 146 : 606-619. DOI: 10.1016/j.jpgl.2008.08.012.

    View in Article Google Scholar

    [42] Soltys, A., Giuliani, A., Phillips, D., et al. (2016). In-situ assimilation of mantle minerals by kimberlitic magmas—Direct evidence from a garnet wehrlite xenolith entrained in the Bultfontein kimberlite (Kimberley, South Africa). Lithos 256: 182−196. DOI: 10.1016/j.lithos.2016.04.011.

    View in Article CrossRef Google Scholar

    [43] Ringwood, A.E. (1991). Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim. Cosmochim. Acta 55: 2083−2110. DOI: 10.1016/0016-7037(91)90090-R.

    View in Article CrossRef Google Scholar

    [44] Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc.-Sec. A 65: 349. DOI: 10.1088/0370-1298/65/5/307.

    View in Article CrossRef Google Scholar

    [45] Watanabe, T., Shirasugi, Y., and Michibayashi, K. (2014). A new method for calculating seismic velocities in rocks containing strongly dimensionally anisotropic mineral grains and its application to antigorite-bearing serpentinite mylonites. Earth Planet. Sci. Lett. 391: 24−35. DOI: 10.1016/j.jpgl.2014.01.025.

    View in Article CrossRef Google Scholar

    [46] Pollack, H.N., Hurter, S.J., and Johnson, J.R. (1993). Heat flow from the Earth's interior: Analysis of the global data set. Rev. Geophys. 31: 267−280. DOI: 10.1029/93RG01249.

    View in Article CrossRef Google Scholar

    [47] Dasgupta, R., Hirschmann, M.M., and Withers, A.C. (2004). Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet. Sci. Lett. 227: 73−85. DOI: 10.1016/j.jpgl.2004.08.004.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Hou M., Hao M., Liu J., et al., (2024). Evidence for amorphous calcium carbonate originated mid-lithospheric discontinuities. The Innovation Geoscience 2(4): 100098. https://doi.org/10.59717/j.xinn-geo.2024.100098
    Hou M., Hao M., Liu J., et al., (2024). Evidence for amorphous calcium carbonate originated mid-lithospheric discontinuities. The Innovation Geoscience 2(4): 100098. https://doi.org/10.59717/j.xinn-geo.2024.100098

Figures(4)    

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(854) PDF downloads(181) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint