Various microbial communities and functional genes were identified in permafrost of Qinghai-Tibet Plateau.
Depth-related microbial compositions and their metabolic potentials were observed across permafrost profiles.
Soil temperature significantly influenced the composition and diversity of microbial communities.
[1] | Biskaborn, B.K., Smith, S.L., Noetzli, J., et al. (2019). Permafrost is warming at a global scale. Nat. Commun. 10: 264. DOI: 10.1038/s41467-018-08240-4. |
[2] | Chen, Y., Deng, Y., Ding, J., et al. (2017). Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau. Mol. Ecol. 26: 6608−6620. DOI: 10.1111/mec.14396. |
[3] | Cheng, F., Garzione, C., Li, X., et al. (2022). Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue. Nat. Commun. 13: 1329. DOI: 10.1038/s41467-022-29011-2. |
[4] | Vaks, A., Gutareva, O., Breitenbach, S., et al. (2013). Speleothems reveal 500,000-year history of Siberian permafrost. Science 340: 183−186. DOI: 10.1126/science.1228729. |
[5] | Woodcroft, B.J., Singleton, C.M., Boyd, J.A., et al. (2018). Genome-centric view of carbon processing in thawing permafrost. Nature 560: 49−54. DOI: 10.1038/s41586-018-0338-1. |
[6] | Brouillette, M. (2021). How microbes in permafrost could trigger a massive carbon bomb. Nature 591: 360−362. DOI: 10.1038/d41586-021-00659-y. |
[7] | Mackelprang, R., Burkert, A., Haw, M., et al. (2017). Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 11: 2305−2318. DOI: 10.1038/ismej.2017.93. |
[8] | Cheng, G., Zhao, L., Li, R., et al. (2019). Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau. Chin. Sci. Bull. 64: 2783−2795. DOI: 10.1360/TB-2019-0191. |
[9] | Zhang, Y., Xie, C., Wu, T., et al. (2022). Permafrost degradation is accelerating beneath the bottom of Yanhu Lake in the Hoh Xil, Qinghai-Tibet Plateau. Sci. Total Environ. 838: 156045. DOI: 10.1016/j.scitotenv.2022.156045. |
[10] | Obu, J., Westastian, S., Bartsch, A., et al. (2019). Northern Hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1 km2 scale. Earth-Sci. Reviews 193: 299−316. DOI: 10.1016/j.earscirev.2019.04.023. |
[11] | Wu, M., Chen, S., Chen, J., et al. (2021). Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation. Proc. Natl. Acad. Sci. USA. 118: e2025321118. DOI: 10.1073/pnas.2025321118. |
[12] | Chen, S., Wu, M., Zhang, Y., et al. (2021). Linkages between soil microbial stability and carbon storage in the active layer under permafrost degradation. Sci. Cold Arid. Reg. 13: 268−270. DOI: 10.3724/SP.J.1226.2021.21034. |
[13] | Turetsky, M., Abbott, B., Jones, M., et al. (2019). Permafrost collapse is accelerating carbon release. Nature 569: 32−34. DOI: 10.1038/d41586-019-01313-4. |
[14] | Emerson, J.B., Roux, S., Brum, J.R., et al. (2018). Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3: 870−770. DOI: 10.1038/s41564-018-0190-y. |
[15] | Miner, K., D’drilli, J., Machelprang, R., et al. (2021). Emergent biogeochemical risks from Arctic permafrost degradation. Nat. Clim. Chang. 11: 809−819. DOI: 10.1038/s41558-021-01162-y. |
[16] | Sajjad, W., Rafiq, M., Din, G., et al. (2020). Resurrection of inactive microbes and resistome present in the natural frozen world: Reality or myth. Sci. Total Environ. 735: 13927. DOI: 10.1016/j.scitotenv.2020.139275. |
[17] | Jansson, J. and Taş, N. (2014). The microbial ecology of permafrost. Nat. Rev. Microbiol. 12: 414−425. DOI: 10.1038/nrmicro3262. |
[18] | Wang, Y., Pedersen, M., Alsos, I., et al. (2021). Late quaternary dynamics of Arctic biota from ancient environmental genomics. Nature 600: 86−92. DOI: 10.1038/s41586-021-04016-x. |
[19] | Yang, S., Liebner, S., Walz, J., et al. (2021). Effects of a long-term anoxic warming scenario on microbial community structure and functional potential of permafrost-affected soil. Permafr. Periglac. Process. 32: 641−656. DOI: 10.1002/ppp.2131. |
[20] | Wu, L., Yang, F., Feng, J., et al. (2022). Permafrost thaw with warming reduces microbial metabolic capacities in subsurface soils. Mol. Ecol. 31: 1403−1415. DOI: 10.1111/mec.16319. |
[21] | Hultman, J., Waldrop, M., Mackelprang, R., et al. (2015). Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521: 208−212. DOI: 10.1038/nature14238. |
[22] | Xue, Y., Jonassen, I., Øvreås, L., et al. (2020). Metagenome-assembled genome distribution and key functionality highlight importance of aerobic metabolism in Svalbard permafrost. FEMS Microbiol. Ecol. 96: fiaa057. DOI: 10.1093/femsec/fiaa057. |
[23] | Yang, S., Liebner, S., Svenning, M., et al. (2021). Decoupling of microbial community dynamics and functions in Arctic peat soil exposed to short term warming. Mol. Ecol. 30: 5094−5104. DOI: 10.1111/mec.16118. |
[24] | Wu, X., Chauhan, A., Layton, A., et al. (2021). Comparative metagenomics of the active layer and permafrost from low-carbon soil in the Canadian high Arctic. Environ. Sci. Technol. 55: 12683−12693. DOI: 10.1021/acs.est.1c00802. |
[25] | Varliero, G., Rafiq, M., Singh, S., et al. (2021). Microbial characterisation and Cold-Adapted Predicted Protein (CAPP) database construction from the active layer of Greenland's permafrost. FEMS Microbiol. Ecol. 97: fiab127. DOI: 10.1093/femsec/fiab127. |
[26] | Marcolefas, E., Leung, T., Okshevsky, M., et al. (2019). Culture-dependent bioprospecting of bacterial isolates from the Canadian high Arctic displaying antibacterial activity. Front. Microbiol. 10: 1836. DOI: 10.3389/fmicb.2019.01836. |
[27] | Trubl, G., Jang, H., Roux, S., et al. (2018). Soil viruses are underexplored players inecosystem carbon processing. mSystems 3: e00076−18. DOI: 10.1128/mSystems.00076-18. |
[28] | Sipes, K., Almatari, A., Eddie, A., et al. (2021). Eight metagenome-assembled genomesprovide evidence for microbial adaptation in 20,000- to 1,000,000-year-old Siberian Permafrost. Appl. Environ. Microbiol. 87 : e0097221. DOI: 10.1128/AEM.00972-21.28. |
[29] | Sun, H., Gao, T., Chen, X., et al. (2016). Complete genome sequence of apsychotrophic Arthrobacter strain A3 (CGMCC 1.8987), a novel long-chain hydrocarbons producer. J. Biotechnol. 222: 23−24. DOI: 10.1016/j.jbiotec.2016.02.010.29. |
[30] | Zhong, Z., Tian, F., Roux, S., et al. (2021). Glacier ice archives nearly 15,000-year-oil microbes and phages. Microbiome 9: 160. DOI: 10.1186/s40168-021-01106-w. |
[31] | Wu, M., Xue, K., Wei, P., et al. (2022). Soil microbial distribution and assembly are related to vegetation biomass in the alpine permafrost regions of the Qinghai-Tibet Plateau. Sci. Total Environ. 834: 155259. DOI: 10.1016/j.scitotenv.2022.155259. |
[32] | Perez-Mon, C., Stierli, B., Plötze, M., et al. (2022). Fast and persistent responses of alpine permafrost microbial communities to in situ warming. Sci. Total Environ. 807: 150720. DOI: 10.1016/j.scitotenv.2021.150720. |
[33] | Mackelprang, R., Saleska, S., Jacobsen, C., et al. (2016). Permafrost meta-omics and climate change. Annu. Rev. Earth Planet Sci. 44: 439−462. DOI: 10.1146/annurev-earth-060614-105126. |
[34] | Wang, T., Yang, D., Yang, Y., et al. (2020). Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci. Adv. 6: eaaz3513. DOI: 10.1126/sciadv.aaz3513. |
[35] | Ran, Y., Li, X., and Cheng, G. (2018). Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau. Cryosphere. 12: 595−608. DOI: 10.5194/tc-12-595-2018. |
[36] | Liu, W., Chen, S., Qin, X., et al. (2012). Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environ. Res. Lett. 7: 035401. DOI: 10.1088/1748-9326/7/3/035401. |
[37] | Zhou, M., Liu, C., Wang, J., et al. (2020). Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China. Sci. Rep. 10: 265. DOI: 10.1038/s41598-019-57193-1. |
[38] | Fang, C., Zhong, H., Lin, Y., et al. (2018). Assessment of the cPAS-based BGISEQ-500 platform for metagenomic sequencing. GigaScience 7: 1−8. DOI: 10.1093/gigascience/gix133. |
[39] | Li, Z., Pan, D., Wei, G., et al. (2021). Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J. 15: 2366−2378. DOI: 10.1038/s41396-021-00932-y. |
[40] | Lu, C., Zhang, Z., Cai, Z., et al. (2021). Prokaryotic virus host predictor: A Gaussian model for host prediction of prokaryotic viruses in metagenomics. BMC Biol. 19: 5. DOI: 10.1186/s12915-020-00938-6. |
[41] | Paez-Espino, D., Eloe-Fadrosh, E., Pavlopoulos, G., et al. (2016). Uncovering earth’s virome. Nature 536: 425−430. DOI: 10.1038/nature19094. |
[42] | Zhong, Z., Rapp, J., Wainaina, J., et al. (2020). Viral ecogenomics of Arctic cryopeg brine and sea ice. mSystems 5: e00246−20. DOI: 10.1128/mSystems.00246-20. |
[43] | Jarett, J.K., Dzunkova, M., Schulz, F., et al. (2020). Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. ISME J. 14: 2527−2541. DOI: 10.1038/s41396-020-0705-4. |
[44] | Gao, S., Paez-Espino, D., Li, J., et al. (2022). Patterns and ecological drivers of viral communities in acid mine drainage sediments across Southern China. Nat. Commun. 13: 2389. DOI: 10.1038/s41467-022-30049-5. |
[45] | Ren, Z., Zhang, C., Li, X., et al. (2024). Thermokarst lakes are hotspots of antibiotic resistance genes in permafrost regions on the Qinghai-Tibet Plateau. Environ. Pollut. 344: 123334. DOI: 10.1016/j.envpol.2024.123334. |
[46] | Liu, Y., Jiao, N., Zhong, K., et al. (2023). Diversity and function of mountain and polar supraglacial DNA viruses. Sci. Bull. 68: 2418−2433. DOI: 10.1016/j.scib.2023.09.007. |
[47] | Liu, Y., Ji, M., Zaugg, J., et al. (2022). A genome and gene catalog of glacier microbiomes. Nat. Biotechnol. 40: 1341−1348. DOI: 10.1038/s41587-022-01367-2. |
[48] | Abramov, A., Vishnivetskaya, T., and Rivkina, E. (2021). Are permafrost microorganisms as old as permafrost. FEMS Microbiol. Ecol. 97: fiaa260. DOI: 10.1093/femsec/fiaa260. |
[49] | Rogers, S., Starmer, W., and Castello, J. (2004). Recycling of pathogenic microbes through survival in ice. Med. Hypotheses 63: 773−777. DOI: 10.1016/j.mehy.2004.04.004. |
[50] | Xu, J., Zhang, Q., and Shi, Y. (2021). Microbial evolution of cryosphere and biosecurity concerns. Bull. Chin. Acad. Sci. 36: 632−640. DOI: 10.16418/j.issn.1000-3045.20210407005. |
[51] | Houwenhuyse, S., Macke, E., Reyserhove, L., et al. (2017). Back to the future in a petri dish: Origin and impact of resurrected microbes in natural populations. Evol. Appl. 11: 29−41. DOI: 10.1111/eva.12538. |
[52] | Gao, G., Hoffmann, J., Walzer, C., et al. (2023) Global public health crisis response: A roundtable discussion with Professor George Fu Gao, Professor Jules A Hoffmann, Professor Chris Walzer and Professor Jiahai Lu. hLife 1 : 63–70. DOI: 10.1016/j.hlife.2023.10.001. |
[53] | Xiao, Y. and Nishijima, T. (2024) Status and challenges of global antimicrobial resistance control: A dialogue between Professors Yonghong Xiao and Takeshi Nishijima. hLife 2 : 47–49. DOI: 10.1016/j.hlife.2023.11.004. |
[54] | Ganzert, L., Bajerski, F., and Wagner, D. (2014). Bacterial community composition and diversity of five different permafrost-affected soils of Northeast Greenland. FEMS Microbiol. Ecol. 89: 426−441. DOI: 10.1111/fem.2014.89.issue-2. |
[55] | Bottos, E.M., Kennedy, D.W., Romero, E.B., et al. (2018). Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiol. Ecol. 94: fiy110. DOI: 10.1093/femsec/fiy110. |
[56] | Donhauser, J. and Frey, B. (2018). Alpine soil microbial ecology in a changing world. FEMS Microbiol. Ecol. 94: fiy099. DOI: 10.1093/femsec/fiy099. |
[57] | Frindte, K., Pape, R., Werner, K. et al. (2019). Temperature and soil moisture control microbial community composition in an arctic–alpine ecosystem along elevational and micro-topographic gradients. ISME J. 13: 2031−2043. DOI: 10.1038/s41396-019-0409-9. |
[58] | Liu, L., Chen, H., Jiang, L., et al. (2018). Water table drawdown reshapes soil physicochemical characteristics in Zoige peatlands. Catena. 170: 119−128. DOI: 10.1016/j.catena.2018.05.025. |
[59] | Li, M., Zhang, K., Yan, Z., et al. (2022). Soil water content shapes microbial community along gradients of wetland degradation on the Tibetan Plateau. Front Microbiol. 13: 824267. DOI: 10.3389/fmicb.2022.824267. |
[60] | Kang, E., Li, Y., Zhang, X., et al. (2021). Soil pH and nutrients shape the vertical distribution of microbial communities in an alpine wetland. Sci. Total Environ. 774: 145780. DOI: 10.1016/j.scitotenv.2021.145780. |
[61] | Cheng, H. (2020). Future earth and sustainable developments. The Innovation 1 : 100055. DOI: 10.1016/j.xinn.2020.100055. |
[62] | Li, T., Chen, Y., Han, L., et al. (2021). Shortened duration and reduced area of frozen soil in the Northern Hemisphere. The Innovation 2: 100146. DOI: 10.1016/j.xinn.2021.100146. |
Chen S., Xu J., Cao J., et al., (2024). Depth-related microbial communities and functional genes in alpine permafrost. The Innovation Life 2(3): 100081. https://doi.org/10.59717/j.xinn-life.2024.100081 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
Community composition and diversity of permafrost bacteria
Community composition and diversity of permafrost viruses
Composition and diversity of permafrost functional genes
Microbial contributions to carbon, nitrogen, and sulfur cycling
Recovery of secondary metabolite gene clusters from microbial genomes
Correlations between environmental variables and composition of microbial communities and functional genes, respectively
Correlations and contributions of environmental variables to the Shannon index of (A) bacteria, (B) viruses and (C) functional genes