ARTICLE   Open Access     Cite

Depth-related microbial communities and functional genes in alpine permafrost

    Show all affliationsShow less
More Information
    1. Various microbial communities and functional genes were identified in permafrost of Qinghai-Tibet Plateau.

      Depth-related microbial compositions and their metabolic potentials were observed across permafrost profiles.

      Soil temperature significantly influenced the composition and diversity of microbial communities.

  • Permafrost microorganisms have received increased attention due to their critical role in biogeochemical cycles and the potential biosafety risks associated with climate warming. However, knowledge regarding the depth-related community structure and function of permafrost microorganisms remains limited. In this study, we employed metagenomic methods to investigate microbial communities, functional genes, and their controlling factors in alpine permafrost of the Shule River headwaters on the northeastern margin of the Qinghai-Tibet Plateau. A total of 287 metagenome-assembled genomes were constructed, representing 20 bacterial phyla and 1 archaeal phylum. Additionally, we identified 2079 viral contigs spanning more than 14 viral families, with approximately 67% constituting previously unknown taxa, forming a unique virome in alpine permafrost compared to other regions. Significant variations in bacterial and viral compositions, along with their metabolic potentials, were observed across vertical profiles from the active layer to the permafrost table layer. Viral diversity showed an initial increase followed by a decrease, reaching the maximum at the depth of 90-140 cm. We identified abundant genomic capabilities related to carbon, nitrogen, and sulfur cycling. Moreover, our analysis revealed 60 auxiliary metabolic genes in viruses and 7,000 putative biosynthetic gene clusters for secondary metabolites from 21 prokaryotic phyla. Soil temperature emerged as the most significant environmental variable influencing the composition of microbial communities and functional genes, as well as the diversity of microbial communities. These results offer valuable insights into the potential functional transformations and biosafety risks mediated by permafrost microorganisms under future warming.
  • 加载中
  • [1] Biskaborn, B.K., Smith, S.L., Noetzli, J., et al. (2019). Permafrost is warming at a global scale. Nat. Commun. 10: 264. DOI: 10.1038/s41467-018-08240-4.

    View in Article CrossRef Google Scholar

    [2] Chen, Y., Deng, Y., Ding, J., et al. (2017). Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau. Mol. Ecol. 26: 6608−6620. DOI: 10.1111/mec.14396.

    View in Article CrossRef Google Scholar

    [3] Cheng, F., Garzione, C., Li, X., et al. (2022). Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue. Nat. Commun. 13: 1329. DOI: 10.1038/s41467-022-29011-2.

    View in Article CrossRef Google Scholar

    [4] Vaks, A., Gutareva, O., Breitenbach, S., et al. (2013). Speleothems reveal 500,000-year history of Siberian permafrost. Science 340: 183−186. DOI: 10.1126/science.1228729.

    View in Article CrossRef Google Scholar

    [5] Woodcroft, B.J., Singleton, C.M., Boyd, J.A., et al. (2018). Genome-centric view of carbon processing in thawing permafrost. Nature 560: 49−54. DOI: 10.1038/s41586-018-0338-1.

    View in Article CrossRef Google Scholar

    [6] Brouillette, M. (2021). How microbes in permafrost could trigger a massive carbon bomb. Nature 591: 360−362. DOI: 10.1038/d41586-021-00659-y.

    View in Article CrossRef Google Scholar

    [7] Mackelprang, R., Burkert, A., Haw, M., et al. (2017). Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 11: 2305−2318. DOI: 10.1038/ismej.2017.93.

    View in Article CrossRef Google Scholar

    [8] Cheng, G., Zhao, L., Li, R., et al. (2019). Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau. Chin. Sci. Bull. 64: 2783−2795. DOI: 10.1360/TB-2019-0191.

    View in Article CrossRef Google Scholar

    [9] Zhang, Y., Xie, C., Wu, T., et al. (2022). Permafrost degradation is accelerating beneath the bottom of Yanhu Lake in the Hoh Xil, Qinghai-Tibet Plateau. Sci. Total Environ. 838: 156045. DOI: 10.1016/j.scitotenv.2022.156045.

    View in Article CrossRef Google Scholar

    [10] Obu, J., Westastian, S., Bartsch, A., et al. (2019). Northern Hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1 km2 scale. Earth-Sci. Reviews 193: 299−316. DOI: 10.1016/j.earscirev.2019.04.023.

    View in Article CrossRef Google Scholar

    [11] Wu, M., Chen, S., Chen, J., et al. (2021). Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation. Proc. Natl. Acad. Sci. USA. 118: e2025321118. DOI: 10.1073/pnas.2025321118.

    View in Article CrossRef Google Scholar

    [12] Chen, S., Wu, M., Zhang, Y., et al. (2021). Linkages between soil microbial stability and carbon storage in the active layer under permafrost degradation. Sci. Cold Arid. Reg. 13: 268−270. DOI: 10.3724/SP.J.1226.2021.21034.

    View in Article CrossRef Google Scholar

    [13] Turetsky, M., Abbott, B., Jones, M., et al. (2019). Permafrost collapse is accelerating carbon release. Nature 569: 32−34. DOI: 10.1038/d41586-019-01313-4.

    View in Article CrossRef Google Scholar

    [14] Emerson, J.B., Roux, S., Brum, J.R., et al. (2018). Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3: 870−770. DOI: 10.1038/s41564-018-0190-y.

    View in Article CrossRef Google Scholar

    [15] Miner, K., D’drilli, J., Machelprang, R., et al. (2021). Emergent biogeochemical risks from Arctic permafrost degradation. Nat. Clim. Chang. 11: 809−819. DOI: 10.1038/s41558-021-01162-y.

    View in Article CrossRef Google Scholar

    [16] Sajjad, W., Rafiq, M., Din, G., et al. (2020). Resurrection of inactive microbes and resistome present in the natural frozen world: Reality or myth. Sci. Total Environ. 735: 13927. DOI: 10.1016/j.scitotenv.2020.139275.

    View in Article CrossRef Google Scholar

    [17] Jansson, J. and Taş, N. (2014). The microbial ecology of permafrost. Nat. Rev. Microbiol. 12: 414−425. DOI: 10.1038/nrmicro3262.

    View in Article CrossRef Google Scholar

    [18] Wang, Y., Pedersen, M., Alsos, I., et al. (2021). Late quaternary dynamics of Arctic biota from ancient environmental genomics. Nature 600: 86−92. DOI: 10.1038/s41586-021-04016-x.

    View in Article CrossRef Google Scholar

    [19] Yang, S., Liebner, S., Walz, J., et al. (2021). Effects of a long-term anoxic warming scenario on microbial community structure and functional potential of permafrost-affected soil. Permafr. Periglac. Process. 32: 641−656. DOI: 10.1002/ppp.2131.

    View in Article CrossRef Google Scholar

    [20] Wu, L., Yang, F., Feng, J., et al. (2022). Permafrost thaw with warming reduces microbial metabolic capacities in subsurface soils. Mol. Ecol. 31: 1403−1415. DOI: 10.1111/mec.16319.

    View in Article CrossRef Google Scholar

    [21] Hultman, J., Waldrop, M., Mackelprang, R., et al. (2015). Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521: 208−212. DOI: 10.1038/nature14238.

    View in Article CrossRef Google Scholar

    [22] Xue, Y., Jonassen, I., Øvreås, L., et al. (2020). Metagenome-assembled genome distribution and key functionality highlight importance of aerobic metabolism in Svalbard permafrost. FEMS Microbiol. Ecol. 96: fiaa057. DOI: 10.1093/femsec/fiaa057.

    View in Article CrossRef Google Scholar

    [23] Yang, S., Liebner, S., Svenning, M., et al. (2021). Decoupling of microbial community dynamics and functions in Arctic peat soil exposed to short term warming. Mol. Ecol. 30: 5094−5104. DOI: 10.1111/mec.16118.

    View in Article CrossRef Google Scholar

    [24] Wu, X., Chauhan, A., Layton, A., et al. (2021). Comparative metagenomics of the active layer and permafrost from low-carbon soil in the Canadian high Arctic. Environ. Sci. Technol. 55: 12683−12693. DOI: 10.1021/acs.est.1c00802.

    View in Article CrossRef Google Scholar

    [25] Varliero, G., Rafiq, M., Singh, S., et al. (2021). Microbial characterisation and Cold-Adapted Predicted Protein (CAPP) database construction from the active layer of Greenland's permafrost. FEMS Microbiol. Ecol. 97: fiab127. DOI: 10.1093/femsec/fiab127.

    View in Article CrossRef Google Scholar

    [26] Marcolefas, E., Leung, T., Okshevsky, M., et al. (2019). Culture-dependent bioprospecting of bacterial isolates from the Canadian high Arctic displaying antibacterial activity. Front. Microbiol. 10: 1836. DOI: 10.3389/fmicb.2019.01836.

    View in Article CrossRef Google Scholar

    [27] Trubl, G., Jang, H., Roux, S., et al. (2018). Soil viruses are underexplored players inecosystem carbon processing. mSystems 3: e00076−18. DOI: 10.1128/mSystems.00076-18.

    View in Article CrossRef Google Scholar

    [28] Sipes, K., Almatari, A., Eddie, A., et al. (2021). Eight metagenome-assembled genomesprovide evidence for microbial adaptation in 20,000- to 1,000,000-year-old Siberian Permafrost. Appl. Environ. Microbiol. 87 : e0097221. DOI: 10.1128/AEM.00972-21.28.

    View in Article Google Scholar

    [29] Sun, H., Gao, T., Chen, X., et al. (2016). Complete genome sequence of apsychotrophic Arthrobacter strain A3 (CGMCC 1.8987), a novel long-chain hydrocarbons producer. J. Biotechnol. 222: 23−24. DOI: 10.1016/j.jbiotec.2016.02.010.29.

    View in Article CrossRef Google Scholar

    [30] Zhong, Z., Tian, F., Roux, S., et al. (2021). Glacier ice archives nearly 15,000-year-oil microbes and phages. Microbiome 9: 160. DOI: 10.1186/s40168-021-01106-w.

    View in Article CrossRef Google Scholar

    [31] Wu, M., Xue, K., Wei, P., et al. (2022). Soil microbial distribution and assembly are related to vegetation biomass in the alpine permafrost regions of the Qinghai-Tibet Plateau. Sci. Total Environ. 834: 155259. DOI: 10.1016/j.scitotenv.2022.155259.

    View in Article CrossRef Google Scholar

    [32] Perez-Mon, C., Stierli, B., Plötze, M., et al. (2022). Fast and persistent responses of alpine permafrost microbial communities to in situ warming. Sci. Total Environ. 807: 150720. DOI: 10.1016/j.scitotenv.2021.150720.

    View in Article CrossRef Google Scholar

    [33] Mackelprang, R., Saleska, S., Jacobsen, C., et al. (2016). Permafrost meta-omics and climate change. Annu. Rev. Earth Planet Sci. 44: 439−462. DOI: 10.1146/annurev-earth-060614-105126.

    View in Article CrossRef Google Scholar

    [34] Wang, T., Yang, D., Yang, Y., et al. (2020). Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci. Adv. 6: eaaz3513. DOI: 10.1126/sciadv.aaz3513.

    View in Article CrossRef Google Scholar

    [35] Ran, Y., Li, X., and Cheng, G. (2018). Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau. Cryosphere. 12: 595−608. DOI: 10.5194/tc-12-595-2018.

    View in Article CrossRef Google Scholar

    [36] Liu, W., Chen, S., Qin, X., et al. (2012). Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environ. Res. Lett. 7: 035401. DOI: 10.1088/1748-9326/7/3/035401.

    View in Article CrossRef Google Scholar

    [37] Zhou, M., Liu, C., Wang, J., et al. (2020). Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China. Sci. Rep. 10: 265. DOI: 10.1038/s41598-019-57193-1.

    View in Article CrossRef Google Scholar

    [38] Fang, C., Zhong, H., Lin, Y., et al. (2018). Assessment of the cPAS-based BGISEQ-500 platform for metagenomic sequencing. GigaScience 7: 1−8. DOI: 10.1093/gigascience/gix133.

    View in Article CrossRef Google Scholar

    [39] Li, Z., Pan, D., Wei, G., et al. (2021). Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J. 15: 2366−2378. DOI: 10.1038/s41396-021-00932-y.

    View in Article CrossRef Google Scholar

    [40] Lu, C., Zhang, Z., Cai, Z., et al. (2021). Prokaryotic virus host predictor: A Gaussian model for host prediction of prokaryotic viruses in metagenomics. BMC Biol. 19: 5. DOI: 10.1186/s12915-020-00938-6.

    View in Article CrossRef Google Scholar

    [41] Paez-Espino, D., Eloe-Fadrosh, E., Pavlopoulos, G., et al. (2016). Uncovering earth’s virome. Nature 536: 425−430. DOI: 10.1038/nature19094.

    View in Article CrossRef Google Scholar

    [42] Zhong, Z., Rapp, J., Wainaina, J., et al. (2020). Viral ecogenomics of Arctic cryopeg brine and sea ice. mSystems 5: e00246−20. DOI: 10.1128/mSystems.00246-20.

    View in Article CrossRef Google Scholar

    [43] Jarett, J.K., Dzunkova, M., Schulz, F., et al. (2020). Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. ISME J. 14: 2527−2541. DOI: 10.1038/s41396-020-0705-4.

    View in Article CrossRef Google Scholar

    [44] Gao, S., Paez-Espino, D., Li, J., et al. (2022). Patterns and ecological drivers of viral communities in acid mine drainage sediments across Southern China. Nat. Commun. 13: 2389. DOI: 10.1038/s41467-022-30049-5.

    View in Article CrossRef Google Scholar

    [45] Ren, Z., Zhang, C., Li, X., et al. (2024). Thermokarst lakes are hotspots of antibiotic resistance genes in permafrost regions on the Qinghai-Tibet Plateau. Environ. Pollut. 344: 123334. DOI: 10.1016/j.envpol.2024.123334.

    View in Article CrossRef Google Scholar

    [46] Liu, Y., Jiao, N., Zhong, K., et al. (2023). Diversity and function of mountain and polar supraglacial DNA viruses. Sci. Bull. 68: 2418−2433. DOI: 10.1016/j.scib.2023.09.007.

    View in Article CrossRef Google Scholar

    [47] Liu, Y., Ji, M., Zaugg, J., et al. (2022). A genome and gene catalog of glacier microbiomes. Nat. Biotechnol. 40: 1341−1348. DOI: 10.1038/s41587-022-01367-2.

    View in Article CrossRef Google Scholar

    [48] Abramov, A., Vishnivetskaya, T., and Rivkina, E. (2021). Are permafrost microorganisms as old as permafrost. FEMS Microbiol. Ecol. 97: fiaa260. DOI: 10.1093/femsec/fiaa260.

    View in Article CrossRef Google Scholar

    [49] Rogers, S., Starmer, W., and Castello, J. (2004). Recycling of pathogenic microbes through survival in ice. Med. Hypotheses 63: 773−777. DOI: 10.1016/j.mehy.2004.04.004.

    View in Article CrossRef Google Scholar

    [50] Xu, J., Zhang, Q., and Shi, Y. (2021). Microbial evolution of cryosphere and biosecurity concerns. Bull. Chin. Acad. Sci. 36: 632−640. DOI: 10.16418/j.issn.1000-3045.20210407005.

    View in Article CrossRef Google Scholar

    [51] Houwenhuyse, S., Macke, E., Reyserhove, L., et al. (2017). Back to the future in a petri dish: Origin and impact of resurrected microbes in natural populations. Evol. Appl. 11: 29−41. DOI: 10.1111/eva.12538.

    View in Article CrossRef Google Scholar

    [52] Gao, G., Hoffmann, J., Walzer, C., et al. (2023) Global public health crisis response: A roundtable discussion with Professor George Fu Gao, Professor Jules A Hoffmann, Professor Chris Walzer and Professor Jiahai Lu. hLife 1 : 63–70. DOI: 10.1016/j.hlife.2023.10.001.

    View in Article Google Scholar

    [53] Xiao, Y. and Nishijima, T. (2024) Status and challenges of global antimicrobial resistance control: A dialogue between Professors Yonghong Xiao and Takeshi Nishijima. hLife 2 : 47–49. DOI: 10.1016/j.hlife.2023.11.004.

    View in Article Google Scholar

    [54] Ganzert, L., Bajerski, F., and Wagner, D. (2014). Bacterial community composition and diversity of five different permafrost-affected soils of Northeast Greenland. FEMS Microbiol. Ecol. 89: 426−441. DOI: 10.1111/fem.2014.89.issue-2.

    View in Article CrossRef Google Scholar

    [55] Bottos, E.M., Kennedy, D.W., Romero, E.B., et al. (2018). Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiol. Ecol. 94: fiy110. DOI: 10.1093/femsec/fiy110.

    View in Article CrossRef Google Scholar

    [56] Donhauser, J. and Frey, B. (2018). Alpine soil microbial ecology in a changing world. FEMS Microbiol. Ecol. 94: fiy099. DOI: 10.1093/femsec/fiy099.

    View in Article CrossRef Google Scholar

    [57] Frindte, K., Pape, R., Werner, K. et al. (2019). Temperature and soil moisture control microbial community composition in an arctic–alpine ecosystem along elevational and micro-topographic gradients. ISME J. 13: 2031−2043. DOI: 10.1038/s41396-019-0409-9.

    View in Article CrossRef Google Scholar

    [58] Liu, L., Chen, H., Jiang, L., et al. (2018). Water table drawdown reshapes soil physicochemical characteristics in Zoige peatlands. Catena. 170: 119−128. DOI: 10.1016/j.catena.2018.05.025.

    View in Article CrossRef Google Scholar

    [59] Li, M., Zhang, K., Yan, Z., et al. (2022). Soil water content shapes microbial community along gradients of wetland degradation on the Tibetan Plateau. Front Microbiol. 13: 824267. DOI: 10.3389/fmicb.2022.824267.

    View in Article CrossRef Google Scholar

    [60] Kang, E., Li, Y., Zhang, X., et al. (2021). Soil pH and nutrients shape the vertical distribution of microbial communities in an alpine wetland. Sci. Total Environ. 774: 145780. DOI: 10.1016/j.scitotenv.2021.145780.

    View in Article CrossRef Google Scholar

    [61] Cheng, H. (2020). Future earth and sustainable developments. The Innovation 1 : 100055. DOI: 10.1016/j.xinn.2020.100055.

    View in Article Google Scholar

    [62] Li, T., Chen, Y., Han, L., et al. (2021). Shortened duration and reduced area of frozen soil in the Northern Hemisphere. The Innovation 2: 100146. DOI: 10.1016/j.xinn.2021.100146.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Chen S., Xu J., Cao J., et al., (2024). Depth-related microbial communities and functional genes in alpine permafrost. The Innovation Life 2(3): 100081. https://doi.org/10.59717/j.xinn-life.2024.100081
    Chen S., Xu J., Cao J., et al., (2024). Depth-related microbial communities and functional genes in alpine permafrost. The Innovation Life 2(3): 100081. https://doi.org/10.59717/j.xinn-life.2024.100081

Welcome!

To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.

Figures(7)     Tables(1)

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(2966) PDF downloads(970) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint