Exploring computational tools for analyzing complex Spatial Resolved Transcriptomics (SRT) datasets.
SRT uncovers functional implications of cellular heterogeneity in development within spatial structures.
SRT reshape our view of tumor structure heterogeneity, cancer progression, and personalized medicine.
Decreasing SRT costs may reveal insights for drug development and delivery via 3D tissue structures.
[1] | Wang, Z., Gerstein, M., and Snyder, M. (2009). Rna-seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 10: 57−63. DOI: 10.1038/nrg2484. |
[2] | Asp, M., Bergenstrahle, J., and Lundeberg, J. (2020). Spatially resolved transcriptomes-next generation tools for tissue exploration. Bioessays 42: e1900221. DOI: 10.1002/bies.201900221. |
[3] | Crosetto, N., Bienko, M., and van Oudenaarden, A. (2015). Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 16: 57−66. DOI: 10.1038/nrg3832. |
[4] | Moses, L. and Pachter, L. (2022). Museum of spatial transcriptomics. Nat. Methods 19: 534−546. DOI: 10.1038/s41592-022-01409-2. |
[5] | Marx, V. (2021). Method of the year: Spatially resolved transcriptomics. Nat. Methods 18: 9−14. DOI: 10.1038/s41592-020-01033-y. |
[6] | Moses, L. and Pachter, L. (2022). Museum of spatial transcriptomics. Nat. Methods 19: 534−546. DOI: 10.1038/s41592-022-01409-2. |
[7] | Zhu, Y., Xu, R., Wang, L., et al. (2023). A high-throughput sequencing technology for spatial translatomics at the single-cell level. The Innovation Life 1: 100036. DOI: 10.59717/j.xinn-life.2023.100036. |
[8] | Heydari, A.A. and Sindi, S.S. (2023). Deep learning in spatial transcriptomics: Learning from the next next-generation sequencing. Biophys. Rev. (Melville) 4: 011306. DOI: 10.1063/5.0091135. |
[9] | Jain, S. and Eadon, M.T. (2024). Spatial transcriptomics in health and disease. Nat. Rev. Nephrol. 20 : 659-671.DOI: 10.1038/s41581-024-00841-1. |
[10] | Walsh, L.A. and Quail, D.F. (2023). Decoding the tumor microenvironment with spatial technologies. Nat. Immunol. 24: 1982−1993. DOI: 10.1038/s41590-023-01678-9. |
[11] | You, Y., Fu, Y., Li, L., et al. (2024). Systematic comparison of sequencing-based spatial transcriptomic methods. Nat. Methods 21 : 1743-1754. DOI: 10.1038/s41592-024-02325-3. |
[12] | Dezem, F.S., Arjumand, W., DuBose, H., et al. (2024). Spatially resolved single-cell omics: Methods, challenges, and future perspectives. Annu. Rev. Biomed. Data Sci. 7: 131−153. DOI: 10.1146/annurev-biodatasci-102523-103640. |
[13] | Bressan, D., Battistoni, G., and Hannon, G.J. (2023). The dawn of spatial omics. Science 381: eabq4964. DOI: 10.1126/science.abq4964. |
[14] | Tian, L., Chen, F., and Macosko, E.Z. (2023). The expanding vistas of spatial transcriptomics. Nat. Biotechnol. 41: 773−782. DOI: 10.1038/s41587-022-01448-2. |
[15] | Palla, G., Fischer, D.S., Regev, A., et al. (2022). Spatial components of molecular tissue biology. Nat. Biotechnol. 40: 308−318. DOI: 10.1038/s41587-021-01182-1. |
[16] | Hao, Y., Stuart, T., Kowalski, M.H., et al. (2023). Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42 : 293-304. DOI: 10.1038/s41587-023-01767-y. |
[17] | Palla, G., Spitzer, H., Klein, M., et al. (2022). Squidpy: A scalable framework for spatial omics analysis. Nat. Methods 19: 171−178. DOI: 10.1038/s41592-021-01358-2. |
[18] | Moffitt, J.R., Lundberg, E., and Heyn, H. (2022). The emerging landscape of spatial profiling technologies. Nat. Rev. Genet. 23: 741−759. DOI: 10.1038/s41576-022-00515-3. |
[19] | Vandereyken, K., Sifrim, A., Thienpont, B., et al. (2023). Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24: 494−515. DOI: 10.1038/s41576-023-00580-2. |
[20] | Zormpas, E., Queen, R., Comber, A., et al. (2023). Mapping the transcriptome: Realizing the full potential of spatial data analysis. Cell 186: 5677−5689. DOI: 10.1016/j.cell.2023.11.003. |
[21] | Goodchild, M.F. (1991). Geographic information systems. Prog. Hum. Geogr. 15: 194−200. DOI: 10.1177/030913259101500205. |
[22] | Zhao, E., Stone, M.R., Ren, X., et al. (2021). Spatial transcriptomics at subspot resolution with bayesspace. Nat. Biotechnol. 39: 1375−1384. DOI: 10.1038/s41587-021-00935-2. |
[23] | Dries, R., Zhu, Q., Dong, R., et al. (2021). Giotto: A toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22: 78. DOI: 10.1186/s13059-021-02286-2. |
[24] | Zhong, C., Tian, T., and Wei, Z. (2023). Hidden markov random field models for cell-type assignment of spatially resolved transcriptomics. Bioinformatics 39 : btad641. DOI: 10.1093/bioinformatics/btad641. |
[25] | Shang, L. and Zhou, X. (2022). Spatially aware dimension reduction for spatial transcriptomics. Nat. Commun. 13: 7203. DOI: 10.1038/s41467-022-34879-1. |
[26] | Hu, J., Li, X., Coleman, K., et al. (2021). Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat. Methods 18: 1342−1351. DOI: 10.1038/s41592-021-01255-8. |
[27] | Long, Y., Ang, K.S., Li, M., et al. (2023). Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nat. Commun. 14: 1155. DOI: 10.1038/s41467-023-36796-3. |
[28] | Dong, K. and Zhang, S. (2022). Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat. Commun. 13: 1739. DOI: 10.1038/s41467-022-29439-6. |
[29] | Lin, X., Gao, L., Whitener, N., et al. (2022). A model-based constrained deep learning clustering approach for spatially resolved single-cell data. Genome Res. 32: 1906−1917. DOI: 10.1101/gr.276477.121. |
[30] | Tian, T., Zhang, J., Lin, X., et al. (2021). Model-based deep embedding for constrained clustering analysis of single cell rna-seq data. Nat. Commun. 12: 1873. DOI: 10.1038/s41467-021-22008-3. |
[31] | Tian, T., Zhang, J., Lin, X., et al. (2023). Dependency-aware deep generative models for multitasking analysis of spatial genomics data. Nat. Methods 21 : 1501–1513 DOI: 10.1038/s41592-024-02257-y. |
[32] | Pham, D., Tan, X., Xu, J., et al. (2020). Stlearn: Integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. bioRxiv. DOI: 10.1101/2020.05.31.125658. |
[33] | Stickels, R.R., Murray, E., Kumar, P., et al. (2021). Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nat. Biotechnol. 39: 313−319. DOI: 10.1038/s41587-020-0739-1. |
[34] | Rodriques, S.G., Stickels, R.R., Goeva, A., et al. (2019). Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363: 1463−1467. DOI: 10.1126/science.aaw1219. |
[35] | Lopez, R., Li, B., Keren-Shaul, H., et al. (2022). Destvi identifies continuums of cell types in spatial transcriptomics data. Nat. Biotechnol. 40: 1360−1369. DOI: 10.1038/s41587-022-01272-8. |
[36] | Elosua-Bayes, M., Nieto, P., Mereu, E., et al. (2021). Spotlight: Seeded nmf regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 49: e50. DOI: 10.1093/nar/gkab043. |
[37] | Kleshchevnikov, V., Shmatko, A., Dann, E., et al. (2022). Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40: 661−671. DOI: 10.1038/s41587-021-01139-4. |
[38] | Biancalani, T., Scalia, G., Buffoni, L., et al. (2021). Deep learning and alignment of spatially resolved single-cell transcriptomes with tangram. Nat. Methods 18: 1352−1362. DOI: 10.1038/s41592-021-01264-7. |
[39] | Cable, D.M., Murray, E., Zou, L.S., et al. (2022). Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40: 517−526. DOI: 10.1038/s41587-021-00830-w. |
[40] | Liu, Z., Wu, D., Zhai, W., et al. (2023). Sonar enables cell type deconvolution with spatially weighted poisson-gamma model for spatial transcriptomics. Nat. Commun. 14: 4727. DOI: 10.1038/s41467-023-40458-9. |
[41] | Ma, Y. and Zhou, X. (2022). Spatially informed cell-type deconvolution for spatial transcriptomics. Nat. Biotechnol. 40: 1349−1359. DOI: 10.1038/s41587-022-01273-7. |
[42] | Petukhov, V., Xu, R.J., Soldatov, R.A., et al. (2022). Cell segmentation in imaging-based spatial transcriptomics. Nat. Biotechnol. 40: 345−354. DOI: 10.1038/s41587-021-01044-w. |
[43] | Xia, C., Fan, J., Emanuel, G., et al. (2019). Spatial transcriptome profiling by merfish reveals subcellular rna compartmentalization and cell cycle-dependent gene expression. Proc. Natl. Acad. Sci. USA 116: 19490−19499. DOI: 10.1073/pnas.1912459116. |
[44] | Eng, C.-H.L., Lawson, M., Zhu, Q., et al. (2019). Transcriptome-scale super-resolved imaging in tissues by rna seqfish+. Nature 568: 235−239. DOI: 10.1038/s41586-019-1049-y. |
[45] | Vickovic, S., Eraslan, G., Salmén, F., et al. (2019). High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16: 987−990. DOI: 10.1038/s41592-019-0548-y. |
[46] | Wei, X., Fu, S., Li, H., et al. (2022). Single-cell stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. Science 377: eabp9444. DOI: 10.1126/science.abp9444. |
[47] | Petukhov, V., Xu, R.J., Soldatov, R.A., et al. (2022). Cell segmentation in imaging-based spatial transcriptomics. Nat. Biotechnol. 40: 345−354. DOI: 10.1038/s41587-021-01044-w. |
[48] | Stringer, C., Wang, T., Michaelos, M., et al. (2021). Cellpose: A generalist algorithm for cellular segmentation. Nat. Methods 18 : 100−106. DOI: 10.1038/s41592-020-01018-x. |
[49] | Bannon, D., Moen, E., Schwartz, M., et al. (2021). Deepcell kiosk: Scaling deep learning–enabled cellular image analysis with kubernetes. Nat. Methods 18: 43−45. DOI: 10.1038/s41592-020-01023-0. |
[50] | Chen, H., Li, D., and Bar-Joseph, Z. (2023). Scs: Cell segmentation for high-resolution spatial transcriptomics. Nat. Methods 20: 1237−1243. DOI: 10.1038/s41592-023-01939-3. |
[51] | Aran, D., Looney, A.P., Liu, L., et al. (2019). Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20: 163−172. DOI: 10.1038/s41590-018-0276-y. |
[52] | de Kanter, J.K., Lijnzaad, P., Candelli, T., et al. (2019). Chetah: A selective, hierarchical cell type identification method for single-cell rna sequencing. Nucleic Acids Res. 47: e95. DOI: 10.1093/nar/gkz543. |
[53] | Lehar, J., Madissoon, E., Chevallier, J., et al. (2023). Mosaic: Multi-omic spatial atlas in cancer, effect on precision oncology. J. Clin. Oncol. 41: e15076−e15076. DOI: 10.1200/JCO.2023.41.16_suppl.e15076. |
[54] | Bernstein, M.N., Ma, Z., Gleicher, M., et al. (2021). Cello: Comprehensive and hierarchical cell type classification of human cells with the cell ontology. iScience 24: 101913. DOI: 10.1016/j.isci.2020.101913. |
[55] | Wang, X., Allen, W.E., Wright, M.A., et al. (2018). Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361 : eaat5691. DOI: 10.1126/science.aat5691. |
[56] | Javed, S., Mahmood, A., Fraz, M.M., et al. (2020). Cellular community detection for tissue phenotyping in colorectal cancer histology images. Medical Image Anal. 63 : 101696. DOI: 10.1016/j.media.2020.101696. |
[57] | Zhu, Q., Shah, S., Dries, R., et al. (2018). Identification of spatially associated subpopulations by combining scrnaseq and sequential fluorescence in situ hybridization data. Nat. Biotechnol. 36: 1183−1190. DOI: 10.1038/nbt.4260. |
[58] | Kim, J., Rustam, S., Mosquera, J.M., et al. (2022). Unsupervised discovery of tissue architecture in multiplexed imaging. Nat. Methods 19: 1653−1661. DOI: 10.1038/s41592-022-01657-2. |
[59] | Singhal, V., Chou, N., Lee, J., et al. (2024). Banksy unifies cell typing and tissue domain segmentation for scalable spatial omics data analysis. Nat. Genet. 56: 431−441. DOI: 10.1038/s41588-024-01664-3. |
[60] | Chang, Y., He, F., Wang, J., et al. (2022). Define and visualize pathological architectures of human tissues from spatially resolved transcriptomics using deep learning. Comput. Struct. Biotec. 20 : 4600-4617. DOI: 10.1016/j.csbj.2022.08.029. |
[61] | Sun, S., Zhu, J., and Zhou, X. (2020). Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat. Methods 17: 193−200. DOI: 10.1038/s41592-019-0701-7. |
[62] | Svensson, V., Teichmann, S.A., and Stegle, O. (2018). Spatialde: Identification of spatially variable genes. Nat. Methods 15: 343−346. DOI: 10.1038/nmeth.4636. |
[63] | Zhu, J., Sun, S., and Zhou, X. (2021). Spark-x: Non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies. Genome Biol. 22: 184. DOI: 10.1186/s13059-021-02404-0. |
[64] | Weber, L.M., Saha, A., Datta, A., et al. (2023). Nnsvg for the scalable identification of spatially variable genes using nearest-neighbor gaussian processes. Nat. Commun. 14: 4059. DOI: 10.1038/s41467-023-39748-z. |
[65] | Li, Z., Patel, Z.M., Song, D., et al. (2023). Benchmarking computational methods to identify spatially variable genes and peaks. bioRxiv. DOI: 10.1101/2023.12.02.569717. |
[66] | Wen, L., Li, G., Huang, T., et al. (2022). Single-cell technologies: From research to application. The Innovation 3: 100342. DOI: 10.1016/j.xinn.2022.100342. |
[67] | Longo, S.K., Guo, M.G., Ji, A.L., et al. (2021). Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22: 627−644. DOI: 10.1038/s41576-021-00370-8. |
[68] | Govek, K.W., Troisi, E.C., Miao, Z., et al. (2021). Single-cell transcriptomic analysis of mihc images via antigen mapping. Sci. Adv. 7 : eabc5464. DOI: 10.1126/sciadv.abc5464. |
[69] | Lopez, R., Nazaret, A., Langevin, M., et al. (2019). A joint model of unpaired data from scrna-seq and spatial transcriptomics for imputing missing gene expression measurements. arXiv:1905.02269. DOI: 10.48550/arXiv.1905.02269. |
[70] | Chen, S., Zhu, B., Huang, S., et al. (2023). Integration of spatial and single-cell data across modalities with weakly linked features. Nat. Biotechnol. 42 : 1096–1106. DOI: 10.1038/s41587-023-01935-0. |
[71] | Cable, D.M., Murray, E., Zou, L.S., et al. (2022). Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40: 517−526. DOI: 10.1038/s41587-021-00830-w. |
[72] | Elosua-Bayes, M., Nieto, P., Mereu, E., et al. (2021). Spotlight: Seeded nmf regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 49: e50−e50. DOI: 10.1093/nar/gkab043. |
[73] | Andersson, A., Bergenstråhle, J., Asp, M., et al. (2020). Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun. Biol. 3: 565. DOI: 10.1038/s42003-020-01247-y. |
[74] | Dong, R. and Yuan, G.-C. (2021). Spatialdwls: Accurate deconvolution of spatial transcriptomic data. Genome Biol. 22: 145. DOI: 10.1186/s13059-021-02362-7. |
[75] | Wei, R., He, S., Bai, S., et al. (2022). Spatial charting of single-cell transcriptomes in tissues. Nat. Biotechnol. 40: 1190−1199. DOI: 10.1038/s41587-022-01233-1. |
[76] | Zhang, D., Schroeder, A., Yan, H., et al. (2024). Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology. Nat. Biotechnol. 42 : 1372–1377. DOI: 10.1038/s41587-023-02019-9. |
[77] | Bergenstrahle, L., He, B., Bergenstrahle, J., et al. (2022). Super-resolved spatial transcriptomics by deep data fusion. Nat. Biotechnol. 40: 476−479. DOI: 10.1038/s41587-021-01075-3. |
[78] | Hu, J., Coleman, K., Zhang, D., et al. (2023). Deciphering tumor ecosystems at super resolution from spatial transcriptomics with tesla. Cell Syst. 14: 404−417.e404. DOI: 10.1016/j.cels.2023.03.008. |
[79] | Li, B., Bao, F., Hou, Y., et al. (2024). Tissue characterization at an enhanced resolution across spatial omics platforms with deep generative model. Nat. Commun. 15: 6541. DOI: 10.1038/s41467-024-50837-5. |
[80] | Shaban, M., Lassoued, W., Canubas, K., et al. (2023). Deep learning model imputes missing stains in multiplex images. bioRxiv:2023.2011.2021.568088. DOI: 10.1101/2023.11.21.568088. |
[81] | Cang, Z., Zhao, Y., Almet, A.A., et al. (2023). Screening cell-cell communication in spatial transcriptomics via collective optimal transport. Nat. Methods 20: 218−228. DOI: 10.1038/s41592-022-01728-4. |
[82] | Fischer, D.S., Schaar, A.C., and Theis, F.J. (2023). Modeling intercellular communication in tissues using spatial graphs of cells. Nat. Biotechnol. 41: 332−336. DOI: 10.1038/s41587-022-01467-z. |
[83] | Mason, K., Sathe, A., Hess, P.R., et al. (2024). Niche-de: Niche-differential gene expression analysis in spatial transcriptomics data identifies context-dependent cell-cell interactions. Genome Biol. 25: 14. DOI: 10.1186/s13059-023-03159-6. |
[84] | Miao, Z., Humphreys, B.D., McMahon, A.P., et al. (2021). Multi-omics integration in the age of million single-cell data. Nat. Rev. Nephrol. 17: 710−724. DOI: 10.1038/s41581-021-00463-x. |
[85] | Zhang, D., Deng, Y., Kukanja, P., et al. (2023). Spatial epigenome–transcriptome co-profiling of mammalian tissues. Nature 616: 113−122. DOI: 10.1038/s41586-023-05795-1. |
[86] | Wang, Z., Wang, W., Li, W., et al. (2024). Single-cell analysis reveals conserved regulons shaping muscle stem cell behavior during development and aging in mammals. The Innovation Life 2: 100075. DOI: 10.59717/j.xinn-life.2024.100075. |
[87] | Ben-Moshe, S. and Itzkovitz, S. (2019). Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 16: 395−410. DOI: 10.1038/s41575-019-0134-x. |
[88] | Andrews, T.S., Nakib, D., Perciani, C.T., et al. (2024). Single-cell, single-nucleus, and spatial transcriptomics characterization of the immunological landscape in the healthy and psc human liver. J. Hepatol. 80 : 730-743. DOI: 10.1016/j.jhep.2023.12.023. |
[89] | Andrews, T.S., Atif, J., Liu, J.C., et al. (2022). Single-cell, single-nucleus, and spatial rna sequencing of the human liver identifies cholangiocyte and mesenchymal heterogeneity. Hepatol. Commun. 6: 821−840. DOI: 10.1002/hep4.1854. |
[90] | Fudge, J.B. (2023). Spatial transcriptomics of the human heart. Nat. Biotechnol. 41: 1072. DOI: 10.1038/s41587-023-01918-1. |
[91] | Asp, M., Giacomello, S., Larsson, L., et al. (2019). A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179 :1647-1660.e1619. DOI: 10.1016/j.cell.2019.11.025. |
[92] | Kadur Lakshminarasimha Murthy, P., Sontake, V., Tata, A., et al. (2022). Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature 604: 111−119. DOI: 10.1038/s41586-022-04541-3. |
[93] | He, P., Lim, K., Sun, D., et al. (2022). A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell 185 : 4841-4860.e4825. DOI: 10.1016/j.cell.2022.11.005. |
[94] | Fawkner-Corbett, D., Antanaviciute, A., Parikh, K., et al. (2021). Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 184 : 810-826.e823. DOI: 10.1016/j.cell.2020.12.016. |
[95] | Hansen, J., Sealfon, R., Menon, R., et al. (2022). A reference tissue atlas for the human kidney. Sci. Adv. 8: eabn4965. DOI: 10.1126/sciadv.abn4965. |
[96] | Sountoulidis, A., Marco Salas, S., Braun, E., et al. (2023). A topographic atlas defines developmental origins of cell heterogeneity in the human embryonic lung. Nat. Cell Biol. 25: 351−365. DOI: 10.1038/s41556-022-01064-x. |
[97] | Olaniru, O.E., Kadolsky, U., Kannambath, S., et al. (2023). Single-cell transcriptomic and spatial landscapes of the developing human pancreas. Cell Metab. 35 :184-199.e185. DOI: 10.1016/j.cmet.2022.11.009. |
[98] | Kuppe, C., Ramirez Flores, R.O., Li, Z., et al. (2022). Spatial multi-omic map of human myocardial infarction. Nature 608: 766−777. DOI: 10.1038/s41586-022-05060-x. |
[99] | Mothes, R., Pascual-Reguant, A., Koehler, R., et al. (2023). Distinct tissue niches direct lung immunopathology via ccl18 and ccl21 in severe covid-19. Nat. Commun. 14: 791. DOI: 10.1038/s41467-023-36333-2. |
[100] | Boyd, D.F., Allen, E.K., Randolph, A.G., et al. (2020). Exuberant fibroblast activity compromises lung function via adamts4. Nature 587: 466−471. DOI: 10.1038/s41586-020-2877-5. |
[101] | Krausgruber, T., Redl, A., Barreca, D., et al. (2023). Single-cell and spatial transcriptomics reveal aberrant lymphoid developmental programs driving granuloma formation. Immunity 56 : 289-306 e287. DOI: 10.1016/j.immuni.2023.01.014. |
[102] | Snyder, M.P.Lin, S.Posgai, A., et al. (2019). The human body at cellular resolution: The nih human biomolecular atlas program. Nature 574: 187−192. DOI: 10.1038/s41586-019-1629-x. |
[103] | Kanemaru, K., Cranley, J., Muraro, D., et al. (2023). Spatially resolved multiomics of human cardiac niches. Nature 619: 801−810. DOI: 10.1038/s41586-023-06311-1. |
[104] | Li, X., Andrusivova, Z., Czarnewski, P., et al. (2023). Profiling spatiotemporal gene expression of the developing human spinal cord and implications for ependymoma origin. Nat. Neurosci. 26: 891−901. DOI: 10.1038/s41593-023-01312-9. |
[105] | Madissoon, E., Oliver, A.J., Kleshchevnikov, V., et al. (2023). A spatially resolved atlas of the human lung characterizes a gland-associated immune niche. Nat. Genet. 55: 66−77. DOI: 10.1038/s41588-022-01243-4. |
[106] | Xia, K., Sun, H.X., Li, J., et al. (2022). The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in arabidopsis leaves. Dev. Cell 57 : 1299-1310.e1294. DOI: 10.1016/j.devcel.2022.04.011. |
[107] | Scheres, B. (2001). Plant cell identity. The role of position and lineage. Plant Physiol. 125 : 112−114. DOI: 10.1104/pp.125.1.112. |
[108] | Du, J., Wang, Y., Chen, W., et al. (2023). High-resolution anatomical and spatial transcriptome analyses reveal two types of meristematic cell pools within the secondary vascular tissue of poplar stem. Mol. Plant 16: 809−828. DOI: 10.1016/j.molp.2023.03.005. |
[109] | Li, R., Wang, Z., Wang, J.W., et al. (2023). Combining single-cell rna sequencing with spatial transcriptome analysis reveals dynamic molecular maps of cambium differentiation in the primary and secondary growth of trees. Plant Commun. 4: 100665. DOI: 10.1016/j.xplc.2023.100665. |
[110] | Song, X., Guo, P., Xia, K., et al. (2023). Spatial transcriptomics reveals light-induced chlorenchyma cells involved in promoting shoot regeneration in tomato callus. Proc. Natl. Acad. Sci. USA 120: e2310163120. DOI: 10.1073/pnas.2310163120. |
[111] | Wahle, P., Brancati, G., Harmel, C., et al. (2023). Multimodal spatiotemporal phenotyping of human retinal organoid development. Nat. Biotechnol. 41: 1765−1775. DOI: 10.1038/s41587-023-01747-2. |
[112] | Sampath Kumar, A., Tian, L., Bolondi, A., et al. (2023). Spatiotemporal transcriptomic maps of whole mouse embryos at the onset of organogenesis. Nat. Genet. 55: 1176−1185. DOI: 10.1038/s41588-023-01435-6. |
[113] | Xu, Y. and Shi, W. (2023). Single-cell and spatial transcriptomics during human organogenesis. Nat. Cell Biol. 25 : 522-523. DOI: 10.1038/s41556-023-01113-z. |
[114] | Srivatsan, S.R., Regier, M.C., Barkan, E., et al. (2021). Embryo-scale, single-cell spatial transcriptomics. Science 373 : 111−117. DOI: 10.1126/science.abb9536. |
[115] | Legnini, I., Emmenegger, L., Zappulo, A., et al. (2023). Spatiotemporal, optogenetic control of gene expression in organoids. Nat. Methods 20: 1544−1552. DOI: 10.1038/s41592-023-01986-w. |
[116] | Markram, H., Muller, E., Ramaswamy, S., et al. (2015). Reconstruction and simulation of neocortical microcircuitry. Cell 163 : 456-492. DOI: 10.1016/j.cell.2015.09.029. |
[117] | Zhao, Z., Zhang, D., Yang, F., et al. (2022). Evolutionarily conservative and non-conservative regulatory networks during primate interneuron development revealed by single-cell rna and atac sequencing. Cell Res. 32 : 12. DOI: 10.1038/s41422-022-00757-0. |
[118] | Di Bella, D.J., Habibi, E., Stickels, R.R., et al. (2021). Molecular logic of cellular diversification in the mouse cerebral cortex. Nature 595: 554−559. DOI: 10.1038/s41586-021-03670-5. |
[119] | Tian, L., Chen, F., and Macosko, E.Z. (2022). The expanding vistas of spatial transcriptomics. Nat. Biotechnol. 41: 773−782. DOI: 10.1038/s41587-022-01448-2. |
[120] | Zhang, M., Eichhorn, S.W., Zingg, B., et al. (2021). Spatially resolved cell atlas of the mouse primary motor cortex by merfish. Nature 598: 137−143. DOI: 10.1038/s41586-021-03705-x. |
[121] | Callaway, E.M.Dong, H.-W.Ecker, J.R., et al. (2021). A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598: 86−102. DOI: 10.1038/s41586-021-03950-0. |
[122] | Maynard, K.R., Collado-Torres, L., Weber, L.M., et al. (2021). Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat. Neurosci. 24: 425−436. DOI: 10.1038/s41593-020-00787-0. |
[123] | Zeng, B., Liu, Z., Lu, Y., et al. (2023). The single-cell and spatial transcriptional landscape of human gastrulation and early brain development. Cell Stem Cell 30: 851−866.e857. DOI: 10.1016/j.stem.2023.04.016. |
[124] | La Manno, G., Siletti, K., Furlan, A., et al. (2021). Molecular architecture of the developing mouse brain. Nature 596: 92−96. DOI: 10.1038/s41586-021-03775-x. |
[125] | Rao, A., Barkley, D., França, G.S., et al. (2021). Exploring tissue architecture using spatial transcriptomics. Nature 596: 211−220. DOI: 10.1038/s41586-021-03634-9. |
[126] | Stogsdill, J.A., Kim, K., Binan, L., et al. (2022). Pyramidal neuron subtype diversity governs microglia states in the neocortex. Nature 608: 750−756. DOI: 10.1038/s41586-022-05056-7. |
[127] | Moffitt, J.R., Bambah-Mukku, D., Eichhorn, S.W., et al. (2018). Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362 . DOI: 10.1126/science.aau5324. |
[128] | Aldinger, K.A., Thomson, Z., Phelps, I.G., et al. (2021). Spatial and cell type transcriptional landscape of human cerebellar development. Nat. Neurosci. 24: 1163−1175. DOI: 10.1038/s41593-021-00872-y. |
[129] | Tavares-Ferreira, D., Shiers, S., Ray, P.R., et al. (2022). Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci. Transl. Med. 14: eabj8186. DOI. DOI: 10.1126/scitranslmed.abj8186. |
[130] | Chartrand, T., Dalley, R., Close, J., et al. (2023). Morphoelectric and transcriptomic divergence of the layer 1 interneuron repertoire in human versus mouse neocortex. Science 382: eadf0805. DOI: 10.1126/science.adf0805. |
[131] | Velmeshev, D., Perez, Y., Yan, Z., et al. (2023). Single-cell analysis of prenatal and postnatal human cortical development. Science 382: eadf0834. DOI: 10.1126/science.adf0834. |
[132] | Ayala, R., Shu, T., and Tsai, L.H. (2007). Trekking across the brain: The journey of neuronal migration. Cell 128 : 29−43. DOI: 10.1016/j.cell.2006.12.021. |
[133] | Bernard, A., Lubbers, L., Tanis, K., et al. (2012). Transcriptional architecture of the primate neocortex. Neuron 73: 1083−1099. DOI: 10.1016/j.neuron.2012.03.002. |
[134] | Ren, Y., Huang, Z., Zhou, L., et al. (2023). Spatial transcriptomics reveals niche-specific enrichment and vulnerabilities of radial glial stem-like cells in malignant gliomas. Nat. Commun. 14 . DOI: 10.1038/s41467-023-36707-6. |
[135] | Kim, C.N., Shin, D., Wang, A., et al. (2023). Spatiotemporal molecular dynamics of the developing human thalamus. Science 382 . DOI: 10.1126/science.adf9941. |
[136] | Jiang, F., Zhou, X., Qian, Y., et al. (2023). Simultaneous profiling of spatial gene expression and chromatin accessibility during mouse brain development. Nat. Methods 20: 1048−1057. DOI: 10.1038/s41592-023-01884-1. |
[137] | Allen, W.E., Blosser, T.R., Sullivan, Z.A., et al. (2023). Molecular and spatial signatures of mouse brain aging at single-cell resolution. Cell 186: 194−208.e118. DOI: 10.1016/j.cell.2022.12.010. |
[138] | Fang, R., Xia, C., Close, J.L., et al. (2022). Conservation and divergence of cortical cell organization in human and mouse revealed by merfish. Science 377: 56−62. DOI. DOI: 10.1126/science.abm1741. |
[139] | Jaffe, A.E., Hoeppner, D.J., Saito, T., et al. (2020). Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk. Nat. Neurosci. 23: 510−519. DOI: 10.1038/s41593-020-0604-z. |
[140] | Wu, J., Li, Y., Huang, Y., et al. (2023). Integrating spatial and single-nucleus transcriptomic data elucidates microglial-specific responses in female cynomolgus macaques with depressive-like behaviors. Nat. Neurosci. 26: 1352−1364. DOI: 10.1038/s41593-023-01379-4. |
[141] | Maniatis S, Ä.T., Vickovic S, Braine C, et al. (2019). Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science. 364 : 89-93. DOI: 10.1126/science.aav9776. |
[142] | Chen, W.-T., Lu, A., Craessaerts, K., et al. (2020). Spatial transcriptomics and in situ sequencing to study alzheimer’s disease. Cell 182: 976−991.e919. DOI: 10.1016/j.cell.2020.06.038. |
[143] | Chen, S., Chang, Y., Li, L., et al. (2022). Spatially resolved transcriptomics reveals genes associated with the vulnerability of middle temporal gyrus in alzheimer’s disease. Acta Neuropathol. Commun. 10 : 188. DOI: 10.1186/s40478-022-01494-6. |
[144] | Cain, A., Taga, M., McCabe, C., et al. (2023). Multicellular communities are perturbed in the aging human brain and alzheimer’s disease. Nat. Neurosci. 26: 1267−1280. DOI: 10.1038/s41593-023-01356-x. |
[145] | Kamath, T., Abdulraouf, A., Burris, S.J., et al. (2022). Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in parkinson’s disease. Nat. Neurosci. 25: 588−595. DOI: 10.1038/s41593-022-01061-1. |
[146] | Kaufmann, M., Schaupp, A.-L., Sun, R., et al. (2022). Identification of early neurodegenerative pathways in progressive multiple sclerosis. Nat. Neurosci. 25: 944−955. DOI: 10.1038/s41593-022-01097-3. |
[147] | Luo, W., Lin, G.N., Song, W., et al. (2021). Single-cell spatial transcriptomic analysis reveals common and divergent features of developing postnatal granule cerebellar cells and medulloblastoma. BMC Biol. 19 : 135. DOI: 10.1186/s12915-021-01071-8. |
[148] | Stacho, M., Herold, C., Rook, N., et al. (2020). A cortex-like canonical circuit in the avian forebrain. Science 369 : eabc5534. DOI: 10.1126/science.abc5534. |
[149] | Sun, Y.-C., Chen, X., Fischer, S., et al. (2021). Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections. Nat. Neurosci. 24: 873−885. DOI: 10.1038/s41593-021-00842-4. |
[150] | Klingler, E., Tomasello, U., Prados, J., et al. (2021). Temporal controls over inter-areal cortical projection neuron fate diversity. Nature 599: 453−457. DOI: 10.1038/s41586-021-04048-3. |
[151] | Siegel, R.L., Miller, K.D., Wagle, N.S., et al. (2023). Cancer statistics, 2023. CA Cancer J. Clin. 73: 17−48. DOI. DOI: 10.3322/caac.21763. |
[152] | Ren, X., Zhang, L., Zhang, Y., et al. (2021). Insights gained from single-cell analysis of immune cells in the tumor microenvironment. Annu. Rev. Immunol. 39 : 583−609. DOI: 10.1146/annurev-immunol-110519-071134. |
[153] | Kaymak, I., Williams, K.S., Cantor, J.R., et al. (2021). Immunometabolic interplay in the tumor microenvironment. Cancer Cell 39 : 28−37. DOI: 10.1016/j.ccell.2020.09.004. |
[154] | Pombo Antunes, A.R., Scheyltjens, I., Lodi, F., et al. (2021). Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat. Neurosci. 24: 595−610. DOI. DOI: 10.1038/s41593-020-00789-y. |
[155] | Abdel-Hafiz, H.A., Schafer, J.M., Chen, X., et al. (2023). Y chromosome loss in cancer drives growth by evasion of adaptive immunity. Nature 619 : 624–631 . DOI: 10.1038/s41586-023-06234-x. |
[156] | Tirosh, I., Izar, B., Prakadan, S.M., et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell rna-seq. Science 352 : 189−196. DOI: 10.1126/science.aad0501. |
[157] | Seferbekova, Z., Lomakin, A., Yates, L.R., et al. (2023). Spatial biology of cancer evolution. Nat. Rev. Genet. 24 : 295−313. DOI: 10.1038/s41576-022-00553-x. |
[158] | Ou, Z., Yin, J., Wu, L., et al. (2023). Spatial transcriptomics in cancer research: Opportunities and challenges. The Innovation Life 1: 100006. DOI: 10.59717/j.xinn-life.2023.100006. |
[159] | Wang, Q., Zhi, Y., Zi, M., et al. (2023). Spatially resolved transcriptomics technology facilitates cancer research. Adv. Sci. 10 : 2302558. DOI: 10.1002/advs.202302558. |
[160] | Wu, R., Guo, W., Qiu, X., et al. (2021). Comprehensive analysis of spatial architecture in primary liver cancer. Sci. Adv. 7: eabg3750. DOI: 10.1126/sciadv.abg3750. |
[161] | Sun, H., Zhang, D., Huang, C., et al. (2021). Hypoxic microenvironment induced spatial transcriptome changes in pancreatic cancer. Cancer Biol Med. 18 :616–630. DOI: 10.20892/j.issn.2095-3941.2021.0158. |
[162] | Ji, A.L., Rubin, A.J., Thrane, K., et al. (2020). Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell 182: 1661−1662. DOI: 10.1016/j.cell.2020.08.043. |
[163] | Wu, L., Yan, J., Bai, Y., et al. (2023). An invasive zone in human liver cancer identified by stereo-seq promotes hepatocyte–tumor cell crosstalk, local immunosuppression and tumor progression. Cell Res. 33 :1-19. DOI: 10.1038/s41422-023-00831-1. |
[164] | Ravi, V.M., Neidert, N., Will, P., et al. (2022). T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10. Nat. Commun. 13: 925. DOI: 10.1038/s41467-022-28523-1. |
[165] | Sautes-Fridman, C., Petitprez, F., Calderaro, J., et al. (2019). Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19: 307−325. DOI: 10.1038/s41568-019-0144-6. |
[166] | Sautes-Fridman, C., Verneau, J., Sun, C.M., et al. (2020). Tertiary lymphoid structures and b cells: Clinical impact and therapeutic modulation in cancer. Semin. Immunol. 48: 101406. DOI: 10.1016/j.smim.2020.101406. |
[167] | Dieu-Nosjean, M.C., Goc, J., Giraldo, N.A., et al. (2014). Tertiary lymphoid structures in cancer and beyond. Trends Immunol. 35: 571−580. DOI: 10.1016/j.it.2014.09.006. |
[168] | Helmink, B.A., Reddy, S.M., Gao, J., et al. (2020). B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577: 549−555. DOI: 10.1038/s41586-019-1922-8. |
[169] | Petitprez, F., de Reynies, A., Keung, E.Z., et al. (2020). B cells are associated with survival and immunotherapy response in sarcoma. Nature 577: 556−560. DOI: 10.1038/s41586-019-1906-8. |
[170] | Cabrita, R., Lauss, M., Sanna, A., et al. (2020). Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577: 561−565. DOI: 10.1038/s41586-019-1914-8. |
[171] | Meylan, M., Petitprez, F., Becht, E., et al. (2022). Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 55 : 527-541.e525. DOI: 10.1016/j.immuni.2022.02.001. |
[172] | Erickson, A., He, M., Berglund, E., et al. (2022). Spatially resolved clonal copy number alterations in benign and malignant tissue. Nature 608: 360−367. DOI: 10.1038/s41586-022-05023-2. |
[173] | Rao, A., Barkley, D., Franca, G.S., et al. (2021). Exploring tissue architecture using spatial transcriptomics. Nature 596: 211−220. DOI: 10.1038/s41586-021-03634-9. |
[174] | Liao, J., Lu, X., Shao, X., et al. (2021). Uncovering an organ's molecular architecture at single-cell resolution by spatially resolved transcriptomics. Trends Biotechnol. 39: 43−58. DOI: 10.1016/j.tibtech.2020.05.006. |
[175] | Chen, C., Wang, J., Pan, D., et al. (2023). Applications of multi-omics analysis in human diseases. MedComm (2020) 4 : e315. DOI: 10.1002/mco2.315. |
[176] | Van de Sande, B., Lee, J.S., Mutasa-Gottgens, E., et al. (2023). Applications of single-cell rna sequencing in drug discovery and development. Nat. Rev. Drug Discov. 22: 496−520. DOI: 10.1038/s41573-023-00688-4. |
[177] | Musa, A., Ghoraie, L.S., Zhang, S.D., et al. (2018). A review of connectivity map and computational approaches in pharmacogenomics. Brief Bioinform. 19: 506−523. DOI: 10.1093/bib/bbw112. |
[178] | Moffat, J.G., Vincent, F., Lee, J.A., et al. (2017). Opportunities and challenges in phenotypic drug discovery: An industry perspective. Nat. Rev. Drug Discov. 16: 531−543. DOI: 10.1038/nrd.2017.111. |
[179] | Gerdes, M.J., Sevinsky, C.J., Sood, A., et al. (2013). Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl. Acad. Sci. USA 110: 11982−11987. DOI: 10.1073/pnas.1300136110. |
[180] | Giesen, C., Wang, H.A., Schapiro, D., et al. (2014). Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11: 417−422. DOI: 10.1038/nmeth.2869. |
[181] | Angelo, M., Bendall, S.C., Finck, R., et al. (2014). Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20: 436−442. DOI: 10.1038/nm.3488. |
[182] | Gustafsson, M.G., Shao, L., Carlton, P.M., et al. (2008). Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94: 4957−4970. DOI: 10.1529/biophysj.107.120345. |
[183] | Moffitt, J.R., Hao, J., Wang, G., et al. (2016). High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proc. Natl. Acad. Sci. USA 113: 11046−11051. DOI: 10.1073/pnas.1612826113. |
[184] | Boutros, P.C., Fraser, M., Harding, N.J., et al. (2015). Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat. Genet. 47: 736−745. DOI: 10.1038/ng.3315. |
[185] | Tan, P.H., Chia, S.S., Toh, S.L., et al. (2016). Three-dimensional spatial configuration of tumour cells confers resistance to chemotherapy independent of drug delivery. J. Tissue Eng. Regen. Med. 10: 637−646. DOI: 10.1002/term.1800. |
[186] | De Jong, M.G. and Wood, K.B. (2018). Tuning spatial profiles of selection pressure to modulate the evolution of drug resistance. Phys. Rev. Lett. 120: 238102. DOI: 10.1103/PhysRevLett.120.238102. |
[187] | Backdahl, J., Franzen, L., Massier, L., et al. (2021). Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metab. 33 : 1869-1882.e1866. DOI: 10.1016/j.cmet.2021.07.018. |
[188] | Cai, S., Allam, M., and Coskun, A.F. (2020). Multiplex spatial bioimaging for combination therapy design. Trends Cancer 6: 813−818. DOI: 10.1016/j.trecan.2020.05.003. |
[189] | Jean Beltran, P.M., Federspiel, J.D., Sheng, X., et al. (2017). Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious diseases. Mol. Syst. Biol. 13: 922. DOI: 10.15252/msb.20167062. |
[190] | Yousuf, S., Qiu, M., Voith von Voithenberg, L., et al. (2023). Spatially resolved multi-omics single-cell analyses inform mechanisms of immune dysfunction in pancreatic cancer. Gastroenterology 165 : 891-908.e14. DOI: 10.1053/j.gastro.2023.05.036. |
[191] | Moffitt, J.R., Hao, J., Bambah-Mukku, D., et al. (2016). High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc. Natl. Acad. Sci. USA 113: 14456−14461. DOI: 10.1073/pnas.1617699113. |
[192] | Cross, A.R., de Andrea, C.E., Villalba-Esparza, M., et al. (2023). Spatial transcriptomic characterization of covid-19 pneumonitis identifies immune circuits related to tissue injury. JCI Insight 8 : e157837. DOI: 10.1172/jci.insight.157837. |
[193] | de Maar, J.S., Sofias, A.M., Porta Siegel, T., et al. (2020). Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour environment. Theranostics 10: 1884−1909. DOI: 10.7150/thno.38625. |
[194] | Andersson, A., Larsson, L., Stenbeck, L., et al. (2021). Spatial deconvolution of her2-positive breast cancer delineates tumor-associated cell type interactions. Nat. Commun. 12: 6012. DOI: 10.1038/s41467-021-26271-2. |
[195] | Zong, X., Zhang, J., Li, L., et al. (2023). Virtual histology of morphometric similarity network after risperidone monotherapy and imaging-epigenetic biomarkers for treatment response in first-episode schizophrenia. Asian J. Psychiatr. 80: 103406. DOI: 10.1016/j.ajp.2022.103406. |
[196] | Alarcon-Zendejas, A.P., Scavuzzo, A., Jimenez-Rios, M.A., et al. (2022). The promising role of new molecular biomarkers in prostate cancer: From coding and non-coding genes to artificial intelligence approaches. Prostate Cancer Prostatic Dis. 25: 431−443. DOI: 10.1038/s41391-022-00537-2. |
[197] | Chen, W., Liu, X., Xiao, Y., et al. (2015). Overcoming multiple drug resistance by spatial-temporal synchronization of epirubicin and pooled sirnas. Small 11: 1775−1781. DOI: 10.1002/smll.201402377. |
[198] | Wang, J., Mi, P., Lin, G., et al. (2016). Imaging-guided delivery of rnai for anticancer treatment. Adv. Drug Deliv. Rev. 104: 44−60. DOI: 10.1016/j.addr.2016.01.008. |
[199] | Madkour, L.H. (2022). Nanoparticle-based drug delivery in cancer treatment. Nanotechnology for drugs, vaccines and smart delivery systems. First edition (Taylor & Francis Group). DOI: 10.1201/9781003229674. |
[200] | Rauscher, I., Maurer, T., Steiger, K., et al. (2017). Image of the month: Multifocal 68ga prostate-specific membrane antigen ligand uptake in the skeleton in a man with both prostate cancer and multiple myeloma. Clin. Nucl. Med. 42: 547−548. DOI: 10.1097/RLU.0000000000001649. |
[201] | Tang, H., Yuan, J., Gong, Y.F., et al. (2022). Single-cell transcriptome sequencing reveals potential novel combination of biomarkers for antibody-based cancer therapeutics in hepatocellular carcinoma. Front. Genet. 13: 928256. DOI: 10.3389/fgene.2022.928256. |
[202] | Hickey, J.W., Neumann, E.K., Radtke, A.J., et al. (2022). Spatial mapping of protein composition and tissue organization: A primer for multiplexed antibody-based imaging. Nat. Methods 19: 284−295. DOI: 10.1038/s41592-021-01316-y. |
[203] | Williams, C.G., Lee, H.J., Asatsuma, T., et al. (2022). An introduction to spatial transcriptomics for biomedical research. Genome Med. 14: 68. DOI: 10.1186/s13073-022-01075-1. |
[204] | Yan, H., Shi, J., Dai, Y., et al. (2022). Technique integration of single-cell rna sequencing with spatially resolved transcriptomics in the tumor microenvironment. Cancer Cell Int. 22: 155. DOI: 10.1186/s12935-022-02580-4. |
[205] | El-Achkar, T.M., Eadon, M.T., Menon, R., et al. (2021). A multimodal and integrated approach to interrogate human kidney biopsies with rigor and reproducibility: Guidelines from the kidney precision medicine project. Physiol. Genomics 53: 1−11. DOI: 10.1152/physiolgenomics.00104.2020. |
Miao Z., Tian T., Chen W., et al., (2024). Spatial resolved transcriptomics: Computational insights into gene transcription across tissue and organ architecture in diverse applications. The Innovation Life 2(4): 100097. https://doi.org/10.59717/j.xinn-life.2024.100097 |
Novel insights unveiled by SRT techniques in organ tissues.
A concise overview of SRT in the realm of Neuroscience.
A synopsis of SRT applications in the field of oncology methodologies.