REVIEW   Open Access     Cite

Air pollution abatement from Green-Blue-Grey infrastructure

    Show all affliationsShow less
More Information
  • Corresponding author: p.kumar@surrey.ac.uk 
    1. Review evaluated diverse green-blue-grey infrastructure (GBGI) to abate air pollution.

      Only 22 out of 51 GBGI types assessed provided relevant air pollution efficacy data.

      Street trees are the most studied GBGI: 61% in street canyons, 18% in open roads, and 21% elsewhere.

      GBGI mitigation is dominated by deposition at the city-scale and dispersion along roads.

      Meta-analysis highlighted inconsistent reporting of results to enable direct comparisons.

  • Green-blue-grey infrastructure (GBGI) offers environmental benefits in urban areas, yet its impact on air pollution is under-researched, and the literature fragmented. This review evaluates quantitative studies on GBGI's capability to mitigate air pollution, compares their specific pollutant removal processes, and identifies areas for further investigation. Of the 51 GBGI types reviewed, only 22 provided quantitative pollution reduction data. Street trees and mixed-GBGI are the most studied GBGIs, with efficacy influenced by wind, GBGI type vegetation characteristics, and urban morphology. Negative percentages denote worsening air quality, while positive reflect improvement. The 22 different GBGI grouped into eight main categories provide an average (± s.d.) reduction in air pollution of 16 ± 21%, with substantial reduction shown by linear features (23 ± 21%), parks (22 ± 34%), constructed GI (14 ± 25%), and other non-sealed urban areas (14 ± 20%). Other individual GBGI reducing air pollutants include woodlands (21 ± 38%), hedges (14 ± 25%), green walls (14 ± 27%), shrubland (12 ± 20%), green roofs (13 ± 23%), parks (9±36%), and mixed-GBGI (7 ± 23 %). On average, GBGI reduced PM1, PM2.5, PM10, UFP and BC by 13 ± 21%, 1 ± 25%, 7 ± 42%, 27 ± 27%, and 16 ± 41%, respectively. GBGI also lowered gaseous pollutants CO, O3 and NOx by 10 ± 21%, 7 ± 21%, and 12 ± 36%, on average, respectively. Linear (e.g., street trees and hedges) and constructed (e.g., green walls) features can impact local air quality, positively or negatively, based on the configuration and density of the built environment. Street trees generally showed adverse effects in street canyons and beneficial outcomes in open-road conditions. Climate change could worsen air pollution problems and impact GBGI effectiveness by shifting climate zones. In Europe and China, climate shifts are anticipated to affect 8 of the 22 GBGIs, with the rest expected to remain resilient. Despite GBGI's potential to enhance air quality, the meta-analysis highlights the need for a standardised reporting structure or to enable meaningful comparisons and effectively integrate findings into urban pollution and climate strategies.
  • 加载中
  • [1] World Bank. (2021). A Catalogue of Nature-based Solutions for Urban Resilience. Washington, D.C. World Bank Group. Available at:https://documents1.worldbank.org/curated/en/502101636360985715/pdf/A-Catalogue-of-Nature-based-Solutions-for-Urban-Resilience.pdf (accessed 25 January 2024). p. 121pp.

    View in Article Google Scholar

    [2] Lelieveld, J., Klingmüller, K., Pozzer, A., et al. (2019). Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Heart J. 40: 1590−1596. DOI: 10.1093/eurheartj/ehz135.

    View in Article CrossRef Google Scholar

    [3] World Health Organization (2021). WHO global air quality guidelines: particulate matter (‎PM2.5 and PM10)‎, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. Available at: https://iris.who.int/handle/10665/345329 (accessed 26 January 2024).

    View in Article Google Scholar

    [4] Mayor of London (2022). Addendum to the Mayor’s Transport Strategy (MTS): Proposal 24.1. Transport for London - Every Journey Matters. Health, p.12482. Available at: https://www.london.gov.uk/sites/default/files/2022-11/Mayors%20Transport%20Strategy%20Addendum%20Proposal%2024.1.pdf (accessed 26 January 2024).

    View in Article Google Scholar

    [5] Frantzeskaki, N., McPhearson, T., Collier, M. J.,et al. (2019). Nature-based solutions for urban climate change adaptation: linking science, policy, and practice communities for evidence-based decision-making. BioScience, 69: 455−466. DOI: 10.1093/biosci/biz042.

    View in Article CrossRef Google Scholar

    [6] Puppim de Oliveira, J.A., Bellezoni, R. A., Shih, W., et al. (2022). Innovations in Urban Green and Blue Infrastructure: Tackling local and global challenges in cities. J. Clean. Prod. 362: 132355. DOI: 10.1016/j.jclepro.2022.132355.

    View in Article CrossRef Google Scholar

    [7] Wang, J. and Foley, K. (2023). Promoting climate-resilient cities: Developing an attitudinal analytical framework for understanding the relationship between humans and blue-green infrastructure. Environ. Sci. Policy. 146: 133−143. DOI: 10.1016/j.envsci.2023.05.010.

    View in Article CrossRef Google Scholar

    [8] Cohen-Shacham, E., Walters, G., Janzen, S., et al. (2016). Nature-based Solutions to address global societal challenges: IUCN, Gland, Switzerland, 97pp. Available at: http://dx.doi.org/10.2305/IUCN.CH.2016.13.en (accessed 26 January2024).

    View in Article Google Scholar

    [9] Andersson, E., Langemeyer, J., Borgström, S., et al. (2019). Enabling green and blue infrastructure to improve contributions to human well-being and equity in urban systems. BioScience. 69: 566−574. DOI: 10.1093/biosci/biz058.

    View in Article CrossRef Google Scholar

    [10] Kumar, P., Druckman, A., Gallagher, J., et al. (2019). The nexus between air pollution, green infrastructure and human health. Environ. Int. 133: 105181. DOI: 10.1016/j.envint.2019.105181.

    View in Article CrossRef Google Scholar

    [11] Alves, A., Vojinovic, Z., Kapelan, Z., et al. (2020). Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation. Sci. Total Environ. 703: 134980. DOI: 10.1016/j.scitotenv.2019.134980.

    View in Article CrossRef Google Scholar

    [12] Veerkamp, C.J., Schipper, A. M., Hedlund, K., et al. (2021). A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosyst. Serv. 52: 101367. DOI: 10.1016/j.ecoser.2021.101367.

    View in Article CrossRef Google Scholar

    [13] Fletcher, D.H., Garrett, J.K., Thomas, A., et al. (2022). Location, Location, Location: Modelling of noise mitigation by urban woodland shows the benefit of targeted tree planting in cities. Sustainability, 14: 7079. DOI: 10.3390/su14127079.

    View in Article CrossRef Google Scholar

    [14] Hunter, R.F., Nieuwenhuijsen, M., Fabian, C., et al. (2023). Advancing urban green and blue space contributions to public health. Lancet Public Health. 8: e735−e742. DOI: 10.1016/S2468-2667(23)00156-1.

    View in Article CrossRef Google Scholar

    [15] Molné, F., Donati, G. F., Bolliger, J., et al. (2023). Supporting the planning of urban blue-green infrastructure for biodiversity: A multi-scale prioritisation framework. J. Environ. Manage. 342: 118069. DOI: 10.1016/j.jenvman.2023.118069.

    View in Article CrossRef Google Scholar

    [16] Kumar, P., S. Debele, S. Khalili, et al. (2024). Urban heat mitigation by green and blue infrastructure: a review of drivers, effectiveness, and future needs. The Innovation. 5: 100588. DOI: 10.1016/j.xinn.2024.100588.

    View in Article CrossRef Google Scholar

    [17] European Commission (2013). Communication from the commission to the European parliament, the European economic and social committee and the committee of the regions. Green Infrastructure (GI) — Enhancing Europe’s Natural Capital. Brussels. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52013DC0249 (accessed 24 January 2024).

    View in Article Google Scholar

    [18] Deshmukh, P., Isakov, V., Venkatram, A., et al. (2019). The effects of roadside vegetation characteristics on local, near-road air quality. Air Qual. Atmos. Health. 12: 259−270. DOI: 10.1007/s11869-018-0651-8.

    View in Article CrossRef Google Scholar

    [19] Barwise, Y. and P. Kumar. (2020). Designing vegetation barriers for urban air pollution abatement: a practical review for appropriate plant species selection. Climate and Atmospheric Science, 3: 12. DOI: 10.1038/s41612-020-0115-3.

    View in Article CrossRef Google Scholar

    [20] Jones, L., Anderson, S., Læssøe, J., et al. (2022). A typology for urban Green Infrastructure to guide multifunctional planning of nature-based solutions. Nat. Based Solut. 2: 100041. DOI: 10.1016/j.nbsj.2022.100041.

    View in Article CrossRef Google Scholar

    [21] Bellezoni, R.A., Meng, F., He, P., et al. (2021). Understanding and conceptualizing how urban green and blue infrastructure affects the food, water, and energy nexus: A synthesis of the literature. J. Clean. Prod. 289: 125825. DOI: 10.1016/j.jclepro.2021.125825.

    View in Article CrossRef Google Scholar

    [22] Tiwari, A., Kumar, P., Baldauf, R., et al. (2019). Considerations for evaluating green infrastructure impacts in microscale and macroscale air pollution dispersion models. Sci. Total Environ. 672: 410−426. DOI: 10.1016/j.scitotenv.2019.03.350.

    View in Article CrossRef Google Scholar

    [23] Tomson, M., Kumar, P., Barwise, Y., et al. (2021). Green infrastructure for air quality improvement in street canyons. Environ. Int. 146: 106288. DOI: 10.1016/j.envint.2020.106288.

    View in Article CrossRef Google Scholar

    [24] Biswal, B.K., Bolan, N., Zhu, Y-G., et al. (2022). Nature-based Systems (NbS) for mitigation of stormwater and air pollution in urban areas: A review. Resour. Conserv. Recycl. 186: 106578. DOI: 10.1016/j.resconrec.2022.106578.

    View in Article CrossRef Google Scholar

    [25] Baldauf, R. (2017). Roadside vegetation design characteristics that can improve local, near-road air quality. Transp. Res. Part D Transp. Environ. 52: 354−361. DOI: 10.1016/j.trd.2017.03.013.

    View in Article CrossRef Google Scholar

    [26] Hewitt, C.N.A. and K. Mackenzie, A.R. (2019). Using green infrastructure to improve urban air quality (GI4AQ). Ambio, 49: 62−73. DOI: 10.1007/s13280-019-01164-3.

    View in Article CrossRef Google Scholar

    [27] Kumar, P., K.V. Abhijith, and Y. Barwise. (2019). Implementing green infrastructure for air pollution abatement: General recommendations for management and plant species selection. Available at: https://doi.org/10.6084/m9.figshare.8198261.v1 (accessed 17 January 2020).

    View in Article Google Scholar

    [28] Barwise, Y., P. Kumar, A. Tiwari, et al. (2021). The co-development of HedgeDATE, a public engagement and decision support tool for air pollution exposure mitigation by green infrastructure. Sustain. Cities Soc. 75: 103299. DOI: 10.1016/j.scs.2021.103299.

    View in Article CrossRef Google Scholar

    [29] Ysebaert, T., Koch, K., Samson, R., et al. (2021). Green walls for mitigating urban particulate matter pollution—A review. Urban For. Urban Gree. 59: 127014. DOI: 10.1016/j.ufug.2021.127014.

    View in Article CrossRef Google Scholar

    [30] Diener, A. and P. Mudu. (2021). How can vegetation protect us from air pollution. A critical review on green spaces' mitigation abilities for air-borne particles from a public health perspective - with implications for urban planning. Sci. Total Environ. 796: 148605. DOI: 10.1016/j.scitotenv.2021.148605.

    View in Article CrossRef Google Scholar

    [31] Ernst, M., Le Mentec, S., Louvrier, M., et al. (2022). Impact of urban greening on microclimate and air quality in the urban canopy layer: Identification of knowledge gaps and challenges. Front. Environ. Sci. 10: 1−12. DOI: 10.3389/fenvs.2022.924742.

    View in Article CrossRef Google Scholar

    [32] Han, D., Shen, H, Duan, W., et al. (2020). A review on particulate matter removal capacity by urban forests at different scales. Urban For. Urban Gree., 48: 126565. DOI: 10.1016/j.ufug.2019.126565.

    View in Article CrossRef Google Scholar

    [33] Hellebaut, A., S. Boisson, and G. Mahy. (2022). Do plant traits help to design green walls for urban air pollution control. A short review of scientific evidences and knowledge gaps. Environ. Sci. Pollut. Res. 29: 81210−81221. DOI: 10.1007/s11356-022-23439-1.

    View in Article CrossRef Google Scholar

    [34] Vigevani, I., D. Corsini, S. Comin, A. Fini, et al. (2024). Methods to quantify particle air pollution removal by urban vegetation: A review. Atmos. Environ. 21: 100233. DOI: 10.1016/j.aeaoa.2023.100233.

    View in Article CrossRef Google Scholar

    [35] Lindén, J., Gustafsson, M., Uddling, J., et al. (2023). Air pollution removal through deposition on urban vegetation: The importance of vegetation characteristics. Urban For. Urban Green. 81: 127843. DOI: 10.1016/j.ufug.2023.127843.

    View in Article CrossRef Google Scholar

    [36] Anand, P., Mina, U., Khare, M., Kumar, P. and Kota, S.H., (2022). Air pollution and plant health response-current status and future directions. Atmos. Pollut. Res. 13 : 101508. DOI: 10.1016/j.apr.2022.101508.

    View in Article Google Scholar

    [37] Corada, K., Woodward, H., Alaraj, H., et al. (2021). A systematic review of the leaf traits considered to contribute to removal of airborne particulate matter pollution in urban areas. Environ. Pollut. 269: 116104. DOI: 10.1016/j.envpol.2020.116104.

    View in Article CrossRef Google Scholar

    [38] Xing, Y. and P. Brimblecombe. (2020). Trees and parks as “the lungs of cities”. Urban Forest. Urban Green. 48: 126552. DOI: 10.1016/j.ufug.2019.126552.

    View in Article CrossRef Google Scholar

    [39] Xu, X., Xia, J., Gao, Y., et al. (2020). Additional focus on particulate matter wash-off events from leaves is required: A review of studies of urban plants used to reduce airborne particulate matter pollution. Urban For. Urban Green. 48: 126559. DOI: 10.1016/j.ufug.2019.126559.

    View in Article CrossRef Google Scholar

    [40] Blanusa, T., Garratt, M., Cathcart-James, M., et al. (2019). Urban hedges: A review of plant species and cultivars for ecosystem service delivery in north-west Europe. Urban For. Urban Green. 44: 126391. DOI: 10.1016/j.ufug.2019.126391.

    View in Article CrossRef Google Scholar

    [41] Sicard, P., Agathokleous, E., Araminiene, V., et al. (2018). Should we see urban trees as effective solutions to reduce increasing ozone levels in cities. Environ. Pollut. 243: 163−176. DOI: 10.1016/j.envpol.2018.08.049.

    View in Article CrossRef Google Scholar

    [42] Abhijith, K.V., P. Kumar, J. Gallagher, A. McNabola, R. Baldauf, et al. (2017). Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – A review. Atmos. Environ. 162: 71−86. DOI: 10.1016/j.atmosenv.2017.05.014.

    View in Article CrossRef Google Scholar

    [43] Gallagher, J., Baldauf, R., Fuller, C.H., et al. (2015). Passive methods for improving air quality in the built environment: A review of porous and solid barriers. Atmos. Environ. 120: 61−70. DOI: 10.1016/j.atmosenv.2015.08.075.

    View in Article CrossRef Google Scholar

    [44] Janhäll, S. (2015). Review on urban vegetation and particle air pollution – Deposition and dispersion. Atmos. Environ. 105: 130−137. DOI: 10.1016/j.atmosenv.2015.01.052.

    View in Article CrossRef Google Scholar

    [45] Moher, D., Liberati, A., Tetzlaff, J., et al. (2009). Preferred Reporting Items for Systematic Reviews and MetaAnalyses: The PRISMA Statement. PLoS Med. 6: e1000097. DOI: 10.1136/bmj.b2535.

    View in Article CrossRef Google Scholar

    [46] Stoll, C.R.T., Izadi, S., Fowler, S., et al. (2019). The value of a second reviewer for study selection in systematic reviews. Res. Synth. Methods. 10: 539−545. DOI: 10.1002/jrsm.1369.

    View in Article CrossRef Google Scholar

    [47] Beck, H.E., Zimmermann, N.E., McVicar, T.R., et al. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data. 5: 1−12. DOI: 10.1038/sdata.2018.214.

    View in Article CrossRef Google Scholar

    [48] van Eck, N.J. and Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 84: 523−538. DOI: 10.1007/s11192-009-0146-3.

    View in Article CrossRef Google Scholar

    [49] Perianes-Rodriguez, A., Waltman, L., and van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. J. Informetrics. 10: 1178−1195. DOI: 10.1016/j.joi.2016.10.006.

    View in Article CrossRef Google Scholar

    [50] van Eck, N. and L. Waltman. (2007). VOS: A New Method for Visualizing Similarities Between Objects. In R. Advances in Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization, L. Decker, H.J. (Ed.). 2007, Berlin: Heidelberg: Springer.

    View in Article Google Scholar

    [51] Higgins, J.P.T., J. Thomas, J. Chandler, M. Cumpston, et al. (2023). Cochrane Handbook for Systematic Reviews of Interventions version 6.4 (updated August 2023). Available at: www.training.cochrane.org/handbook (accessed 24 January 2024).

    View in Article Google Scholar

    [52] Luben, T.J., Wilkie, A. A., Krajewski, A. K., et al. (2023). Short-term exposure to air pollution and infant mortality: A systematic review and meta-analysis. Sci. Total Environ. 898: 165522. DOI: 10.1016/j.scitotenv.2023.165522.

    View in Article CrossRef Google Scholar

    [53] Higgins, J.P.T. and S.G. Thompson. (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539−1558. DOI: 10.1002/sim.1186.

    View in Article CrossRef Google Scholar

    [54] Huedo-Medina, T., Sanchez-Meca, J., Marin-Martinez, F., et al. (2006). Assessing heterogeneity in meta-analysis: Q statistic or I2 index. Psychol. Methods, 11: 193−206. DOI: 10.1037/1082-989X.11.2.193.

    View in Article CrossRef Google Scholar

    [55] Higgins, J.P.T., D.G. Altman, and J.A.C. Sterne. (2008). Chapter 8: Assessing risk of bias in included studies, in Cochrane Handbook for Systematic Reviews of Interventions version 5.2.0, R.C. In J. P. T. Higgins, J. Chandler, M. S. Cumpston (Eds.), Editor, John Wiley & Sons. p. 187–241.

    View in Article Google Scholar

    [56] Borenstein, M., L. Hedges, J. Higgins, et al. (2009). Introduction to Meta-Analysis. John and Wiley Sons, Ltd., West Sussex, UK. DOI:10.1002/9780470743386.

    View in Article Google Scholar

    [57] Schriger, D., Altman, D., Vetter, J.A., et al. (2010). Forest plots in reports of systematic reviews: a cross-sectional study reviewing current practice. Int. J. Epidemiol. 39: 421−429. DOI: 10.1093/ije/dyp370.

    View in Article CrossRef Google Scholar

    [58] Terrin, N., Schmid, C.H., Lau, J., et al. (2003). Adjusting for publication bias in the presence of heterogeneity. Stat. Med. 22: 2113−26. DOI: 10.1002/sim.1461.

    View in Article CrossRef Google Scholar

    [59] Peters, J.L., Sutton, A.J., Jones, D.R., et al. (2007). Performance of the trim and fill method in the presence of publication bias and between-study heterogeneity. Stat. Med. 26: 4544−62. DOI: 10.1002/sim.2889.

    View in Article CrossRef Google Scholar

    [60] Tiwari, A. and P. Kumar. (2020). Integrated dispersion-deposition modelling for air pollutant reduction via green infrastructure at an urban scale. Sci. Total Environ. 723: 138078. DOI: 10.1016/j.scitotenv.2020.138078.

    View in Article CrossRef Google Scholar

    [61] Abhijith, K.V. and P. Kumar. (2019). Field investigations for evaluating green infrastructure effects on air quality in open-road conditions. Atmos. Environ. 201: 132−147. DOI: 10.1016/j.atmosenv.2018.12.036.

    View in Article CrossRef Google Scholar

    [62] Lin, M., G.G. Katul, and A. Khlystov. (2012). A branch scale analytical model for predicting the vegetation collection efficiency of ultrafine particles. Atmos. Environ. 51: 293−302. DOI: 10.1016/j.atmosenv.2012.01.004.

    View in Article CrossRef Google Scholar

    [63] Buccolieri, R.H., J. (2019). Recent advances in urban ventilation assessment and flow modelling. Atmosphere, 10: 1−7. DOI: 10.3390/atmos10030144.

    View in Article CrossRef Google Scholar

    [64] Santiago, J.L., A. Martilli, and F. Martin. (2017). On dry deposition modelling of atmospheric pollutants on vegetation at the microscale: Application to the impact of street vegetation on air quality. Bound. -Layer Meteorol. 162: 451−474. DOI: 10.1007/s10546-016-0210-5.

    View in Article CrossRef Google Scholar

    [65] Przybysz, A., R. Popek, M. Stankiewicz-Kosyl, C.Y. Zhu, et al. (2021). Where trees cannot grow – Particulate matter accumulation by urban meadows. Sci. Total Environ. 785: 147310. DOI: 10.1016/j.scitotenv.2021.147310.

    View in Article CrossRef Google Scholar

    [66] Popek, R., Fornal-Pieniak, B., Chyliński, F., et al. (2022). Not only trees matter—traffic-related PM accumulation by vegetation of urban forests. Sustainability. 14: 2973. DOI: 10.3390/su14052973.

    View in Article CrossRef Google Scholar

    [67] Tan, X.-Y., Liu, L., and Wu, D.-Y. (2022). Relationship between leaf dust retention capacity and leaf microstructure of six common tree species for campus greening. Int. J. Phytoremediation, 24: 1213−1221. DOI: 10.1080/15226514.2021.2024135.

    View in Article CrossRef Google Scholar

    [68] Abhijith, K.V. and P. Kumar. (2020). Quantifying particulate matter reduction and their deposition on the leaves of green infrastructure. Environ. Pollut. 265: 114884. DOI: 10.1016/j.envpol.2020.114884.

    View in Article CrossRef Google Scholar

    [69] Maher, B.A., Gonet, T., Karloukovski, V.V., et al. (2022). Protecting playgrounds: local-scale reduction of airborne particulate matter concentrations through particulate deposition on roadside `tredges’ (green infrastructure). Sci. Rep. 12: 14236. DOI: 10.1038/s41598-022-18509-w.

    View in Article CrossRef Google Scholar

    [70] Sgrigna, G., Baldacchini, C., Esposito, R., et al. (2016). Characterization of leaf-level particulate matter for an industrial city using electron microscopy and X-ray microanalysis. Sci. Total Environ. 548: 91−99. DOI: 10.1016/j.scitotenv.2016.01.057.

    View in Article CrossRef Google Scholar

    [71] Baró, F., Calderón-Argelich, A., Langemeyer, J., et al. (2019). Under one canopy. Assessing the distributional environmental justice implications of street tree benefits in Barcelona. Environ. Sci. Policy. 102: 54−64. DOI: 10.1016/j.envsci.2019.08.016.

    View in Article CrossRef Google Scholar

    [72] Wu, J., Wang, Y., Qiu, S., et al. (2019). Using the modified i-Tree Eco model to quantify air pollution removal by urban vegetation. Sci. Total Environ. 688: 673−683. DOI: 10.1016/j.scitotenv.2019.05.437.

    View in Article CrossRef Google Scholar

    [73] Zhai, H., Yao, J., Wang, G., et al. (2022). Study of the effect of vegetation on reducing atmospheric pollution particles. Remote Sens. 14: 1255. DOI: 10.3390/rs14051255.

    View in Article CrossRef Google Scholar

    [74] Hashad, K., Yang, B., Gallagher, J., et al. (2023). Impact of roadside conifers vegetation growth on air pollution mitigation. Landsc. Urban Plan. 229: 104594. DOI: 10.1016/j.landurbplan.2022.104594.

    View in Article CrossRef Google Scholar

    [75] Jeanjean, A.P.R., R. Buccolieri, J. Eddy, et al. (2017). Air quality affected by trees in real street canyons: The case of Marylebone neighbourhood in central London. Urban For. Urban Green. 22: 41−53. DOI: 10.1016/j.ufug.2017.01.009.

    View in Article CrossRef Google Scholar

    [76] AQEG. Impacts of Vegetation on Urban Air Pollution. Air Quality Expert Group. 2018 Available at: “https://uk-air.defra.gov.uk/assets/documents/reports/cat09/1807251306_180509_Effects_of_vegetation_on_urban_air_pollution_v12_final.pdf” (accessed 22 December 2023).

    View in Article Google Scholar

    [77] Morakinyo, T.E. and Y.F. Lam. (2016). Study of traffic-related pollutant removal from street canyon with trees: dispersion and deposition perspective. Environ. Sci. Pollut. Res. 23: 21652−21668. DOI: 10.1007/s11356-016-7322-9.

    View in Article CrossRef Google Scholar

    [78] Srbinovska, M., Andova, V., Mateska, A. K., et al. (2021). The effect of small green walls on reduction of particulate matter concentration in open areas. J. Clean. Prod. 279: 123306. DOI: 10.1016/j.jclepro.2020.123306.

    View in Article CrossRef Google Scholar

    [79] Liu, J., L. Mo, L. Zhu, et al. (2016). Removal efficiency of particulate matters at different underlying surfaces in Beijing. Environ. Sci. Pollut. Res. 23: 408−417. DOI: 10.1007/s11356-015-5252-6.

    View in Article CrossRef Google Scholar

    [80] Blanusa, T., F. Fantozzi, F. Monaci, et al. (2015). Leaf trapping and retention of particles by holm oak and other common tree species in Mediterranean urban environments. Urban For. Urban Green. 14: 1095−1101. DOI: 10.1016/j.ufug.2015.10.004.

    View in Article CrossRef Google Scholar

    [81] Viecco, M., Vera, S., Jorquera, H., et al. (2018). Potential of particle matter dry deposition on green roofs and living walls vegetation for mitigating urban atmospheric pollution in semiarid climates. Sustainability, 10: 2431. DOI: 10.3390/su10072431.

    View in Article CrossRef Google Scholar

    [82] Weerakkody, U., Dover, J. W., Mitchell, P., et al. (2018). Quantification of the traffic-generated particulate matter capture by plant species in a living wall and evaluation of the important leaf characteristics. Sci. Total Environ. 635: 1012−1024. DOI: 10.1016/j.scitotenv.2018.04.106.

    View in Article CrossRef Google Scholar

    [83] Tong, Z., Baldauf, R. W., Isakov, V., et al. (2016). Roadside vegetation barrier designs to mitigate near-road air pollution impacts. Sci. Total Environ. 541: 920−927. DOI: 10.1016/j.scitotenv.2015.09.067.

    View in Article CrossRef Google Scholar

    [84] Nemitz, E., M. Vieno, E. Carnell, et al. (2020). Potential and limitation of air pollution mitigation by vegetation and uncertainties of deposition-based evaluations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378: 20190320. DOI: 10.1098/rsta.2019.0320.

    View in Article CrossRef Google Scholar

    [85] Donateo, A., Rinaldi M., Paglione, M., et al. (2021). An evaluation of the performance of a green panel in improving air quality, the case study in a street canyon in Modena, Italy. Atmos. Environ. 247: 118189. DOI: 10.1016/j.atmosenv.2021.118189.

    View in Article CrossRef Google Scholar

    [86] Barwise, Y., P. Kumar, K.V. Abhijith, et al. (2024). A trait-based investigation into evergreen woody plants for traffic-related air pollution mitigation over time. Sci. Total Environ. 914: 169713. DOI: 10.1016/j.scitotenv.2023.169713.

    View in Article CrossRef Google Scholar

    [87] Weerakkody, U., J.W. Dover, P. Mitchell, et al. (2017). Particulate matter pollution capture by leaves of seventeen living wall species with special reference to rail-traffic at a metropolitan station. Urban For. Urban Green. 27: 173−186. DOI: 10.1016/j.ufug.2017.07.005.

    View in Article CrossRef Google Scholar

    [88] Ottelé, M., van Bohemen, H.D., Fraaij, et al. (2010). Quantifying the deposition of particulate matter on climber vegetation on living walls. Ecol. Eng. 36: 154−162. DOI: 10.1016/j.ecoleng.2009.02.007.

    View in Article CrossRef Google Scholar

    [89] Paull, N.J., D. Krix, P.J. Irga, and F.R. Torpy. (2020). Airborne particulate matter accumulation on common green wall plants. Int. J. Phytoremediation. 22: 594−606. DOI: 10.1080/15226514.2019.1696744.

    View in Article CrossRef Google Scholar

    [90] Tomson, M., P. Kumar, K.V. Abhijith, and J.F. Watts. (2024). Exploring the interplay between particulate matter capture, wash-off, and leaf traits in green wall species. Sci. Total Environ. 921: 170950. DOI: 10.1016/j.scitotenv.2024.170950.

    View in Article CrossRef Google Scholar

    [91] He, C., Qiu, K., and Pott, R. (2020). Reduction of traffic-related particulate matter by roadside plants: effect of traffic pressure and sampling height. Int. J. Phytoremediation, 22: 184−200. DOI: 10.1080/15226514.2019.1652565.

    View in Article CrossRef Google Scholar

    [92] Han, Y., J. Lee, G. Haiping, K.H. Kim, et al. (2022). Plant-based remediation of air pollution: A review. J. Environ. Manage. 301: 113860. DOI: 10.1016/j.jenvman.2021.113860.

    View in Article CrossRef Google Scholar

    [93] Park, S.-J., Choi, W., Kim, J-J., et al. (2016). Effects of building-roof cooling on the flow and dispersion of reactive pollutants in an idealized urban street canyon. Build. Environ. 109: 175−189. DOI: 10.1016/j.buildenv.2016.09.011.

    View in Article CrossRef Google Scholar

    [94] Jones, L., M. Vieno, A. Fitch, et al. (2019). Urban natural capital accounts: Developing a novel approach to quantify air pollution removal by vegetation. J. Environ. Econ. Policy. 8: 413−428. DOI: 10.1080/21606544.2019.1597772.

    View in Article CrossRef Google Scholar

    [95] Moradpour, M. and Hosseini, V. (2020). An investigation into the effects of green space on air quality of an urban area using CFD modeling. Urban Clim. 34: 100686. DOI: 10.1016/j.uclim.2020.100686.

    View in Article CrossRef Google Scholar

    [96] Zhong, T., Zhang, N., and Lv, M. (2021). A numerical study of the urban green roof and cool roof strategies’ effects on boundary layer meteorology and ozone air quality in a megacity. Atmos. Environ. 264: 118702. DOI: 10.1016/j.atmosenv.2021.118702.

    View in Article CrossRef Google Scholar

    [97] Hosseinzadeh, A., Bottacin-Busolin, A., and Keshmiri, A. (2022). A parametric study on the effects of green roofs, green walls and trees on air quality, temperature and velocity. Buildings. 12: 2159. DOI: 10.3390/buildings12122159.

    View in Article CrossRef Google Scholar

    [98] Yang, Z., X. Zhang, Y. Qu, F. Gao, et al. (2023). Response of Common Garden Plant Leaf Traits to Air Pollution in Urban Parks of Suzhou City (China). Forests. 14: 2253. DOI: 10.3390/f14112253.

    View in Article CrossRef Google Scholar

    [99] Anderson, V. and W.A. Gough. (2020). Evaluating the potential of nature-based solutions to reduce ozone, nitrogen dioxide, and carbon dioxide through a multi-type green infrastructure study in Ontario, Canada. City Environ. Interact. 6: 100043. DOI: 10.1016/j.cacint.2020.100043.

    View in Article CrossRef Google Scholar

    [100] Irga, P.J., Fleck, R., Arsenteva, E., et al. (2022). Biosolar green roofs and ambient air pollution in city centres: Mixed results. Build. Environ. 226: 109712. DOI: 10.1016/j.buildenv.2022.109712.

    View in Article CrossRef Google Scholar

    [101] Fantozzi, F., Monaci, F., Blanusa, T., et al. (2015). Spatio-temporal variations of ozone and nitrogen dioxide concentrations under urban trees and in a nearby open area. Urban Clim. 12: 119−127. DOI: 10.1016/j.uclim.2015.02.001.

    View in Article CrossRef Google Scholar

    [102] Taleghani, M., Clark, A., Swan, W., et al. (2020). Air pollution in a microclimate; the impact of different green barriers on the dispersion. Sci. Total Environ. 711: 134649. DOI: 10.1016/j.scitotenv.2019.134649.

    View in Article CrossRef Google Scholar

    [103] Jin, M.Y., L.Y. Zhang, Z.R. Peng, et al. (2024). The impact of dynamic traffic and wind conditions on green infrastructure performance to improve local air quality. Sci Total Environ, 917: 170211. DOI: 10.1016/j.scitotenv.2024.170211.

    View in Article CrossRef Google Scholar

    [104] Guo, Y., Q. Xiao, C. Ling, et al. (2023). The right tree for the right street canyons: An approach of tree species selection for mitigating air pollution. Build. Environ. 245: 110886. DOI: 10.1016/j.buildenv.2023.110886.

    View in Article CrossRef Google Scholar

    [105] Chang, Y.H., T.-H. Chen, H.-Y. Chung, et al. (2024). The health risk reduction of PM2.5 via a green curtain system in Taiwan. Build. Environ. 255 : 111459. DOI: 10.1016/j.buildenv.2024.111459.

    View in Article Google Scholar

    [106] Arbid, Y., Richard, C., and Sleiman, M. (2021). Towards an experimental approach for measuring the removal of urban air pollutants by green roofs. Build. Environ. 205: 108286. DOI: 10.1016/j.buildenv.2021.108286.

    View in Article CrossRef Google Scholar

    [107] Wania, A., Bruse, M., Blond, N., et al. (2012). Analysing the influence of different street vegetation on traffic-induced particle dispersion using microscale simulations. J. Environ. Manage. 94: 91−101. DOI: 10.1016/j.jenvman.2011.06.036.

    View in Article CrossRef Google Scholar

    [108] Vos, P.E., Maiheu, B., Vankerkom, J., et al. (2013). Improving local air quality in cities: to tree or not to tree. Environ. Pollut. 183: 113−122. DOI: 10.1016/j.envpol.2012.10.021.

    View in Article CrossRef Google Scholar

    [109] Lin, M.Y., G. Hagler, R. Baldauf, V. Isakov, et al. (2016). The effects of vegetation barriers on near-road ultrafine particle number and carbon monoxide concentrations. Sci. Total Environ. 553: 372−379. DOI: 10.1016/j.scitotenv.2016.02.035.

    View in Article CrossRef Google Scholar

    [110] Wang, X., M. Teng, C. Huang, et al. (2020). Canopy density effects on particulate matter attenuation coefficients in street canyons during summer in the Wuhan metropolitan area. Atmos. Environ. 240: 117739. DOI: 10.1016/j.atmosenv.2020.117739.

    View in Article CrossRef Google Scholar

    [111] Gromke, C. and B. Ruck. (2012). Pollutant concentrations in street canyons of different aspect ratio with avenues of trees for various wind directions. Bound. -Layer Meteorol. 144: 41−64. DOI: 10.1007/s10546-012-9703-z.

    View in Article CrossRef Google Scholar

    [112] Hashad, K., Steffens, J.T., Baldauf, R.W., et al. (2024). Resolving the effect of roadside vegetation barriers as a near-road air pollution mitigation strategy. Environ. Sci. Adv. 3: 411−421. DOI: 10.1039/d3va00220a.

    View in Article CrossRef Google Scholar

    [113] Lin, X., M. Chamecki, and X. Yu. (2020). Aerodynamic and deposition effects of street trees on PM2.5 concentration: From street to neighborhood scale. Build. Environ. 185 : 107291. DOI: 10.1016/j.buildenv.2020.107291.

    View in Article Google Scholar

    [114] Zhang, L., Z. Zhang, C. Feng, et al. (2021). Impact of various vegetation configurations on traffic fine particle pollutants in a street canyon for different wind regimes. Sci. Total Environ. 789: 147960. DOI: 10.1016/j.scitotenv.2021.147960.

    View in Article CrossRef Google Scholar

    [115] Santiago, J.L., E. Rivas, B. Sanchez, R. Buccolieri, et al. (2022). Impact of different combinations of green infrastructure elements on traffic-related pollutant concentrations in urban areas. Forests. 13: 1195. DOI: 10.3390/f13081195.

    View in Article CrossRef Google Scholar

    [116] Wang, F., B. Sun, X. Zheng, et al. (2022). Impact of block spatial optimization and vegetation configuration on the reduction of PM2.5 concentrations: A roadmap towards green transformation and sustainable development. Sustainability. 14 : 11622. DOI: 10.3390/su141811622.

    View in Article Google Scholar

    [117] Motie, M.B., Yeganeh, M., and Bemanian, M. (2023). Assessment of greenery in urban canyons to enhance thermal comfort & air quality in an integrated seasonal model. Appl. Geogr. 151: 102861. DOI: 10.1016/j.apgeog.2022.102861.

    View in Article CrossRef Google Scholar

    [118] Salim, S.M., Cheah, S. C., and Chan, A. (2011). Numerical simulation of dispersion in urban street canyons with avenue-like tree plantings: Comparison between RANS and LES. Build. Environ. 46: 1735−1746. DOI: 10.1016/j.buildenv.2011.01.032.

    View in Article CrossRef Google Scholar

    [119] Vranckx, S., Vos, P., Maiheu, B., et al. (2015). Impact of trees on pollutant dispersion in street canyons: A numerical study of the annual average effects in Antwerp, Belgium. Sci. Total Environ. 532: 474−483. DOI: 10.1016/j.scitotenv.2015.06.032.

    View in Article CrossRef Google Scholar

    [120] Li, Z., H. Zhang, Juan Y-H., et al. (2023). Effects of urban tree planting on thermal comfort and air quality in the street canyon in a subtropical climate. Sustain. Cities Soc. 91: 104334. DOI: 10.1016/j.scs.2022.104334.

    View in Article CrossRef Google Scholar

    [121] Li, L. and K.W. Lange. (2023). Assessing the relationship between urban blue-green infrastructure and stress resilience in real settings: a systematic review. Sustainability, 15: 9240. DOI: 10.3390/su15129240.

    View in Article CrossRef Google Scholar

    [122] Amorim, J.H., V. Rodrigues, R. Tavares, J. Valente, et al. (2013). CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion. Sci. Total Environ. 461-462: 541−551. DOI: 10.1016/j.scitotenv.2013.05.031.

    View in Article CrossRef Google Scholar

    [123] Abhijith, K.V. and S. Gokhale. (2015). Passive control potentials of trees and on-street parked cars in reduction of air pollution exposure in urban street canyons. Environ. Pollut. 204: 99−108. DOI: 10.1016/j.envpol.2015.04.013.

    View in Article CrossRef Google Scholar

    [124] Buccolieri, R., A.P.R. Jeanjean, E. Gatto, et al. (2018). The impact of trees on street ventilation, NOx and PM2.5 concentrations across heights in Marylebone Rd street canyon, central London. Sustain. Cities Soc. 41 : 227–241. DOI: 10.1016/j.scs.2018.05.030.

    View in Article Google Scholar

    [125] Li, L., M. Zheng, J. Zhang, et al. (2023). Effects of green infrastructure on the dispersion of PM2.5 and human exposure on urban roads. Environmental Research, 223 : 115493. DOI: 10.1016/j.envres.2023.115493.

    View in Article Google Scholar

    [126] Brantley, H.L., G.S.W. Hagler, P.J. Deshmukh, et al. (2014). Field assessment of the effects of roadside vegetation on near-road black carbon and particulate matter. Sci. Total Environ. 468–469 : 120–129. DOI: 10.1016/j.scitotenv.2013.08.001.

    View in Article Google Scholar

    [127] Ottosen, T.B. and P. Kumar. (2020). The influence of the vegetation cycle on the mitigation of air pollution by a deciduous roadside hedge. Sustain. Cities Soc. 53: 101919. DOI: 10.1016/j.scs.2019.101919.

    View in Article CrossRef Google Scholar

    [128] Jia, Y.P., K.-F. Lu, T. Zheng, et al. (2021). Effects of roadside green infrastructure on particle exposure: A focus on cyclists and pedestrians on pathways between urban roads and vegetative barriers. Atmos. Pollut. Res. 12: 1−12. DOI: 10.1016/j.apr.2021.01.017.

    View in Article CrossRef Google Scholar

    [129] Wang, J., C. Xie, A. Liang, et al. (2021). Spatial-temporal variation of air PM2.5 and PM10 within different types of vegetation during winter in an urban riparian zone of Shanghai. Atmosphere. 12 : 1428. DOI: 10.3390/atmos12111428.

    View in Article Google Scholar

    [130] Qian, X., X. Zhang, A.U. Weerasuriya, et al. (2024). Designing green walls to mitigate fine particulate pollution in an idealized urban environment. Sustain. Cities Soc. 113: 105640. DOI: 10.1016/j.scs.2024.105640.

    View in Article CrossRef Google Scholar

    [131] Tiwary, A., H.P. Morvan, and J.J. Colls. (2006). Modelling the size-dependent collection efficiency of hedgerows for ambient aerosols. J. Aerosol Sci. 37: 990−1015. DOI: 10.1016/j.jaerosci.2005.07.004.

    View in Article CrossRef Google Scholar

    [132] Karttunen, S., M. Kurppa, M. Auvinen, et al. (2020). Large-eddy simulation of the optimal street-tree layout for pedestrian-level aerosol particle concentrations - A case study from a city-boulevard. Atmos. Environ. X. 6: 100073. DOI: 10.1016/j.aeaoa.2020.100073.

    View in Article CrossRef Google Scholar

    [133] Xing, Y. and P. Brimblecombe. (2019). Role of vegetation in deposition and dispersion of air pollution in urban parks. Atmos. Environ. 201: 73−83. DOI: 10.1016/j.atmosenv.2018.12.027.

    View in Article CrossRef Google Scholar

    [134] Michalicova, R., V. Pecina, J. Hegrova, et al. (2024). Seasonal variation of arsenic in PM10 and PMx in an urban park: The influence of vegetation-related biomethylation on the distribution of its organic species and air quality. Chemosphere. 362: 142721. DOI: 10.1016/j.chemosphere.2024.142721.

    View in Article CrossRef Google Scholar

    [135] Yonemura, S., A. Miyata, and M. Yokozawa. (2000). Concentrations of carbon monoxide and methane at two heights above a grass field and their deposition onto the field. Atmos. Environ. 34: 5007−5014. DOI: 10.1016/S1352-2310(00)00222-3.

    View in Article CrossRef Google Scholar

    [136] Yin, S., Shen, Z., Zhou, P., et al. (2011). Quantifying air pollution attenuation within urban parks: An experimental approach in Shanghai, China. Environ. Pollut. 159: 2155−2163. DOI: 10.1016/j.envpol.2011.03.009.

    View in Article CrossRef Google Scholar

    [137] Zhu, C. and Y. Zeng. (2018). Effects of urban lake wetlands on the spatial and temporal distribution of air PM10 and PM2.5 in the spring in Wuhan. Urban For. Urban Green. 31 : 142–156. DOI: 10.1016/j.ufug.2018.02.008.

    View in Article Google Scholar

    [138] Zhu, D. and X.F. Zhou. (2019). Effect of urban water bodies on distribution characteristics of particulate matters and NO2. Sustain. Cities Soc. 50: 101679. DOI: 10.1016/j.scs.2019.101679.

    View in Article CrossRef Google Scholar

    [139] Zhou, X.F., S. Zhang, and D. Zhu. (2021). Impact of urban water networks on microclimate and PM2.5 distribution in downtown areas: A case study of Wuhan. Build. Environ. 203 : 108073. DOI: 10.1016/j.buildenv.2021.108073.

    View in Article Google Scholar

    [140] Wang, Y., Wang, M., Wu, Y., et al. (2023). Exploring the effect of ecological land structure on PM2.5: A panel data study based on 277 prefecture-level cities in China. Environ. Int. 174 : 107889. DOI: 10.1016/j.envint.2023.107889.

    View in Article Google Scholar

    [141] Wentworth, G.R., J.G. Murphy, and D.M. Sills. (2015). Impact of lake breezes on ozone and nitrogen oxides in the Greater Toronto Area. Atmos. Environ. 2109: 52−60. DOI: 10.1016/j.atmosenv.2015.03.002.

    View in Article CrossRef Google Scholar

    [142] Cong, L., Zhang, H., Zhai, J., et al. (2020). The blocking effect of atmospheric particles by forest and wetland at different air quality grades in Beijing China. Environ. Technol. 41: 2266−2276. DOI: 10.1080/09593330.2018.1561759.

    View in Article CrossRef Google Scholar

    [143] Venkatram, A., D.K. Heist, S.G. Perry, et al. (2021). Dispersion at the edges of near road noise barriers. Atmos. Pollut. Res. 12: 367−374. DOI: 10.1016/j.apr.2020.11.017.

    View in Article CrossRef Google Scholar

    [144] Davis, Z.Y.W., D.M.L. Sills, and R. McLaren. (2020). Enhanced NO2 and aerosol extinction observed in the tropospheric column behind lake-breeze fronts using MAX-DOAS. Atmos. Environ. 5: 100066. DOI: 10.1016/j.aeaoa.2020.100066.

    View in Article CrossRef Google Scholar

    [145] Buccolieri, R., O.S. Carlo, E. Rivas, et al. (2021). Urban Obstacles Influence on Street Canyon Ventilation: A Brief Review. Environ. Sci. Proc. 8: 11. DOI: 10.3390/ecas2021-10350.

    View in Article CrossRef Google Scholar

    [146] McNabola, A., Broderick, B.M., and Gill, L.W. (2009). A numerical investigation of the impact of low boundary walls on pedestrian exposure to air pollutants in urban street canyons. Sci. Total Environ. 407: 760−9. DOI: 10.1016/j.scitotenv.2008.09.036.

    View in Article CrossRef Google Scholar

    [147] Li, B., Z. Qiu, and J. Zheng. (2021). Impacts of noise barriers on near-viaduct air quality in a city: A case study in Xi’an. Build. Environ. 196: 107751. DOI: 10.1016/j.buildenv.2021.107751.

    View in Article CrossRef Google Scholar

    [148] Lin, C., R. Ooka, H. Kikumoto, et al. (2023). Large-eddy simulations on pollutant reduction effects of road-center hedge and solid barriers in an idealized street canyon. Build. Environ. 241: 110464. DOI: 10.1016/j.buildenv.2023.110464.

    View in Article CrossRef Google Scholar

    [149] Voordeckers, D., T. Lauriks, D. Baetens, et al. (2024). Numerical study on the impact of traffic lane adjustments and low boundary walls on pedestrian exposure to NO2 in street canyons. Landsc. Urban Plann. 243: 104974. DOI: 10.1016/j.landurbplan.2023.104974.

    View in Article CrossRef Google Scholar

    [150] Baldauf, R., Thoma, E., Khlystov, A., et al. (2008). Impacts of noise barriers on near-road air quality. Atmos. Environ. 42: 7502−7507. DOI: 10.1016/j.atmosenv.2008.05.051.

    View in Article CrossRef Google Scholar

    [151] Baldauf, R.W., V. Isakov, P. Deshmukh, et al. (2016). Influence of solid noise barriers on near-road and on-road air quality. Atmos. Environ. 129: 265−276. DOI: 10.1016/j.atmosenv.2016.01.025.

    View in Article CrossRef Google Scholar

    [152] Venkatram, A., V. Isakov, P. Deshmukh, et al. (2016). Modeling the impact of solid noise barriers on near road air quality. Atmos. Environ. 141: 462−469. DOI: 10.1016/j.atmosenv.2016.07.005.

    View in Article CrossRef Google Scholar

    [153] Hagler, G.S., W. Tang, M.J. Freeman, et al. (2011). Model evaluation of roadside barrier impact on near-road air pollution. Atmos. Environ. 45: 2522−2530. DOI: 10.1016/j.atmosenv.2011.02.030.

    View in Article CrossRef Google Scholar

    [154] Linsebigler, A.L., G. Lu, and J.T. Yates Jr. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95: 735−758. DOI: 10.1021/cr00035a013.

    View in Article CrossRef Google Scholar

    [155] Pulvirenti, B., S. Baldazzi, F. Barbano, et al. (2020). Numerical simulation of air pollution mitigation by means of photocatalytic coatings in real-world street canyons. Build. Environ. 186: 107348. DOI: 10.1016/j.buildenv.2020.107348.

    View in Article CrossRef Google Scholar

    [156] Eisenman, T.S., G. Churkina, S.P. Jariwala, et al. (2019). Urban trees, air quality, and asthma: An interdisciplinary review. Landsc. Urban Plann. 187: 47−59. DOI: 10.1016/j.landurbplan.2019.02.010.

    View in Article CrossRef Google Scholar

    [157] Tomson, N., R.N. Michael, and I.E. Agranovski. (2021). Removal of particulate air pollutants by Australian vegetation potentially used for green barriers. Atmos. Pollut. Res. 12: 101070. DOI: 10.1016/j.apr.2021.101070.

    View in Article CrossRef Google Scholar

    [158] Nguyen, T., X. Yu, Z. Zhang, et al. (2015). Relationship between types of urban forest and PM2.5 capture at three growth stages of leaves. J. Environ. Sci. 27 : 33-41. DOI: 10.1016/j.jes.2014.04.019.

    View in Article Google Scholar

    [159] Li, X.B., Q.-C. Lu, S.-J. Lu, et al. (2016). The impacts of roadside vegetation barriers on the dispersion of gaseous traffic pollution in urban street canyons. Urban For. Urban Green. 17: 80−91. DOI: 10.1016/j.ufug.2016.03.006.

    View in Article CrossRef Google Scholar

    [160] Fusaro, L., F. Marando, A. Sebastiani, et al. (2017). Mapping and assessment of PM10 and O3 removal by woody vegetation at urban and regional level. Remote Sens. 9: 791. DOI: 10.3390/rs9080791.

    View in Article CrossRef Google Scholar

    [161] Rafael, S., B. Vicente, V. Rodrigues, et al. (2018). Impacts of green infrastructures on aerodynamic flow and air quality in Porto's urban area. Atmos. Environ. 190: 317−330. DOI: 10.1016/j.atmosenv.2018.07.044.

    View in Article CrossRef Google Scholar

    [162] Arghavani, S., H. Malakooti, and A.A. Bidokhti. (2019). Numerical evaluation of urban green space scenarios effects on gaseous air pollutants in Tehran Metropolis based on WRF-Chem model. Atm. Environ. 214: 116832. DOI: 10.1016/j.atmosenv.2019.116832.

    View in Article CrossRef Google Scholar

    [163] Badach, J., M. Dymnicka, and A. Baranowski. (2020). Urban vegetation in air quality management: A review and policy framework. Sustainability. 12: 1258. DOI: 10.3390/su12031258.

    View in Article CrossRef Google Scholar

    [164] Cai, L.Y., M.Z. Zhuang, and Y. Ren. (2020). A landscape scale study in Southeast China investigating the effects of varied green space types on atmospheric PM2.5 in mid-winter. Urban For. Urban Green. 49 : 126607. DOI: 10.1016/j.ufug.2020.126607.

    View in Article Google Scholar

    [165] Alsalama, T., M. Koç, and R.J. Isaifan. (2021). Mitigation of urban air pollution with green vegetation for sustainable cities: a review. Int. J. Global Warming. 25: 498. DOI: 10.1504/IJGW.2021.119014.

    View in Article CrossRef Google Scholar

    [166] de la Paz, D., J.M. de Andrés, A. Narros, et al. (2022). Assessment of air quality and meteorological changes induced by future vegetation in Madrid. Forests, 13: 690. DOI: 10.3390/f13050690.

    View in Article CrossRef Google Scholar

    [167] Chen, H.S., Y.C. Lin, and P.T. Chiueh. (2022). High-resolution spatial analysis for the air quality regulation service from urban vegetation: A case study of Taipei City. Sustain. Cities Soc. 83: 103976. DOI: 10.1016/j.scs.2022.103976.

    View in Article CrossRef Google Scholar

    [168] Niu, X., Y. Li, M. Li, et al. (2022). Understanding vegetation structures in green spaces to regulate atmospheric particulate matter and negative air ions. Atmos. Pollut. Res. 13: 101534. DOI: 10.1016/j.apr.2022.101534.

    View in Article CrossRef Google Scholar

    [169] Bonn, B., E. von Schneidemesser, D. Andrich, et al. (2016). BAERLIN2014 – the influence of land surface types on and the horizontal heterogeneity of air pollutant levels in Berlin. Atmos. Chem. Phys. 16: 7785−7811. DOI: 10.5194/acp-16-7785-2016.

    View in Article CrossRef Google Scholar

    [170] Fares, S., A. Conte, A. Alivernini, et al. (2020). Testing removal of carbon dioxide, ozone, and atmospheric particles by urban parks in Italy. Environ. Sci. Technol. 54: 14910−14922. DOI: 10.1021/acs.est.0c04740.

    View in Article CrossRef Google Scholar

    [171] Li, J.F., J.M. Zhan, Y.S. Li, et al. (2013). CO2 absorption/emission and aerodynamic effects of trees on the concentrations in a street canyon in Guangzhou, China. Environ. Pollut. 177: 4−12. DOI: 10.1016/j.envpol.2013.01.016.

    View in Article CrossRef Google Scholar

    [172] Salmond, J.A., M. Tadaki, S. Vardoulakis, et al. (2016). Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health. 15: 36. DOI: 10.1186/s12940-016-0103-6.

    View in Article CrossRef Google Scholar

    [173] Vardoulakis, S. and Kinney P. (2019). Grand Challenges in Sustainable Cities and Health. Frontiers in Sustainable Cities - Health and Cities, 1: 7. DOI: 10.3389/frsc.2019.00007.

    View in Article CrossRef Google Scholar

    [174] Gómez-Baggethun, E. and D.N. Barton. (2013). Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 86: 235−245. DOI: 10.1016/j.ecolecon.2012.08.019.

    View in Article CrossRef Google Scholar

    [175] Lechner, A.M., R.L. Gomes, L. Rodrigues, et al. (2020). Challenges and considerations of applying nature-based solutions in low-and middle-income countries in Southeast and East Asia. Blue-Green Sys. 2: 331−351. DOI: 10.2166/bgs.2020.014.

    View in Article CrossRef Google Scholar

    [176] de Oliveira, J.A.P., R.A. Bellezoni, et al. (2022). Innovations in Urban Green and Blue Infrastructure: Tackling local and global challenges in cities. J. Clean Prod., 362: 132355. DOI: 10.1016/j.jclepro.2022.132355.

    View in Article CrossRef Google Scholar

    [177] van der Jagt, A., L. Tozer, H. Toxopeus, and H. Runhaar. (2023). Policy mixes for mainstreaming urban nature-based solutions: an analysis of six European countries and the European Union. Environ. Sci. Policy. 139: 51−61. DOI: 10.1016/j.envsci.2022.10.011.

    View in Article CrossRef Google Scholar

    [178] EPA, U.S.E.P.A. Green infrastructure. 2024. Available at: https://www.epa.gov/green-infrastructure (accessed 29 April 2024).

    View in Article Google Scholar

    [179] Davies, C., W.Y. Chen, G. Sanesi, et al. (2021). The European Union roadmap for implementing nature-based solutions: A review Environ. Sci. Policy. 121: 49−67. DOI: 10.1016/j.envsci.2021.03.018.

    View in Article CrossRef Google Scholar

    [180] Debele, S.E., L.S. Leo, P. Kumar, et al. (2023). Nature-based solutions can help reduce the impact of natural hazards: A global analysis of NBS case studies. Sci. Total Environ. 902: 165824. DOI: 10.1016/j.scitotenv.2023.165824.

    View in Article CrossRef Google Scholar

    [181] MHURDPRC (2024). Ministry of housing and urban-rural development & Ministry of environmental protection of the People’s Republic of China (MOHURD and MOEP) Home page. http://www.mohurd.gov.cn/wjfb/201509/t20150911_224828.html.

    View in Article Google Scholar

    [182] Hagler, G.S.W., Lin, M-Y., Khlystov, A., et al. (2012). Field investigation of roadside vegetative and structural barrier impact on near-road ultrafine particle concentrations under a variety of wind conditions. Sci. Total Environ. 419: 7−15. DOI: 10.1016/j.scitotenv.2011.12.002.

    View in Article CrossRef Google Scholar

    [183] Al-Dabbous, A.N. and Kumar, P. (2014). The influence of roadside vegetation barriers on airborne nanoparticles and pedestrian exposure under varying wind conditions. Atmos. Environ. 90: 113−124. DOI: 10.1016/j.atmosenv.2014.03.040.

    View in Article CrossRef Google Scholar

    [184] Chen, X., T. Pei, Z. Zhou, et al. (2015). Efficiency differences of roadside greenbelts with three configurations in removing coarse particles (PM10): A street scale investigation in Wuhan, China. Urban For. Urban Green. 14: 354−360. DOI: 10.1016/j.ufug.2015.02.013.

    View in Article CrossRef Google Scholar

    [185] Kim, H. and Hong, S. (2021). Relationship between land-use type and daily concentration and variability of PM10 in metropolitan cities: Evidence from South Korea. Land. 11: 23. DOI: 10.3390/land11010023.

    View in Article CrossRef Google Scholar

    [186] Cohen, P., O. Potchter, and I. Schnell. (2014). The impact of an urban park on air pollution and noise levels in the Mediterranean city of Tel-Aviv, Israel. Environ. Pollut. 195: 73−83. DOI: 10.1016/j.envpol.2014.08.015.

    View in Article CrossRef Google Scholar

    [187] Islam, M.N., Rahman, K-S., Bahar, M.M., et al. (2012). Pollution attenuation by roadside greenbelt in and around urban areas. Urban For. Urban Green. 11: 460−464. DOI: 10.1016/j.ufug.2012.06.004.

    View in Article CrossRef Google Scholar

    [188] Qin, H., Hong, B., and Jiang, R. (2018). Are green walls better options than green roofs for mitigating PM10 pollution. CFD simulations in urban street canyons. Sustainability. 10: 2833. DOI: 10.3390/su10082833.

    View in Article CrossRef Google Scholar

    [189] Salim, S.M., R. Buccolieri, A. Chan, et al. (2011). Large eddy simulation of the aerodynamic effects of trees on pollutant concentrations in street canyons. Procedia Environ. Sci. 4: 17−24. DOI: 10.1016/j.proenv.2011.03.003.

    View in Article CrossRef Google Scholar

    [190] Ng, W.-Y. and Chau, C.-K. (2012). Evaluating the role of vegetation on the ventilation performance in isolated deep street canyon. Int. J. Environ. Pollut. 50: 98−110. DOI: 10.1504/IJEP.2012.051184.

    View in Article CrossRef Google Scholar

    [191] Wu, H.-W., P. Kumar, and S.-J. Cao. (2024). The role of roadside green infrastructure in improving air quality in and around elderly care centres in Nanjing, China. Atmos. Environ. 332: 120607. DOI: 10.1016/j.atmosenv.2024.120607.

    View in Article CrossRef Google Scholar

    [192] Miao, C., S. Yu, Y. Hu, et al. (2021). Seasonal effects of street trees on particulate matter concentration in an urban street canyon. Sustain. Cities Soc. 73: 103095. DOI: 10.1016/j.scs.2021.103095.

    View in Article CrossRef Google Scholar

    [193] Chen, B., S. Lu, Y. Zhao, et al. (2016). Pollution Remediation by Urban Forests: PM2.5 Reduction in Beijing, China. Pol. J. Environ. Stud. 25 : 1873–1881. DOI: 10.15244/pjoes/63208.

    View in Article Google Scholar

    [194] Klingberg, J., Broberg, M., Strandberg, B., et al. (2017). Influence of urban vegetation on air pollution and noise exposure - A case study in Gothenburg, Sweden. Sci. Total Environ. 599-600: 1728−1739. DOI: 10.1016/j.scitotenv.2017.05.051.

    View in Article CrossRef Google Scholar

    [195] Zhao, L., T. Li, A. Przybysz, et al. (2021). Effect of urban lake wetlands and neighboring urban greenery on air PM10 and PM2.5 mitigation. Build. Environ., 206 : 108291. DOI: 10.1016/j.buildenv.2021.108291.

    View in Article Google Scholar

    [196] Liang, J., Fang, H.L., Zhang, T.L., et al. (2017). Heavy metal in leaves of twelve plant species from seven different areas in Shanghai, China. Urban For. Urban Green. 27: 390−398. DOI: 10.1016/j.ufug.2017.03.006.

    View in Article CrossRef Google Scholar

    [197] Hrotkó, K., Gyeviki, M., Sütöriné, D. M., et al. (2021). Foliar dust and heavy metal deposit on leaves of urban trees in Budapest (Hungary). Environ. Geochem. Health. 43: 1927−1940. DOI: 10.1007/s10653-020-00769-y.

    View in Article CrossRef Google Scholar

    [198] Junior, D.P.M., Bueno, C., and da Silva, C.M. (2022). The effect of urban green spaces on reduction of particulate matter concentration. B. Environ. Contam. Tox. 108: 1104−1110. DOI: 10.1007/s00128-022-03460-3.

    View in Article CrossRef Google Scholar

    [199] Szkop, Z. (2016). An evaluation of the ecosystem services provided by urban trees: The role of Krasiński Gardens in air quality and human health in Warsaw (Poland). Environ. Socio-econ. Stud. 4: 41−50. DOI: 10.1515/environ-2016-0023.

    View in Article CrossRef Google Scholar

    [200] Tong, Z., T.H. Whitlow, A. Landers, et al. (2016). A case study of air quality above an urban roof top vegetable farm. Environ. Pollut. 208: 256−260. DOI: 10.1016/j.envpol.2015.07.006.

    View in Article CrossRef Google Scholar

    [201] Mohamed, A.A., Sevik, H., Cetin, M., et al. (2021). Periodical and regional change of particulate matter and CO2 concentration in Misurata. Environ. Monit. Assess. 193: 707. DOI: 10.1007/s10661-021-09478-0.

    View in Article CrossRef Google Scholar

    [202] Lonati, G., Ozgen, S., Ripamonti, G., et al. (2017). Variability of black carbon and ultrafine particle concentration on urban bike routes in a mid-sized city in the Po Valley (Northern Italy). Atmosphere. 8: 40. DOI: 10.3390/atmos8020040.

    View in Article CrossRef Google Scholar

    [203] Kamińska, J.A., Turek, T., van Poppel, M., et al. (2023). Whether cycling around the city is in fact healthy in the light of air quality – Results of black carbon. J. Environ. Manage. 337: 117694. DOI: 10.1016/j.jenvman.2023.117694.

    View in Article CrossRef Google Scholar

    [204] Chen, M., F. Dai, B. Yang, et al. (2019). Effects of neighborhood green space on PM2.5 mitigation: Evidence from five megacities in China. Build. Environ. 156 : 33–45. DOI: 10.1016/j.buildenv.2019.03.007.

    View in Article Google Scholar

    [205] Dai, A.Q., Liu, C., Ji, Y., et al. (2023). Effect of different plant communities on NO2 in an urban road greenbelt in Nanjing, China. Sci. Rep. 13: 3424. DOI: 10.1038/s41598-023-30488-0.

    View in Article CrossRef Google Scholar

    [206] Selmi, W., Weber, C., Rivière, E., et al. (2016). Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For. Urban Green. 17: 192−201. DOI: 10.1016/j.ufug.2016.04.010.

    View in Article CrossRef Google Scholar

    [207] Rui, L., Buccolieri, R., Gao, Z., et al. (2018). The impact of green space layouts on microclimate and air quality in residential districts of Nanjing, China. Forests. 9: 224. DOI: 10.3390/f9040224.

    View in Article CrossRef Google Scholar

    [208] Zafra, C., Angel, Y., and Torres, E. (2017). ARIMA analysis of the effect of land surface coverage on PM10 concentrations in a high-altitude megacity. Atmos. Pollut. Res. 8: 660−668. DOI: 10.1016/j.apr.2017.01.002.

    View in Article CrossRef Google Scholar

    [209] Baraldi, R., Chieco, C., Neri, L., et al. (2019). An integrated study on air mitigation potential of urban vegetation: From a multi-trait approach to modeling. Urban For. Urban Green. 41: 127−138. DOI: 10.1016/j.ufug.2019.03.020.

    View in Article CrossRef Google Scholar

    [210] Chen, X., X. Wang, X. Wu, et al. (2021). Influence of roadside vegetation barriers on air quality inside urban street canyons. Urban For. Urban Green. 63: 127219. DOI: 10.1016/j.ufug.2021.127219.

    View in Article CrossRef Google Scholar

    [211] Muresan, A.N., Sebastiani, A., Gaglio, M., et al. (2022). Assessment of air pollutants removal by green infrastructure and urban and peri-urban forests management for a greening plan in the Municipality of Ferrara (Po river plain, Italy). Ecol. Indic. 135: 108554. DOI: 10.1016/j.ecolind.2022.108554.

    View in Article CrossRef Google Scholar

    [212] Luo, H., Wang, N., Chen, J., et al. (2015). Study on the thermal effects and air quality improvement of green roof. Sustainability. 7: 2804−2817. DOI: 10.3390/su7032804.

    View in Article CrossRef Google Scholar

    [213] Jayasooriya, V.M., Ng, A.W.M., Muthukumaran, S., et al. (2017). Green infrastructure practices for improvement of urban air quality. Urban For. Urban Green. 21: 34−47. DOI: 10.1016/j.ufug.2016.11.007.

    View in Article CrossRef Google Scholar

    [214] Barmparesos, N., Saraga, D., Karavoltsos, S., et al. (2020). Chemical composition and source apportionment of pm10 in a green-roof primary school building. Appl. Sci. 10: 1−23. DOI: 10.3390/app10238464.

    View in Article CrossRef Google Scholar

    [215] Vera, S., Viecco, M., and Jorquera, H. (2021). Effects of biodiversity in green roofs and walls on the capture of fine particulate matter. Urban For. Urban Green. 63: 127229. DOI: 10.1016/j.ufug.2021.127229.

    View in Article CrossRef Google Scholar

    [216] Yang, J., Q. Yu, and P. Gong. (2008). Quantifying air pollution removal by green roofs in Chicago. Atmos. Environ. 42: 7266−7273. DOI: 10.1016/j.atmosenv.2008.07.003.

    View in Article CrossRef Google Scholar

    [217] Baik, J.J.K., K-H, Park, S-B., and Ryu, Y.H. (2012). Effects of building roof greening on air quality in street canyons. Atmos. Environ. 61: 48−55. DOI: 10.1016/j.atmosenv.2012.06.076.

    View in Article CrossRef Google Scholar

    [218] Moradpour, M., H. Afshin, and B. Farhanieh. (2017). A numerical investigation of reactive air pollutant dispersion in urban street canyons with tree planting. Atmos. Pollut. Res. 8: 253−266. DOI: 10.1016/j.apr.2016.09.002.

    View in Article CrossRef Google Scholar

    [219] Rafael, S., B. Augusto, A. Ascenso, et al. (2020). Re-Naturing Cities: Evaluating the effects on future air quality in the city of Porto. Atmos. Environ. 222: 117123. DOI: 10.1016/j.atmosenv.2019.117123.

    View in Article CrossRef Google Scholar

    [220] Viecco, M., H. Jorquera, A. Sharma, et al. (2021). Green roofs and green walls layouts for improved urban air quality by mitigating particulate matter. Build. Environ. 204: 108120. DOI: 10.1016/j.buildenv.2021.108120.

    View in Article CrossRef Google Scholar

    [221] Rafael, S., L.P. Correia, A. Ascenso, et al. (2021). Are green roofs the path to clean air and low carbon cities. Sci. Total Environ. 798: 149313. DOI: 10.1016/j.scitotenv.2021.149313.

    View in Article CrossRef Google Scholar

    [222] Saxena, S. and Yaghoobian, N. (2022). Diurnal Surface Heating and Roof Material Effects on Urban Pollution Dispersion: A Coupled Large-eddy Simulation and Surface Energy Balance Analysis. Bound-Lay. Meteorol. 184: 143−171. DOI: 10.1007/s10546-022-00699-5.

    View in Article CrossRef Google Scholar

    [223] Sternberg, T., Viles, H., Cathersides, A., et al. (2010). Dust particulate absorption by ivy (Hedera helix L) on historic walls in urban environments. Sci. Total Environ. 409: 162−168. DOI: 10.1016/j.scitotenv.2010.09.022.

    View in Article CrossRef Google Scholar

    [224] Ghazalli, A.J., Brack, C., Bai, X., et al. (2018). Alterations in use of space, air quality, temperature and humidity by the presence of vertical greenery system in a building corridor. Urban For. Urban Green. 32: 177−184. DOI: 10.1016/j.ufug.2018.04.015.

    View in Article CrossRef Google Scholar

    [225] Paull, N.J., D. Krix, F.R. Torpy, et al. (2020). Can Green Walls Reduce Outdoor Ambient Particulate Matter, Noise Pollution and Temperature. Int. J. Env. Res. Pub. Health. 17: 5084. DOI: 10.3390/ijerph17145084.

    View in Article CrossRef Google Scholar

    [226] Pettit, T., Torpy, F. R., Surawski, N. C., et al. (2021). Effective reduction of roadside air pollution with botanical biofiltration. J. Hazard. Mater. 414: 125566. DOI: 10.1016/j.jhazmat.2021.125566.

    View in Article CrossRef Google Scholar

    [227] Pugh, T.A.M., A.R. MacKenzie, J.D. Whyatt, et al. (2012). Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ. Sci. Tech. 46: 7692−7699. DOI: 10.1021/es300826w.

    View in Article CrossRef Google Scholar

    [228] Qin, H., B. Hong, R. Jiang, et al. (2019). The effect of vegetation enhancement on particulate pollution reduction: CFD simulations in an urban park. Forests. 10: 373. DOI: 10.3390/f10050373.

    View in Article CrossRef Google Scholar

    [229] Gromke, C., N. Jamarkattel, and B. Ruck. (2016). Influence of roadside hedgerows on air quality in urban street canyons. Atmos. Environ. 139: 75−86. DOI: 10.1016/j.atmosenv.2016.05.014.

    View in Article CrossRef Google Scholar

    [230] Kumar, P., J.C. Zavala-Reyes, M. Tomson, et al. (2022). Understanding the effects of roadside hedges on the horizontal and vertical distributions of air pollutants in street canyons. Environ. Int. 158: 106883. DOI: 10.1016/j.envint.2021.106883.

    View in Article CrossRef Google Scholar

    [231] Tran, P.T.M., M. Kalairasan, P.F.R. Beshay, et al. (2022). Nature-based solution for mitigation of pedestrians’ exposure to airborne particles of traffic origin in a tropical city. Sustain. Cities Soc. 87: 104264. DOI: 10.1016/j.scs.2022.104264.

    View in Article CrossRef Google Scholar

    [232] Gómez-Moreno, F.J., B. Artíñano, E.D. Ramiro, et al. (2019). Urban vegetation and particle air pollution: Experimental campaigns in a traffic hotspot. Environ. Pollut. 247: 195−205. DOI: 10.1016/j.envpol.2019.01.016.

    View in Article CrossRef Google Scholar

    [233] Su, T.H., Lin, C.S., Lu, S.Y., et al. (2022). Effect of air quality improvement by urban parks on mitigating PM2.5 and its associated heavy metals: A mobile-monitoring field study. J. Environ. Manage. 323 : 116283. DOI: 10.1016/j.jenvman.2022.116283.

    View in Article Google Scholar

    [234] Zhou, Y., H. Liu, J. Zhou, et al. (2019). Simulation of the impact of urban forest scale on PM2.5 and PM10 based on system dynamics. Sustainability. 11 : 5998. DOI: 10.3390/su11215998.

    View in Article Google Scholar

    [235] Benedict, K.B., Prenni, A. J., El-Sayed, M. M. H., et al. (2020). Volatile organic compounds and ozone at four national parks in the southwestern United States. Atmos. Environ. 239: 117783. DOI: 10.1016/j.atmosenv.2020.117783.

    View in Article CrossRef Google Scholar

    [236] Heshani, A.L.S. and Winijkul, E. (2022). Numerical simulations of the effects of green infrastructure on PM2.5 dispersion in an urban park in Bangkok, Thailand. Heliyon. 8 : e10475. DOI: 10.1016/j.heliyon.2022.e10475.

    View in Article Google Scholar

    [237] Keiser, D., Lade, G., and Rudik, I. (2018). Air pollution and visitation at U. S. national parks. Sci. Adv. 4: 1−6. DOI: 10.1126/sciadv.aat1613.

    View in Article CrossRef Google Scholar

    [238] Sou, H.D., Kim, P. R., Hwang, B., et al. (2021). Diurnal and seasonal variations of particulate matter concentrations in the urban forests of Saetgang Ecological Park in Seoul, Korea. Land. 10: 1213. DOI: 10.3390/land10111213.

    View in Article CrossRef Google Scholar

    [239] Douglas, A.N.J., Irga, P. J., and Torpy, F. R. (2023). Investigating Vegetation Types Based on the Spatial Variation in Air Pollutant Concentrations Associated with Different Forms of Urban Forestry. Environ. 10: 32. DOI: 10.3390/environments10020032.

    View in Article CrossRef Google Scholar

    [240] Harris, T.B. and Manning, W.J., (2010). Nitrogen dioxide and ozone levels in urban tree canopies. Environ. Pollut. 158 : 2384–2386. DOI: 10.1016/j.envpol.2010.04.007.

    View in Article Google Scholar

    [241] Buccolieri, R., S.M. Salim, L.S. Leo, et al. (2011). Analysis of local scale tree-atmosphere interaction on pollutant concentration in idealized street canyons and application to a real urban junction. Atmos. Environ. 45: 1702−1713. DOI: 10.1016/j.atmosenv.2010.12.058.

    View in Article CrossRef Google Scholar

    [242] Salmond, J.A., D.E. Williams, G. Laing, et al. (2013). The influence of vegetation on the horizontal and vertical distribution of pollutants in a street canyon. Sci. Total Environ. 443: 287−298. DOI: 10.1016/j.scitotenv.2012.10.101.

    View in Article CrossRef Google Scholar

    [243] Jin, S., J. Guo, S. Wheeler, et al. (2014). Evaluation of impacts of trees on PM2.5 dispersion in urban streets. Atmos. Environ. 99 : 277–287. DOI: 10.1016/j.atmosenv.2014.10.002.

    View in Article Google Scholar

    [244] He, C., J. Liu, Y. Zhou, et al. (2024). Synergistic PM2.5 and O3 control to address the emerging global PM2.5-O3 compound pollution challenges. Eco-Environ. Health. 3 : 325-337. DOI: 10.1016/j.eehl.2024.04.004.

    View in Article Google Scholar

    [245] Miao, C., P. Li, Y. Huang, et al. (2022). Coupling outdoor air quality with thermal comfort in the presence of street trees: a pilot investigation in Shenyang, Northeast China. J. Forestry Res. 34: 831−839. DOI: 10.1007/s11676-022-01497-y.

    View in Article CrossRef Google Scholar

    [246] Liu, X., X.-Q. Shi, H.-D. He, et al. (2022). Distribution characteristics of submicron particle influenced by vegetation in residential areas using instrumented unmanned aerial vehicle measurements. Sustain. Cities Soc. 78: 103616. DOI: 10.1016/j.scs.2021.103616.

    View in Article CrossRef Google Scholar

    [247] Gromke, C. and B. Blocken. (2015). Influence of avenue-trees on air quality at the urban neighborhood scale. Part II: Traffic pollutant concentrations at pedestrian level. Environ. Pollut. 196: 176−184. DOI: 10.1016/j.envpol.2014.10.015.

    View in Article CrossRef Google Scholar

    [248] Jung, S.J., and Yoon, S. (2022). Effects of creating street greenery in urban pedestrian roads on microclimates and particulate matter concentrations. Sustainability. 14: 7887. DOI: 10.3390/su14137887.

    View in Article CrossRef Google Scholar

    [249] Liu, J., B. Zheng, Y. Xiang, et al. (2022). The impact of street tree height on PM2.5 concentration in street canyons: A simulation study. Sustainability. 14 : 12378. DOI: 10.3390/su141912378.

    View in Article Google Scholar

    [250] Wang, A., Y. Guo, Y. Fang, et al. (2022). Research on the horizontal reduction effect of urban roadside green belt on atmospheric particulate matter in a semi-arid area. Urban For. Urban Green. 68: 127449. DOI: 10.1016/j.ufug.2021.127449.

    View in Article CrossRef Google Scholar

    [251] Grundström, M. and Pleijel, H. (2014). Limited effect of urban tree vegetation on NO2 and O3 concentrations near a traffic route. Environ. Pollut. 189: 73−76. DOI: 10.1016/j.envpol.2014.02.026.

    View in Article CrossRef Google Scholar

    [252] Hirabayashi, S., Kroll, C. N., and Nowak, D. J. (2012). Development of a distributed air pollutant dry deposition modeling framework. Environ. Pollut. 171: 9−17. DOI: 10.1016/j.envpol.2012.07.002.

    View in Article CrossRef Google Scholar

    [253] Tallis, M., Taylor, G., Sinnett, D., et al. (2011). Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landscape Urban Plan. 103: 129−138. DOI: 10.1016/j.landurbplan.2011.07.003.

    View in Article CrossRef Google Scholar

    [254] Manes, F., Marando, F., Capotorti, G., et al. (2016). Regulating Ecosystem Services of forests in ten Italian Metropolitan Cities: Air quality improvement by PM10 and O3 removal. Ecol. Indic. 67: 425−440. DOI: 10.1016/j.ecolind.2016.03.009.

    View in Article CrossRef Google Scholar

    [255] Phan, C.C., Nguyen, T. Q. H., Nguyen, M. K., et al. (2020). Aerosol mass and major composition characterization of ambient air in Ho Chi Minh City, Vietnam. Inter. J. Environ. Sci. Tech. 17: 3189−3198. DOI: 10.1007/s13762-020-02640-0.

    View in Article CrossRef Google Scholar

    [256] Maia, P.D., Vieira-Filho, M., Prado, L.F., et al. (2022). Assessment of atmospheric particulate matter (PM10) in Central Brazil: Chemical and morphological aspects. Atmos. Pollut. Res. 13: 101362. DOI: 10.1016/j.apr.2022.101362.

    View in Article CrossRef Google Scholar

    [257] Simpson, D., Benedictow, A., Berge, H., et al. (2012). The EMEP MSC-W chemical transport model–technical description. Atmos. Chem. Phys. 12: 7825−7865. DOI: 10.5194/acp-12-7825-2012.

    View in Article CrossRef Google Scholar

    [258] Nowak, D.J., Crane, D. E., Stevens, J. C., et al. (2008). A ground-based method of assessing urban forest structure and ecosystem services. Arbor. Urban For. 34: 347−358. DOI: 10.48044/jauf.2008.048.

    View in Article CrossRef Google Scholar

    [259] Beckett, K.P., Freer-Smith, P. H., and Taylor, G. (2000). Particulate pollution captured by urban trees: effect of species and wind speed. Glob. Change Biol. 6: 995−1003. DOI: 10.1046/j.1365-2486.2000.00376.x.

    View in Article CrossRef Google Scholar

    [260] Freer-Smith, P.H., Beckett, K. P., and Taylor, G. (2005). Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides X trichocarpa 'Beaupre', Pinus nigra and X Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environ. Pollut. 133: 157−167. DOI: 10.1016/j.envpol.2004.03.031.

    View in Article CrossRef Google Scholar

    [261] Wang, F., Harindintwali J.D., Wei K., et al. (2023). Climate change: Strategies for mitigation and adaptation. Innov. Geosci. 1: 100015. DOI: 10.59717/j.xinn-geo.2023.100015.

    View in Article CrossRef Google Scholar

    [262] Miao, C., P. Li, S. Yu, et al. (2022). Does street canyon morphology shape particulate matter reduction capacity by street trees in real urban environments. Urban For. Urban Green. 78: 127762. DOI: 10.1016/j.ufug.2022.127762.

    View in Article CrossRef Google Scholar

    [263] Li, C.Y., Y. Huang, H. Guo, et al. (2019). The concentrations and removal effects of PM10 and PM2.5 on a wetland in Beijing. Sustainability. 11 : 1312. DOI: 10.3390/su11051312.

    View in Article Google Scholar

    [264] Im, U., Geels, C., Hanninen, R., et al. (2022). Reviewing the links and feedbacks between climate change and air pollution in Europe. Fron. Environ. Sci. 10: 954045. DOI: 10.3389/fenvs.2022.954045.

    View in Article CrossRef Google Scholar

    [265] Russo, M., Carvalho, D., Jalkanen, J.P., et al. (2023). The future impact of shipping emissions on air quality in Europe under climate change. Atmosphere, 14: 1126. DOI: 10.3390/atmos14071126.

    View in Article CrossRef Google Scholar

    [266] De Sario, M., Katsouyanni, K. and Michelozzi, P. (2013). Climate change, extreme weather events, air pollution and respiratory health in Europe. Eur. Respir. J. 42: 826−843. DOI: 10.1183/09031936.00074712.

    View in Article CrossRef Google Scholar

    [267] Athanassiadou, M., Baker, J., Carruthers, D., et al. (2010). An assessment of the impact of climate change on air quality at two UK sites. Atmos. Environ. 44: 1877−1886. DOI: 10.1016/j.atmosenv.2010.02.024.

    View in Article CrossRef Google Scholar

    [268] Wang, D., B. Zhou, Q. Fu, et al. (2016). Intense secondary aerosol formation due to strong atmospheric photochemical reactions in summer: observations at a rural site in eastern Yangtze River Delta of China. Sci. Total Environ. 571: 1454−1466. DOI: 10.1016/j.scitotenv.2016.06.212.

    View in Article CrossRef Google Scholar

    [269] Zhou, Y., H. Zhao, S. Mao, et al. (2022). Studies on urban park cooling effects and their driving factors in China: Considering 276 cities under different climate zones. Build. Environ. 222: 109441. DOI: 10.1016/j.buildenv.2022.109441.

    View in Article CrossRef Google Scholar

    [270] Bianconi, A., Longo, G., Coa, A.A., et al. (2023). Impacts of urban green on cardiovascular and cerebrovascular diseases - A systematic review and meta-analysis. Int. J. Env. Res. Pub. He., 20: 5966. DOI: 10.3390/ijerph20115966.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Kumar P., Corada K., Debele S. E., et al., (2024). Air pollution abatement from Green-Blue-Grey infrastructure. The Innovation Geoscience 2(4): 100100. https://doi.org/10.59717/j.xinn-geo.2024.100100
    Kumar P., Corada K., Debele S. E., et al., (2024). Air pollution abatement from Green-Blue-Grey infrastructure. The Innovation Geoscience 2(4): 100100. https://doi.org/10.59717/j.xinn-geo.2024.100100

Welcome!

To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.

Figures(8)     Tables(3)

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(4253) PDF downloads(449) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint