Synthetic butyrate-overproducing commensal bacteria ameliorate murine depression.
Gut butyrate functions by regulating paraventricular thalamic nucleus (PVT) via a gut-brain neural pathway.
Gut butyrate triggers the neural circuit as a role of free fatty acid receptor 3 (FFAR3) agonist.
Synthetic living delivery bacteria provide a new avenue for non-invasive neuromodulation technology.
[1] | San-Juan, D., Davila-Rodriguez, D.O., Jimenez, C.R., et al. (2019). Neuromodulation techniques for status epilepticus: A review. Brain Stimul. 12: 835−844. DOI: 10.1016/j.brs.2019.04.005. |
[2] | Lozano, A.M. and Lipsman, N. (2013). Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron 77: 406−424. DOI: 10.1016/j.neuron.2013.01.020. |
[3] | Krauss, J.K., Lipsman, N., Aziz, T., et al. (2021). Technology of deep brain stimulation: Current status and future directions. Nat. Rev. Neurol. 17: 75−87. DOI: 10.1038/s41582-020-00426-z. |
[4] | Rossini, P.M., Burke, D., Chen, R., et al. (2015). Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an i.F.C.N. Committee. Clin. Neurophysiol. 126: 1071−1107. DOI: 10.1016/j.clinph.2015.02.001. |
[5] | Lozano, A.M. (2017). Waving hello to noninvasive deep-brain stimulation. N. Engl. J. Med. 377: 1096−1098. DOI: 10.1056/NEJMcibr1707165. |
[6] | Grossman, N., Bono, D., Dedic, N., et al. (2017). Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 169 :1029-1041 e1016. DOI: 10.1016/j.cell.2017.05.024. |
[7] | Liu, L., Huh, J.R., and Shah, K. (2022). Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. EBioMedicine 77: 103908. DOI: 10.1016/j.ebiom.2022.103908. |
[8] | Strandwitz, P., Kim, K.H., Terekhova, D., et al. (2019). Gaba-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4: 396−403. DOI: 10.1038/s41564-018-0307-3. |
[9] | Valles-Colomer, M., Falony, G., Darzi, Y., et al. (2019). The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 4: 623−632. DOI: 10.1038/s41564-018-0337-x. |
[10] | Liu, R.T., Rowan-Nash, A.D., Sheehan, A.E., et al. (2020). Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain, Behav., Immun. 88: 308−324. DOI: 10.1016/j.bbi.2020.03.026. |
[11] | Suez, J. and Elinav, E. (2017). The path towards microbiome-based metabolite treatment. Nat. Microbiol. 2 : 17075. DOI: ARTN 1707510.1038/nmicrobiol.2017.75. |
[12] | Li, T., Fang, J., Tang, S., et al. (2022). PM(2.5) exposure associated with microbiota gut-brain axis: Multi-omics mechanistic implications from the bape study. The Innovation 3 :100213. DOI: 10.1016/j.xinn.2022.100213. |
[13] | Cook, T.M., Gavini, C.K., Jesse, J., et al. (2021). Vagal neuron expression of the microbiota-derived metabolite receptor, free fatty acid receptor (FFAR3), is necessary for normal feeding behavior. Mol. Metab. 54: 101350. DOI: 10.1016/j.molmet.2021.101350. |
[14] | Yu, K.B. and Hsiao, E.Y. (2021). Roles for the gut microbiota in regulating neuronal feeding circuits. J. Clin. Invest. 131: e143772. DOI: ARTN e14377210.1172/JCI143772. DOI: 10.1172/JCI143772. |
[15] | Wang, Y., Zhan, G.F., Cai, Z.W., et al. (2021). Vagus nerve stimulation in brain diseases: Therapeutic applications and biological mechanisms. Neurosci. Biobehav. Rev. 127: 37−53. DOI: 10.1016/j.neubiorev.2021.04.018. |
[16] | Ahmed, H., Leyrolle, Q., Koistinen, V., et al. (2022). Microbiota-derived metabolites as drivers of gut-brain communication. Gut Microbes 14: 2102878. DOI: 10.1080/19490976.2022.2102878. |
[17] | Simpson, C.A., Diaz-Arteche, C., Eliby, D., et al. (2021). The gut microbiota in anxiety and depression - a systematic review. Clin. Psychol. Rev. 83: 101943. DOI: 10.1016/j.cpr.2020.101943. |
[18] | Dalile, B., Van Oudenhove, L., Vervliet, B., et al. (2019). The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 16: 461−478. DOI: 10.1038/s41575-019-0157-3. |
[19] | Morais, L.H., Schreiber, H.L.t., and Mazmanian, S.K. (2021). The gut microbiota-brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 19: 241−255. DOI: 10.1038/s41579-020-00460-0. |
[20] | Gong, X., Geng, H., Yang, Y., et al. (2023). Metabolic engineering of commensal bacteria for gut butyrate delivery and dissection of host-microbe interaction. Metab. Eng. 80: 94−106. DOI: 10.1016/j.ymben.2023.09.008. |
[21] | Tian, M., Ma, Z., and Yang, G.Z. (2024). Micro/nanosystems for controllable drug delivery to the brain. The Innovation 5: 100548. DOI: 10.1016/j.xinn.2023.100548. |
[22] | Siopi, E., Chevalier, G., Katsimpardi, L., et al. (2020). Changes in gut microbiota by chronic stress impair the efficacy of fluoxetine. Cell. Rep. 30 : 3682-3690. DOI: 10.1016/j.celrep.2020.02.099. |
[23] | Nollet, M., Hicks, H., McCarthy, A.P., et al. (2019). Rem sleep's unique associations with corticosterone regulation, apoptotic pathways, and behavior in chronic stress in mice. Proc. Natl. Acad. Sci. USA. 116: 2733−2742. DOI: 10.1073/pnas.1816456116. |
[24] | Goswami, C., Iwasaki, Y., and Yada, T. (2018). Short-chain fatty acids suppress food intake by activating vagal afferent neurons. J. Nutr. Biochem. 57: 130−135. DOI: 10.1016/j.jnutbio.2018.03.009. |
[25] | Li, K., Zhou, T., Liao, L., et al. (2013). Betacamkii in lateral habenula mediates core symptoms of depression. Science 341: 1016−1020. DOI: 10.1126/science.1240729. |
[26] | Cui, Y., Yang, Y., Ni, Z., et al. (2018). Astroglial kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554 : 323-327. DOI: 10.1038/nature25752. |
[27] | He, J.G., Zhou, H.Y., Xue, S.G., et al. (2021). Transcription factor twist1 integrates dendritic remodeling and chronic stress to promote depressive-like behaviors. Biol. Psychiatry 89: 615−626. DOI: 10.1016/j.biopsych.2020.09.003. |
[28] | Zhao, D., Liu, C., Cui, M., et al. (2021). The paraventricular thalamus input to central amygdala controls depression-related behaviors. Exp. Neurol. 342: 113744. DOI: 10.1016/j.expneurol.2021.113744. |
[29] | Wu, W.L., Adame, M.D., Liou, C.W., et al. (2021). Microbiota regulate social behaviour via stress response neurons in the brain. Nature 595: 409−414. DOI: 10.1038/s41586-021-03669-y. |
[30] | Franklin, K.B. and Paxinos, G. (2001). The mouse brain in stereotaxic coordinates (Academic Press). |
[31] | Chen, J., Cheng, M., Wang, L., et al. (2020). A vagal-nts neural pathway that stimulates feeding. Curr. Biol. 30:3986-3998 e3985. DOI: 10.1016/j.cub.2020.07.084. |
[32] | Fan, Z.X., Chang, J.R., Liang, Y.L., et al. (2023). Neural mechanism underlying depressive-like state associated with social status loss. Cell 186: 560−576. DOI: 10.1016/j.cell.2022.12.033. |
[33] | Nestler, E.J. (2015). ∆FosB: A transcriptional regulator of stress and antidepressant responses. Eur. J. Pharmacol. 753: 66−72. DOI: 10.1016/j.ejphar.2014.10.034. |
[34] | Iglesias, A.G. and Flagel, S.B. (2021). The paraventricular thalamus as a critical node of motivated behavior via the hypothalamic-thalamic-striatal circuit. Front. Integr. Neurosci. 15 : 706713. DOI: 10.3389/fnint.2021.706713. |
[35] | Browning, K.N. and Travagli, R.A. (2019). Central control of gastrointestinal motility. Curr. Opin. Endocrinol Diabetes Obes. 26: 11−16. DOI: 10.1097/MED.0000000000000449. |
[36] | Zhu, Y.J., Wienecke, C.F.R., Nachtrab, G., et al. (2016). A thalamic input to the nucleus accumbens mediates opiate dependence. Nature 530: 219−222. DOI: 10.1038/nature16954. |
[37] | Penzo, M.A., Robert, V., Tucciarone, J., et al. (2015). The paraventricular thalamus controls a central amygdala fear circuit. Nature 519: 455−459. DOI: 10.1038/nature13978. |
[38] | Hai, J., Kawabata, F., Uchida, K., et al. (2020). Intragastric administration of amg517, a trpv1 antagonist, enhanced activity-dependent energy metabolism via capsaicin-sensitive sensory nerves in mice. Biosci. Biotechnol. Biochem. 84: 2121−2127. DOI: 10.1080/09168451.2020.1789836. |
[39] | Nohr, M.K., Egerod, K.L., Christiansen, S.H., et al. (2015). Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience 290: 126−137. DOI: 10.1016/j.neuroscience.2015.01.040. |
[40] | Brown, A.J., Goldsworthy, S.M., Barnes, A.A., et al. (2003). The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278: 11312−11319. DOI: 10.1074/jbc.M211609200. |
[41] | Fan, S., Guo, W., Xiao, D., et al. (2023). Microbiota-gut-brain axis drives overeating disorders. Cell Metab. 35 : 2011-2027. DOI: 10.1016/j.cmet.2023.09.005. |
[42] | Shi, H., Ge, X., Ma, X., et al. (2021). A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome 9: 223. DOI: 10.1186/s40168-021-01172-0. |
[43] | Stilling, R.M., van de Wouw, M., Clarke, G., et al. (2016). The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis. Neurochem. Int. 99: 110−132. DOI: 10.1016/j.neuint.2016.06.011. |
[44] | Boets, E., Deroover, L., Houben, E., et al. (2015). Quantification of in vivo colonic short chain fatty acid production from inulin. Nutrients 7: 8916−8929. DOI: 10.3390/nu7115440. |
[45] | Beaumont, E., Campbell, R.P., Andresen, M.C., et al. (2017). Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract. Am. J. Physiol. Heart Circ. Physiol. 313: H354−H367. DOI: 10.1152/ajpheart.00070.2017. |
[46] | Ruggiero, D.A., Underwood, M.D., Mann, J.J., et al. (2000). The human nucleus of the solitary tract: Visceral pathways revealed with an "in vitro" postmortem tracing method. J. Auton. Nerv. Syst. 79: 181−190. DOI: 10.1016/s0165-1838(99)00097-1. |
[47] | Frangos, E., Ellrich, J., and Komisaruk, B.R. (2015). Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: Fmri evidence in humans. Brain Stimul. 8: 624−636. DOI: 10.1016/j.brs.2014.11.018. |
[48] | Kasahara, T., Takata, A., Kato, T.M., et al. (2016). Depression-like episodes in mice harboring mtdna deletions in paraventricular thalamus. Mol. Psychiatry 21: 39−48. DOI: 10.1038/mp.2015.156. |
[49] | Needham, B.D., Kaddurah-Daouk, R., and Mazmanian, S.K. (2020). Gut microbial molecules in behavioural and neurodegenerative conditions. Nat. Rev. Neurosci. 21: 717−731. DOI: 10.1038/s41583-020-00381-0. |
[50] | Krautkramer, K.A., Fan, J., and Backhed, F. (2021). Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 19: 77−94. DOI: 10.1038/s41579-020-0438-4. |
[51] | Hou, Y.F., Shan, C., Zhuang, S.Y., et al. (2021). Gut microbiota-derived propionate mediates the neuroprotective effect of osteocalcin in a mouse model of parkinson's disease. Microbiome 9: 34. DOI: ARTN 3410.1186/s40168-020-00988-6. DOI: 10.1186/s40168-020-00988-6. |
[52] | Dohnalova, L., Lundgren, P., Carty, J.R.E., et al. (2022). A microbiome-dependent gut-brain pathway regulates motivation for exercise. Nature 612: 739−747. DOI: 10.1038/s41586-022-05525-z. |
[53] | Bellono, N.W., Bayrer, J.R., Leitch, D.B., et al. (2017). Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170: 185−198. DOI: 10.1016/j.cell.2017.05.034. |
[54] | Kaelberer, M.M., Buchanan, K.L., Klein, M.E., et al. (2018). A gut-brain neural circuit for nutrient sensory transduction. Science 361: eaat5236. DOI: 10.1126/science.aat5236. |
Wang S., Zhou X., Ma Y., et al., (2024). Gut-to-brain neuromodulation by synthetic butyrate-producing commensal bacteria. The Innovation Life 2(3): 100082. https://doi.org/10.59717/j.xinn-life.2024.100082 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
The schematic illustration of mechanism exploration on gut bacterial metabolites in MGB using synthetic living delivery bacteria
Butyrate delivered by genetically engineered commensal bacterium ameliorated depressive-like syndromes in CUMS-induced depressed mice
The PVT was identified as the key brain region regulated by gut butyrate for depression attenuation in CUMS-challenged mice
The NTS-PVT projection dominates depression amelioration in CUMS-induced depressed mice as revealed by chemogenetics
Gut butyrate alleviates depression-like behaviors in CUMS-induced mice via gut-to-brain neurotransmission
FFAR3 agonist resembles the efficacy of gut butyrate in attenuating depression-like syndromes in CUMS-induced mice