A unique and stable S-Se-S molecule structure (Se-Acid) was first synthesized and verified.
A clear reaction mechanism was illustrated about the triggered release of H2Se from Se-Acid by glutathione.
H2Se relieved antibiotic resistance through promoting membrane permeability and reactivating respiratory flux.
S-Se-S type molecule could play key role for addressing the challenge of H2S-induced antibiotic resistance.
[1] | Darby, E.M., Trampari, E., Siasat, P., et al. (2023). Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 21: 280−295. DOI: 10.1038/s41579-022-00820-y. |
[2] | Larsson, D.G.J. and Flach, C.-F. (2022). Antibiotic resistance in the environment. Nat. Rev. Microbiol. 20: 257−269. DOI: 10.1038/s41579-021-00649-x. |
[3] | Stower, H. (2020). Antibiotic tolerance leads to antibiotic resistance. Nat. Med. 26: 163−163. DOI: 10.1038/s41591-020-0778-7. |
[4] | Zha, Y., Chen, C., Jiao, Q., et al. (2024). Comprehensive profiling of antibiotic resistance genes in diverse environments and novel function discovery. The Innovation Life 2: 100054. DOI: 10.59717/j.xinn-life.2024.100054. |
[5] | Darby, E.M., Trampari, E., Siasat, P., et al. (2023). Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 21: 280−295. DOI: 10.1038/s41579-022-00820-y. |
[6] | Blair, J.M.A., Webber, M.A., Baylay, A.J., et al. (2015). Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13: 42−51. DOI: 10.1038/nrmicro3380. |
[7] | Michiels, J.E., Van den Bergh, B., Verstraeten, N., et al. (2016). Molecular mechanisms and clinical implications of bacterial persistence. Drug Resist. Updat. 29: 76−89. DOI: 10.1016/j.drup.2016.10.002. |
[8] | Kimura, H. (2015). Signaling of hydrogen sulfide and polysulfides. Antioxid. Redox Signal. 22: 347−349. DOI: 10.1089/ars.2014.6082. |
[9] | Shatalin, K., Shatalina, E., Mironov, A., et al. (2011). H2S: A universal defense against antibiotics in bacteria. Science 334: 986−990. DOI: 10.1126/science.1209855. |
[10] | Shukla, P., Khodade, V.S., SharathChandra, M., et al. (2017). “On demand” redox buffering by H2S contributes to antibiotic resistance revealed by a bacteria-specific H2S donor. Chem. Sci. 8: 4967−4972. DOI: 10.1039/C7SC00873B. |
[11] | Kimura H. (2015). Physiological roles of hydrogen sulfide and polysulfides. Handb. Exp. Pharmacol. 230: 61−81. DOI: 10.1007/978-3-319-18144-8_3. |
[12] | Shatalin, K., Nuthanakanti, A., Kaushik, A., et al. (2021). Inhibitors of bacterial H2S biogenesis targeting antibiotic resistance and tolerance. Science 372: 1169−1175. DOI: 10.1126/science.abd8377. |
[13] | Xie, M., Gao, M., Yun, Y., et al. (2023). Antibacterial nanomaterials: Mechanisms, impacts on antimicrobial resistance and design principles. Angew. 62: e202217345. DOI: 10.1002/anie.202217345. |
[14] | Zhang, S., Yang, H., Wang, M., et al. (2023). Immunomodulatory biomaterials against bacterial infections: Progress, challenges, and future perspectives. The Innovation 4: 100503. DOI: 10.1016/j.xinn.2023.100503. |
[15] | Makabenta, J.M.V., Nabawy, A., Li, C.-H., et al. (2021). Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 19: 23−36. DOI: 10.1038/s41579-020-0420-1. |
[16] | Cupp-Sutton, K.A., and Ashby, M.T. (2016). Biological chemistry of hydrogen selenide. Antioxidants 5: 42. DOI: 10.3390/antiox5040042. |
[17] | Mapelli, V., Hillestrøm, P.R., Patil, K., et al. (2012). The interplay between sulphur and selenium metabolism influences the intracellular redox balance in Saccharomyces cerevisiae. FEMS Yeast Res. 12: 20−32. DOI: 10.1111/j.1567-1364.2011.00757.x. |
[18] | Xia, J., Li, T., Lu, C., et al. (2018). Selenium-containing polymers: Perspectives toward diverse applications in both adaptive and biomedical materials. Macromolecules 51: 7435−7455. DOI: 10.1021/acs.macromol.8b01597. |
[19] | Kushkevych, I., Cejnar, J., Treml, J., et al. (2020). Recent advances in metabolic pathways of sulfate reduction in intestinal bacteria. Cells 9: 698. DOI: 10.3390/cells9030698. |
[20] | Wolf, P.G., Cowley, E.S., Breister, A., et al. (2022). Diversity and distribution of sulfur metabolic genes in the human gut microbiome and their association with colorectal cancer. Microbiome 10: 64. DOI: 10.1186/s40168-022-01242-x. |
[21] | Weekley, C.M. and Harris, H.H. (2013). Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem. Soc. Rev. 42: 8870. DOI: 10.1039/c3cs60272a. |
[22] | Kang, X., Huang, H., Jiang, C., et al. (2022). Cysteine-activated small-molecule H2Se donors inspired by synthetic H2S donors. J. Am. Chem. Soc. 144: 3957−3967. DOI: 10.1021/jacs.1c12006. |
[23] | Newton, T.D., and Pluth, M.D. (2019). Development of a hydrolysis-based small-molecule hydrogen selenide (H2Se) donor. Chem. Sci. 10: 10723−10727. DOI: 10.1039/C9SC04616J. |
[24] | Yang, Y., Sun, B., Zuo, S., et al. (2020). Trisulfide bond-mediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity. Sci. Adv. 6: eabc1725. DOI: 10.1126/sciadv.abc1725. |
[25] | Vestergaard, M., Bald, D., and Ingmer, H. (2022). Targeting the ATP synthase in bacterial and fungal pathogens: Beyond Mycobacterium tuberculosis. J. Glob. Antimicrob. Resist. 29: 29−41. DOI: 10.1016/j.jgar.2022.01.026. |
[26] | Lamprecht, D.A., Finin, P.M., Rahman, M.A., et al. (2016). Turning the respiratory flexibility of Mycobacterium tuberculosis against itself. Nat. Commun. 7: 1−14. DOI: 10.1038/ncomms12393. |
[27] | Liu, Z., Guo, K., Yan, L., et al. (2023). Janus nanoparticles targeting extracellular polymeric substance achieve flexible elimination of drug-resistant biofilms. Nat. Commun. 14: 5132. DOI: 10.1038/s41467-023-40830-9. |
Liu M., Bu F., Li G., et al., (2024). S-Se-S type molecule: A bactericidal promoter against H2S-induced antibiotic resistance. The Innovation Life 2(3): 100076. https://doi.org/10.59717/j.xinn-life.2024.100076 |
Synthesis and basic characterization of S-Se-S type molecules
The mechanisms underlying the release of H2Se from Se-Acid in response to GSH
The synergistic bactericidal effects of Se-Acid and Gm
The mechanism of Se-Acid against H2S-induced antibiotic resistance
In vivo anti-infection effects of Se-Acid against H2S-induced antibiotic resistance