Uncovering the role of soil viruses in nitrogen cycling through metagenomic stable isotope probing.
Soil viruses can promote microbial nitrogen turnover through viral lysis and carrying auxiliary metabolic genes.
Lytic viruses with the potential to infect N-fixing MAGs may impact soil nitrogen turnover.
[1] | Lu, J., Fan, S., Ding, W., et al. (2023). Microbial resource mining from ancient biofilms. Innov. Geosci. 1: 100018. DOI: 10.59717/j.xinn–geo.2023.100018. |
[2] | Zehr, J.P. and Capone, D.G. (2020). Changing perspectives in marine nitrogen fixation. Science. 368: eaay9514. DOI: 10.1126/science.aay9514. |
[3] | Kuypers, M.M., Marchant, H.K., and Kartal, B. (2018). The microbial nitrogeN-cycling network. Nat. Rev. Microbiol. 16: 263−276. DOI: 10.1038/nrmicro.2018.9. |
[4] | Boyle, S.A., Yarwood, R.R., Bottomley, P.J., et al. (2008). Bacterial and fungal contributions to soil nitrogen cycling under douglas fir and red alder at two sites in oregon. Soil Biol. Biochem. 40: 443−451. DOI: 10.1016/j.soilbio.2007.09.007. |
[5] | Chevallereau, A., Pons, B.J., van Houte, S., et al. (2022). Interactions between bacterial and phage communities in natural environments. Nat. Rev. Microbiol. 20: 49−62. DOI: 10.1038/s41579–021–00602–y. |
[6] | Jansson, J.K. and Wu, R. (2023). Soil viral diversity, ecology and climate change. Nat. Rev. Microbiol. 21: 296−311. DOI: 10.1038/s41579–022–00811–z. |
[7] | Jover, L.F., Effler, T.C., Buchan, A., et al. (2014). The elemental composition of virus particles: Implications for marine biogeochemical cycles. Nat. Rev. Microbiol. 12: 519−528. DOI: 10.1038/nrmicro3289. |
[8] | Gazitúa, M.C., Vik, D.R., Roux, S., et al. (2021). Potential virus–mediated nitrogen cycling in oxygen–depleted oceanic waters. ISME J. 15: 981−998. DOI: 10.1038/s41396–020–00825–6. |
[9] | Zheng, X., Jahn, M.T., Sun, M., et al. (2022). Organochlorine contamination enriches virus–encoded metabolism and pesticide degradation associated auxiliary genes in soil microbiomes. ISME J. 16: 1397−1408. DOI: 10.1038/s41396–022–01188–w. |
[10] | Barnett, S.E. and Buckley, D.H. (2023). Metagenomic stable isotope probing reveals bacteriophage participation in soil carbon cycling. Environ. Microbiol. 25: 1785−1795. DOI: 10.1111/1462–2920.16395. |
[11] | Lee, S., Sieradzki, E.T., Nicol, G.W., et al. (2023). Propagation of viral genomes by replicating ammonia–oxidising archaea during soil nitrification. ISME J. 17: 309−314. DOI: 10.1038/s41396–022–01341–5. |
[12] | Liu, W., Ling, N., Guo, J., et al. (2020). Legacy effects of 8–year nitrogen inputs on bacterial assemblage in wheat rhizosphere. Biol. Fertil. Soils. 56: 583−596. DOI: 10.1007/s00374–020–01435–2. |
[13] | Liao, H., Liu, C., Ai, C., et al. (2023). Mesophilic and thermophilic viruses are associated with nutrient cycling during hyperthermophilic composting. The ISME Journal. 17: 916−930. DOI: 10.1038/s41396–023–01404–1. |
[14] | Kapili, B.J., Barnett, S.E., Buckley, D.H., et al. (2020). Evidence for phylogenetically and catabolically diverse active diazotrophs in deep–sea sediment. ISME J. 14: 971−983. DOI: 10.1038/s41396–019–0584–8. |
[15] | Lee, S., Hazard, C., and Nicol, G.W. (2024). Activity of novel virus families infecting soil nitrifiers is concomitant with host niche differentiation. ISME J. wrae205. DOI: 10.1093/ismejo/wrae205. |
[16] | Shaffer, M., Borton, M.A., McGivern, B.B., et al. (2020). Dram for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48: 8883−8900. DOI: 10.1093/nar/gkaa621. |
[17] | Feng, W., Qiao, J., Li, J., et al. (2023). Anammox granule destruction and reconstruction in a partial nitrification/anammox system under hydroxylamine stress. J. Environ. Manag. 345: 118688. DOI: 10.1016/j.jenvman.2023.118688. |
[18] | Kapili, B.J., Barnett, S.E., Buckley, D.H., et al. (2020). Evidence for phylogenetically and catabolically diverse active diazotrophs in deep–sea sediment. ISME J. 14: 971−983. DOI: 10.1038/s41396–019–0584–8. |
[19] | Liao, H., Li, X., Yang, Q., et al. (2021). Herbicide selection promotes antibiotic resistance in soil microbiomes. Mol Biol Evol. 38: 2337−2350. DOI: 10.1093/molbev/msab029. |
[20] | Bolyen, E.Rideout, J.R.Dillon, M.R., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using qiime 2. Nat Biotechnol. 37: 852−857. DOI: 10.1038/s41587–019–0209–9. |
[21] | Dong, X., Zhang, C., Peng, Y., et al. (2022). Phylogenetically and catabolically diverse diazotrophs reside in deep–sea cold seep sediments. Nat Commun. 13: 4885. DOI: 10.1038/s41467–022–32503–w. |
[22] | Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics 30: 2114−2120. DOI: 10.1093/bioinformatics/btu170. |
[23] | Li, D., Luo, R., Liu, C.–M., et al. (2016). Megahit v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 102 :3–11. DOI: 10.1016/j.ymeth.2016.02.020. |
[24] | Uritskiy, G.V., DiRuggiero, J., and Taylor, J. (2018). Metawrap–a flexible pipeline for genome–resolved metagenomic data analysis. Microbiome. 6: 158. DOI: 10.1186/s40168–018–0541–1. |
[25] | Kang, D.D., Li, F., Kirton, E., et al. (2019). Metabat 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 7: e7359. DOI: 10.7717/peerj.7359. |
[26] | Wu, Y.–W., Simmons, B.A., and Singer, S.W. (2016). Maxbin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 32 :605–607. DOI: 10.1093/bioinformatics/btv638. |
[27] | Alneberg, J., Bjarnason, B.S., de Bruijn, I., et al. (2014). Binning metagenomic contigs by coverage and composition. Nat. Methods. 11: 1144−1146. DOI: 10.1038/nmeth.3103. |
[28] | Parks, D.H., Imelfort, M., Skennerton, C.T., et al. (2015). Checkm: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25: 1043−1055. DOI: 10.1101/gr.186072.114. |
[29] | Olm, M.R., Brown, C.T., Brooks, B., et al. (2017). Drep: A tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de–replication. ISME J. 11: 2864−2868. DOI: 10.1038/ismej.2017.126. |
[30] | Chaumeil, P.–A., Mussig, A.J., Hugenholtz, P., et al. (2019). Gtdb–tk: A toolkit to classify genomes with the genome taxonomy database. Bioinformatics. 36: 1925−1927. DOI: 10.1093/bioinformatics/btz848 %J Bioinformatics. DOI: 10.1093/bioinformatics/btz848%JBioinformatics. |
[31] | Buchfink, B., Xie, C., and Huson, D.H. (2015). Fast and sensitive protein alignment using diamond. Nat. Methods. 12: 59−60. DOI: 10.1038/nmeth.3176. |
[32] | Tu, Q., Lin, L., Cheng, L., et al. (2018). Ncycdb: A curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics. 35: 1040−1048. DOI: 10.1093/bioinformatics/bty741. |
[33] | Emerson, J.B., Roux, S., Brum, J.R., et al. (2018). Host–linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 3: 870−880. DOI: 10.1038/s41564–018–0190–y. |
[34] | Guo, J., Bolduc, B., Zayed, A.A., et al. (2021). Virsorter2: A multi–classifier, expert–guided approach to detect diverse DNA and rna viruses. Microbiome. 9: 37. DOI: 10.1186/s40168–020–00990–y. |
[35] | Ren, J., Song, K., Deng, C., et al. (2020). Identifying viruses from metagenomic data using deep learning. Quantitative Biol. 8: 64−77. DOI: 10.1007/s40484–019–0187–4. |
[36] | Guo, J., Vik, D., Pratama, A.A., et al. (2021). Viral sequence identification sop with virsorter2 v.3. protocols.io. 3 . DOI: 10.17504/protocols.io.bwm5pc86. |
[37] | Nayfach, S., Camargo, A.P., Schulz, F., et al. (2021). Checkv assesses the quality and completeness of metagenome–assembled viral genomes. Nat Biotechnol. 39: 578−585. DOI: 10.1038/s41587–020–00774–7. |
[38] | Steinegger, M. and Söding, J. (2017). Mmseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35: 1026−1028. DOI. DOI: 10.1038/nbt.3988. |
[39] | Kieft, K., Zhou, Z., and Anantharaman, K. (2020). Vibrant: Automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome. 8: 90. DOI: 10.1186/s40168–020–00867–0. |
[40] | Shang, J., Tang, X., and Sun, Y. (2022). Phatyp: Predicting the lifestyle for bacteriophages using bert. Briefings in Bioinformatics. 24: bbac487. DOI: 10.1093/bib/bbac487. |
[41] | Muscatt, G., Hilton, S., Raguideau, S., et al. (2022). Crop management shapes the diversity and activity of DNA and rna viruses in the rhizosphere. Microbiome. 10: 1−16. DOI: 10.1101/2022.04.22.488307. |
[42] | Bland, C., Ramsey, T.L., Sabree, F., et al. (2007). Crispr recognition tool (crt): A tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinf. 8: 209. DOI: 10.1186/1471–2105–8–209. |
[43] | Segata, N., Izard, J., Waldron, L., et al. (2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12: R60. DOI: 10.1186/gb–2011–12–6–r60. |
Liu C., Liao H., Gao T., et al., (2024). Deciphering the hidden role of soil viruses in nitrogen cycling revealed by metagenomic stable isotope probing. The Innovation Geoscience 2(4): 100101. https://doi.org/10.59717/j.xinn-geo.2024.100101 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
Schematic diagram for the experimental design and the dynamics of isotope abundances and microbiome changes during the 15N2 mended soil microcosm experiment
Active viruses and MAGs involved in nitrogen cycling based on metagenomic–SIP
Associations between viruses and hosts (colored by phyla) based on CRISPR spacer matching
Evidence for viral involvement in the nitrogen cycling