REVIEW   Open Access     Cite

Spatial resolved transcriptomics: Computational insights into gene transcription across tissue and organ architecture in diverse applications

    Show all affliationsShow less
More Information
    1. Exploring computational tools for analyzing complex Spatial Resolved Transcriptomics (SRT) datasets.

      SRT uncovers functional implications of cellular heterogeneity in development within spatial structures.

      SRT reshape our view of tumor structure heterogeneity, cancer progression, and personalized medicine.

      Decreasing SRT costs may reveal insights for drug development and delivery via 3D tissue structures.

  • The advent of spatially resolved transcriptomics (SRT) has revolutionized our understanding of spatial gene expression patterns within tissue architecture, shifting the paradigm of molecular biology and genetics. This breakthrough technology bridges the gap between genomics and histology, allowing for a more integrated view of cellular function and interaction within their native context. Despite the development of numerous computational tools, each with its own underlying assumptions, identifying appropriate ones for specific SRT data analyses remains challenging. Additionally, a comprehensive review addressing the conceptual frameworks and practical applications of SRT is absent. This review specifically focuses on elucidating key concepts and model selection during SRT analysis, providing critical assessments of prevailing computational methodologies. We also explore the transformative implications of applying SRT technology to various fields. The primary objective of this review is to facilitate the effective application of SRT, fostering a deeper insight into tissue architecture and cellular dynamics.
  • 加载中
  • [1] Wang, Z., Gerstein, M., and Snyder, M. (2009). Rna-seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 10: 57−63. DOI: 10.1038/nrg2484.

    View in Article CrossRef Google Scholar

    [2] Asp, M., Bergenstrahle, J., and Lundeberg, J. (2020). Spatially resolved transcriptomes-next generation tools for tissue exploration. Bioessays 42: e1900221. DOI: 10.1002/bies.201900221.

    View in Article CrossRef Google Scholar

    [3] Crosetto, N., Bienko, M., and van Oudenaarden, A. (2015). Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 16: 57−66. DOI: 10.1038/nrg3832.

    View in Article CrossRef Google Scholar

    [4] Moses, L. and Pachter, L. (2022). Museum of spatial transcriptomics. Nat. Methods 19: 534−546. DOI: 10.1038/s41592-022-01409-2.

    View in Article CrossRef Google Scholar

    [5] Marx, V. (2021). Method of the year: Spatially resolved transcriptomics. Nat. Methods 18: 9−14. DOI: 10.1038/s41592-020-01033-y.

    View in Article CrossRef Google Scholar

    [6] Moses, L. and Pachter, L. (2022). Museum of spatial transcriptomics. Nat. Methods 19: 534−546. DOI: 10.1038/s41592-022-01409-2.

    View in Article CrossRef Google Scholar

    [7] Zhu, Y., Xu, R., Wang, L., et al. (2023). A high-throughput sequencing technology for spatial translatomics at the single-cell level. The Innovation Life 1: 100036. DOI: 10.59717/j.xinn-life.2023.100036.

    View in Article CrossRef Google Scholar

    [8] Heydari, A.A. and Sindi, S.S. (2023). Deep learning in spatial transcriptomics: Learning from the next next-generation sequencing. Biophys. Rev. (Melville) 4: 011306. DOI: 10.1063/5.0091135.

    View in Article CrossRef Google Scholar

    [9] Jain, S. and Eadon, M.T. (2024). Spatial transcriptomics in health and disease. Nat. Rev. Nephrol. 20 : 659-671.DOI: 10.1038/s41581-024-00841-1.

    View in Article Google Scholar

    [10] Walsh, L.A. and Quail, D.F. (2023). Decoding the tumor microenvironment with spatial technologies. Nat. Immunol. 24: 1982−1993. DOI: 10.1038/s41590-023-01678-9.

    View in Article CrossRef Google Scholar

    [11] You, Y., Fu, Y., Li, L., et al. (2024). Systematic comparison of sequencing-based spatial transcriptomic methods. Nat. Methods 21 : 1743-1754. DOI: 10.1038/s41592-024-02325-3.

    View in Article Google Scholar

    [12] Dezem, F.S., Arjumand, W., DuBose, H., et al. (2024). Spatially resolved single-cell omics: Methods, challenges, and future perspectives. Annu. Rev. Biomed. Data Sci. 7: 131−153. DOI: 10.1146/annurev-biodatasci-102523-103640.

    View in Article CrossRef Google Scholar

    [13] Bressan, D., Battistoni, G., and Hannon, G.J. (2023). The dawn of spatial omics. Science 381: eabq4964. DOI: 10.1126/science.abq4964.

    View in Article CrossRef Google Scholar

    [14] Tian, L., Chen, F., and Macosko, E.Z. (2023). The expanding vistas of spatial transcriptomics. Nat. Biotechnol. 41: 773−782. DOI: 10.1038/s41587-022-01448-2.

    View in Article CrossRef Google Scholar

    [15] Palla, G., Fischer, D.S., Regev, A., et al. (2022). Spatial components of molecular tissue biology. Nat. Biotechnol. 40: 308−318. DOI: 10.1038/s41587-021-01182-1.

    View in Article CrossRef Google Scholar

    [16] Hao, Y., Stuart, T., Kowalski, M.H., et al. (2023). Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42 : 293-304. DOI: 10.1038/s41587-023-01767-y.

    View in Article Google Scholar

    [17] Palla, G., Spitzer, H., Klein, M., et al. (2022). Squidpy: A scalable framework for spatial omics analysis. Nat. Methods 19: 171−178. DOI: 10.1038/s41592-021-01358-2.

    View in Article CrossRef Google Scholar

    [18] Moffitt, J.R., Lundberg, E., and Heyn, H. (2022). The emerging landscape of spatial profiling technologies. Nat. Rev. Genet. 23: 741−759. DOI: 10.1038/s41576-022-00515-3.

    View in Article CrossRef Google Scholar

    [19] Vandereyken, K., Sifrim, A., Thienpont, B., et al. (2023). Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24: 494−515. DOI: 10.1038/s41576-023-00580-2.

    View in Article CrossRef Google Scholar

    [20] Zormpas, E., Queen, R., Comber, A., et al. (2023). Mapping the transcriptome: Realizing the full potential of spatial data analysis. Cell 186: 5677−5689. DOI: 10.1016/j.cell.2023.11.003.

    View in Article CrossRef Google Scholar

    [21] Goodchild, M.F. (1991). Geographic information systems. Prog. Hum. Geogr. 15: 194−200. DOI: 10.1177/030913259101500205.

    View in Article CrossRef Google Scholar

    [22] Zhao, E., Stone, M.R., Ren, X., et al. (2021). Spatial transcriptomics at subspot resolution with bayesspace. Nat. Biotechnol. 39: 1375−1384. DOI: 10.1038/s41587-021-00935-2.

    View in Article CrossRef Google Scholar

    [23] Dries, R., Zhu, Q., Dong, R., et al. (2021). Giotto: A toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22: 78. DOI: 10.1186/s13059-021-02286-2.

    View in Article CrossRef Google Scholar

    [24] Zhong, C., Tian, T., and Wei, Z. (2023). Hidden markov random field models for cell-type assignment of spatially resolved transcriptomics. Bioinformatics 39 : btad641. DOI: 10.1093/bioinformatics/btad641.

    View in Article Google Scholar

    [25] Shang, L. and Zhou, X. (2022). Spatially aware dimension reduction for spatial transcriptomics. Nat. Commun. 13: 7203. DOI: 10.1038/s41467-022-34879-1.

    View in Article CrossRef Google Scholar

    [26] Hu, J., Li, X., Coleman, K., et al. (2021). Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat. Methods 18: 1342−1351. DOI: 10.1038/s41592-021-01255-8.

    View in Article CrossRef Google Scholar

    [27] Long, Y., Ang, K.S., Li, M., et al. (2023). Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. Nat. Commun. 14: 1155. DOI: 10.1038/s41467-023-36796-3.

    View in Article CrossRef Google Scholar

    [28] Dong, K. and Zhang, S. (2022). Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat. Commun. 13: 1739. DOI: 10.1038/s41467-022-29439-6.

    View in Article CrossRef Google Scholar

    [29] Lin, X., Gao, L., Whitener, N., et al. (2022). A model-based constrained deep learning clustering approach for spatially resolved single-cell data. Genome Res. 32: 1906−1917. DOI: 10.1101/gr.276477.121.

    View in Article CrossRef Google Scholar

    [30] Tian, T., Zhang, J., Lin, X., et al. (2021). Model-based deep embedding for constrained clustering analysis of single cell rna-seq data. Nat. Commun. 12: 1873. DOI: 10.1038/s41467-021-22008-3.

    View in Article CrossRef Google Scholar

    [31] Tian, T., Zhang, J., Lin, X., et al. (2023). Dependency-aware deep generative models for multitasking analysis of spatial genomics data. Nat. Methods 21 : 1501–1513 DOI: 10.1038/s41592-024-02257-y.

    View in Article Google Scholar

    [32] Pham, D., Tan, X., Xu, J., et al. (2020). Stlearn: Integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. bioRxiv. DOI: 10.1101/2020.05.31.125658.

    View in Article Google Scholar

    [33] Stickels, R.R., Murray, E., Kumar, P., et al. (2021). Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. Nat. Biotechnol. 39: 313−319. DOI: 10.1038/s41587-020-0739-1.

    View in Article CrossRef Google Scholar

    [34] Rodriques, S.G., Stickels, R.R., Goeva, A., et al. (2019). Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363: 1463−1467. DOI: 10.1126/science.aaw1219.

    View in Article CrossRef Google Scholar

    [35] Lopez, R., Li, B., Keren-Shaul, H., et al. (2022). Destvi identifies continuums of cell types in spatial transcriptomics data. Nat. Biotechnol. 40: 1360−1369. DOI: 10.1038/s41587-022-01272-8.

    View in Article CrossRef Google Scholar

    [36] Elosua-Bayes, M., Nieto, P., Mereu, E., et al. (2021). Spotlight: Seeded nmf regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 49: e50. DOI: 10.1093/nar/gkab043.

    View in Article CrossRef Google Scholar

    [37] Kleshchevnikov, V., Shmatko, A., Dann, E., et al. (2022). Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40: 661−671. DOI: 10.1038/s41587-021-01139-4.

    View in Article CrossRef Google Scholar

    [38] Biancalani, T., Scalia, G., Buffoni, L., et al. (2021). Deep learning and alignment of spatially resolved single-cell transcriptomes with tangram. Nat. Methods 18: 1352−1362. DOI: 10.1038/s41592-021-01264-7.

    View in Article CrossRef Google Scholar

    [39] Cable, D.M., Murray, E., Zou, L.S., et al. (2022). Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40: 517−526. DOI: 10.1038/s41587-021-00830-w.

    View in Article CrossRef Google Scholar

    [40] Liu, Z., Wu, D., Zhai, W., et al. (2023). Sonar enables cell type deconvolution with spatially weighted poisson-gamma model for spatial transcriptomics. Nat. Commun. 14: 4727. DOI: 10.1038/s41467-023-40458-9.

    View in Article CrossRef Google Scholar

    [41] Ma, Y. and Zhou, X. (2022). Spatially informed cell-type deconvolution for spatial transcriptomics. Nat. Biotechnol. 40: 1349−1359. DOI: 10.1038/s41587-022-01273-7.

    View in Article CrossRef Google Scholar

    [42] Petukhov, V., Xu, R.J., Soldatov, R.A., et al. (2022). Cell segmentation in imaging-based spatial transcriptomics. Nat. Biotechnol. 40: 345−354. DOI: 10.1038/s41587-021-01044-w.

    View in Article CrossRef Google Scholar

    [43] Xia, C., Fan, J., Emanuel, G., et al. (2019). Spatial transcriptome profiling by merfish reveals subcellular rna compartmentalization and cell cycle-dependent gene expression. Proc. Natl. Acad. Sci. USA 116: 19490−19499. DOI: 10.1073/pnas.1912459116.

    View in Article CrossRef Google Scholar

    [44] Eng, C.-H.L., Lawson, M., Zhu, Q., et al. (2019). Transcriptome-scale super-resolved imaging in tissues by rna seqfish+. Nature 568: 235−239. DOI: 10.1038/s41586-019-1049-y.

    View in Article CrossRef Google Scholar

    [45] Vickovic, S., Eraslan, G., Salmén, F., et al. (2019). High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16: 987−990. DOI: 10.1038/s41592-019-0548-y.

    View in Article CrossRef Google Scholar

    [46] Wei, X., Fu, S., Li, H., et al. (2022). Single-cell stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. Science 377: eabp9444. DOI: 10.1126/science.abp9444.

    View in Article CrossRef Google Scholar

    [47] Petukhov, V., Xu, R.J., Soldatov, R.A., et al. (2022). Cell segmentation in imaging-based spatial transcriptomics. Nat. Biotechnol. 40: 345−354. DOI: 10.1038/s41587-021-01044-w.

    View in Article CrossRef Google Scholar

    [48] Stringer, C., Wang, T., Michaelos, M., et al. (2021). Cellpose: A generalist algorithm for cellular segmentation. Nat. Methods 18 : 100−106. DOI: 10.1038/s41592-020-01018-x.

    View in Article Google Scholar

    [49] Bannon, D., Moen, E., Schwartz, M., et al. (2021). Deepcell kiosk: Scaling deep learning–enabled cellular image analysis with kubernetes. Nat. Methods 18: 43−45. DOI: 10.1038/s41592-020-01023-0.

    View in Article CrossRef Google Scholar

    [50] Chen, H., Li, D., and Bar-Joseph, Z. (2023). Scs: Cell segmentation for high-resolution spatial transcriptomics. Nat. Methods 20: 1237−1243. DOI: 10.1038/s41592-023-01939-3.

    View in Article CrossRef Google Scholar

    [51] Aran, D., Looney, A.P., Liu, L., et al. (2019). Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20: 163−172. DOI: 10.1038/s41590-018-0276-y.

    View in Article CrossRef Google Scholar

    [52] de Kanter, J.K., Lijnzaad, P., Candelli, T., et al. (2019). Chetah: A selective, hierarchical cell type identification method for single-cell rna sequencing. Nucleic Acids Res. 47: e95. DOI: 10.1093/nar/gkz543.

    View in Article CrossRef Google Scholar

    [53] Lehar, J., Madissoon, E., Chevallier, J., et al. (2023). Mosaic: Multi-omic spatial atlas in cancer, effect on precision oncology. J. Clin. Oncol. 41: e15076−e15076. DOI: 10.1200/JCO.2023.41.16_suppl.e15076.

    View in Article CrossRef Google Scholar

    [54] Bernstein, M.N., Ma, Z., Gleicher, M., et al. (2021). Cello: Comprehensive and hierarchical cell type classification of human cells with the cell ontology. iScience 24: 101913. DOI: 10.1016/j.isci.2020.101913.

    View in Article CrossRef Google Scholar

    [55] Wang, X., Allen, W.E., Wright, M.A., et al. (2018). Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361 : eaat5691. DOI: 10.1126/science.aat5691.

    View in Article Google Scholar

    [56] Javed, S., Mahmood, A., Fraz, M.M., et al. (2020). Cellular community detection for tissue phenotyping in colorectal cancer histology images. Medical Image Anal. 63 : 101696. DOI: 10.1016/j.media.2020.101696.

    View in Article Google Scholar

    [57] Zhu, Q., Shah, S., Dries, R., et al. (2018). Identification of spatially associated subpopulations by combining scrnaseq and sequential fluorescence in situ hybridization data. Nat. Biotechnol. 36: 1183−1190. DOI: 10.1038/nbt.4260.

    View in Article CrossRef Google Scholar

    [58] Kim, J., Rustam, S., Mosquera, J.M., et al. (2022). Unsupervised discovery of tissue architecture in multiplexed imaging. Nat. Methods 19: 1653−1661. DOI: 10.1038/s41592-022-01657-2.

    View in Article CrossRef Google Scholar

    [59] Singhal, V., Chou, N., Lee, J., et al. (2024). Banksy unifies cell typing and tissue domain segmentation for scalable spatial omics data analysis. Nat. Genet. 56: 431−441. DOI: 10.1038/s41588-024-01664-3.

    View in Article CrossRef Google Scholar

    [60] Chang, Y., He, F., Wang, J., et al. (2022). Define and visualize pathological architectures of human tissues from spatially resolved transcriptomics using deep learning. Comput. Struct. Biotec. 20 : 4600-4617. DOI: 10.1016/j.csbj.2022.08.029.

    View in Article Google Scholar

    [61] Sun, S., Zhu, J., and Zhou, X. (2020). Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat. Methods 17: 193−200. DOI: 10.1038/s41592-019-0701-7.

    View in Article CrossRef Google Scholar

    [62] Svensson, V., Teichmann, S.A., and Stegle, O. (2018). Spatialde: Identification of spatially variable genes. Nat. Methods 15: 343−346. DOI: 10.1038/nmeth.4636.

    View in Article CrossRef Google Scholar

    [63] Zhu, J., Sun, S., and Zhou, X. (2021). Spark-x: Non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies. Genome Biol. 22: 184. DOI: 10.1186/s13059-021-02404-0.

    View in Article CrossRef Google Scholar

    [64] Weber, L.M., Saha, A., Datta, A., et al. (2023). Nnsvg for the scalable identification of spatially variable genes using nearest-neighbor gaussian processes. Nat. Commun. 14: 4059. DOI: 10.1038/s41467-023-39748-z.

    View in Article CrossRef Google Scholar

    [65] Li, Z., Patel, Z.M., Song, D., et al. (2023). Benchmarking computational methods to identify spatially variable genes and peaks. bioRxiv. DOI: 10.1101/2023.12.02.569717.

    View in Article Google Scholar

    [66] Wen, L., Li, G., Huang, T., et al. (2022). Single-cell technologies: From research to application. The Innovation 3: 100342. DOI: 10.1016/j.xinn.2022.100342.

    View in Article CrossRef Google Scholar

    [67] Longo, S.K., Guo, M.G., Ji, A.L., et al. (2021). Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22: 627−644. DOI: 10.1038/s41576-021-00370-8.

    View in Article CrossRef Google Scholar

    [68] Govek, K.W., Troisi, E.C., Miao, Z., et al. (2021). Single-cell transcriptomic analysis of mihc images via antigen mapping. Sci. Adv. 7 : eabc5464. DOI: 10.1126/sciadv.abc5464.

    View in Article Google Scholar

    [69] Lopez, R., Nazaret, A., Langevin, M., et al. (2019). A joint model of unpaired data from scrna-seq and spatial transcriptomics for imputing missing gene expression measurements. arXiv:1905.02269. DOI: 10.48550/arXiv.1905.02269.

    View in Article Google Scholar

    [70] Chen, S., Zhu, B., Huang, S., et al. (2023). Integration of spatial and single-cell data across modalities with weakly linked features. Nat. Biotechnol. 42 : 1096–1106. DOI: 10.1038/s41587-023-01935-0.

    View in Article Google Scholar

    [71] Cable, D.M., Murray, E., Zou, L.S., et al. (2022). Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40: 517−526. DOI: 10.1038/s41587-021-00830-w.

    View in Article CrossRef Google Scholar

    [72] Elosua-Bayes, M., Nieto, P., Mereu, E., et al. (2021). Spotlight: Seeded nmf regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 49: e50−e50. DOI: 10.1093/nar/gkab043.

    View in Article CrossRef Google Scholar

    [73] Andersson, A., Bergenstråhle, J., Asp, M., et al. (2020). Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun. Biol. 3: 565. DOI: 10.1038/s42003-020-01247-y.

    View in Article CrossRef Google Scholar

    [74] Dong, R. and Yuan, G.-C. (2021). Spatialdwls: Accurate deconvolution of spatial transcriptomic data. Genome Biol. 22: 145. DOI: 10.1186/s13059-021-02362-7.

    View in Article CrossRef Google Scholar

    [75] Wei, R., He, S., Bai, S., et al. (2022). Spatial charting of single-cell transcriptomes in tissues. Nat. Biotechnol. 40: 1190−1199. DOI: 10.1038/s41587-022-01233-1.

    View in Article CrossRef Google Scholar

    [76] Zhang, D., Schroeder, A., Yan, H., et al. (2024). Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology. Nat. Biotechnol. 42 : 1372–1377. DOI: 10.1038/s41587-023-02019-9.

    View in Article Google Scholar

    [77] Bergenstrahle, L., He, B., Bergenstrahle, J., et al. (2022). Super-resolved spatial transcriptomics by deep data fusion. Nat. Biotechnol. 40: 476−479. DOI: 10.1038/s41587-021-01075-3.

    View in Article CrossRef Google Scholar

    [78] Hu, J., Coleman, K., Zhang, D., et al. (2023). Deciphering tumor ecosystems at super resolution from spatial transcriptomics with tesla. Cell Syst. 14: 404−417.e404. DOI: 10.1016/j.cels.2023.03.008.

    View in Article CrossRef Google Scholar

    [79] Li, B., Bao, F., Hou, Y., et al. (2024). Tissue characterization at an enhanced resolution across spatial omics platforms with deep generative model. Nat. Commun. 15: 6541. DOI: 10.1038/s41467-024-50837-5.

    View in Article CrossRef Google Scholar

    [80] Shaban, M., Lassoued, W., Canubas, K., et al. (2023). Deep learning model imputes missing stains in multiplex images. bioRxiv:2023.2011.2021.568088. DOI: 10.1101/2023.11.21.568088.

    View in Article Google Scholar

    [81] Cang, Z., Zhao, Y., Almet, A.A., et al. (2023). Screening cell-cell communication in spatial transcriptomics via collective optimal transport. Nat. Methods 20: 218−228. DOI: 10.1038/s41592-022-01728-4.

    View in Article CrossRef Google Scholar

    [82] Fischer, D.S., Schaar, A.C., and Theis, F.J. (2023). Modeling intercellular communication in tissues using spatial graphs of cells. Nat. Biotechnol. 41: 332−336. DOI: 10.1038/s41587-022-01467-z.

    View in Article CrossRef Google Scholar

    [83] Mason, K., Sathe, A., Hess, P.R., et al. (2024). Niche-de: Niche-differential gene expression analysis in spatial transcriptomics data identifies context-dependent cell-cell interactions. Genome Biol. 25: 14. DOI: 10.1186/s13059-023-03159-6.

    View in Article CrossRef Google Scholar

    [84] Miao, Z., Humphreys, B.D., McMahon, A.P., et al. (2021). Multi-omics integration in the age of million single-cell data. Nat. Rev. Nephrol. 17: 710−724. DOI: 10.1038/s41581-021-00463-x.

    View in Article CrossRef Google Scholar

    [85] Zhang, D., Deng, Y., Kukanja, P., et al. (2023). Spatial epigenome–transcriptome co-profiling of mammalian tissues. Nature 616: 113−122. DOI: 10.1038/s41586-023-05795-1.

    View in Article CrossRef Google Scholar

    [86] Wang, Z., Wang, W., Li, W., et al. (2024). Single-cell analysis reveals conserved regulons shaping muscle stem cell behavior during development and aging in mammals. The Innovation Life 2: 100075. DOI: 10.59717/j.xinn-life.2024.100075.

    View in Article CrossRef Google Scholar

    [87] Ben-Moshe, S. and Itzkovitz, S. (2019). Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 16: 395−410. DOI: 10.1038/s41575-019-0134-x.

    View in Article CrossRef Google Scholar

    [88] Andrews, T.S., Nakib, D., Perciani, C.T., et al. (2024). Single-cell, single-nucleus, and spatial transcriptomics characterization of the immunological landscape in the healthy and psc human liver. J. Hepatol. 80 : 730-743. DOI: 10.1016/j.jhep.2023.12.023.

    View in Article Google Scholar

    [89] Andrews, T.S., Atif, J., Liu, J.C., et al. (2022). Single-cell, single-nucleus, and spatial rna sequencing of the human liver identifies cholangiocyte and mesenchymal heterogeneity. Hepatol. Commun. 6: 821−840. DOI: 10.1002/hep4.1854.

    View in Article CrossRef Google Scholar

    [90] Fudge, J.B. (2023). Spatial transcriptomics of the human heart. Nat. Biotechnol. 41: 1072. DOI: 10.1038/s41587-023-01918-1.

    View in Article CrossRef Google Scholar

    [91] Asp, M., Giacomello, S., Larsson, L., et al. (2019). A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179 :1647-1660.e1619. DOI: 10.1016/j.cell.2019.11.025.

    View in Article Google Scholar

    [92] Kadur Lakshminarasimha Murthy, P., Sontake, V., Tata, A., et al. (2022). Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature 604: 111−119. DOI: 10.1038/s41586-022-04541-3.

    View in Article CrossRef Google Scholar

    [93] He, P., Lim, K., Sun, D., et al. (2022). A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell 185 : 4841-4860.e4825. DOI: 10.1016/j.cell.2022.11.005.

    View in Article Google Scholar

    [94] Fawkner-Corbett, D., Antanaviciute, A., Parikh, K., et al. (2021). Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 184 : 810-826.e823. DOI: 10.1016/j.cell.2020.12.016.

    View in Article Google Scholar

    [95] Hansen, J., Sealfon, R., Menon, R., et al. (2022). A reference tissue atlas for the human kidney. Sci. Adv. 8: eabn4965. DOI: 10.1126/sciadv.abn4965.

    View in Article CrossRef Google Scholar

    [96] Sountoulidis, A., Marco Salas, S., Braun, E., et al. (2023). A topographic atlas defines developmental origins of cell heterogeneity in the human embryonic lung. Nat. Cell Biol. 25: 351−365. DOI: 10.1038/s41556-022-01064-x.

    View in Article CrossRef Google Scholar

    [97] Olaniru, O.E., Kadolsky, U., Kannambath, S., et al. (2023). Single-cell transcriptomic and spatial landscapes of the developing human pancreas. Cell Metab. 35 :184-199.e185. DOI: 10.1016/j.cmet.2022.11.009.

    View in Article Google Scholar

    [98] Kuppe, C., Ramirez Flores, R.O., Li, Z., et al. (2022). Spatial multi-omic map of human myocardial infarction. Nature 608: 766−777. DOI: 10.1038/s41586-022-05060-x.

    View in Article CrossRef Google Scholar

    [99] Mothes, R., Pascual-Reguant, A., Koehler, R., et al. (2023). Distinct tissue niches direct lung immunopathology via ccl18 and ccl21 in severe covid-19. Nat. Commun. 14: 791. DOI: 10.1038/s41467-023-36333-2.

    View in Article CrossRef Google Scholar

    [100] Boyd, D.F., Allen, E.K., Randolph, A.G., et al. (2020). Exuberant fibroblast activity compromises lung function via adamts4. Nature 587: 466−471. DOI: 10.1038/s41586-020-2877-5.

    View in Article CrossRef Google Scholar

    [101] Krausgruber, T., Redl, A., Barreca, D., et al. (2023). Single-cell and spatial transcriptomics reveal aberrant lymphoid developmental programs driving granuloma formation. Immunity 56 : 289-306 e287. DOI: 10.1016/j.immuni.2023.01.014.

    View in Article Google Scholar

    [102] Snyder, M.P.Lin, S.Posgai, A., et al. (2019). The human body at cellular resolution: The nih human biomolecular atlas program. Nature 574: 187−192. DOI: 10.1038/s41586-019-1629-x.

    View in Article CrossRef Google Scholar

    [103] Kanemaru, K., Cranley, J., Muraro, D., et al. (2023). Spatially resolved multiomics of human cardiac niches. Nature 619: 801−810. DOI: 10.1038/s41586-023-06311-1.

    View in Article CrossRef Google Scholar

    [104] Li, X., Andrusivova, Z., Czarnewski, P., et al. (2023). Profiling spatiotemporal gene expression of the developing human spinal cord and implications for ependymoma origin. Nat. Neurosci. 26: 891−901. DOI: 10.1038/s41593-023-01312-9.

    View in Article CrossRef Google Scholar

    [105] Madissoon, E., Oliver, A.J., Kleshchevnikov, V., et al. (2023). A spatially resolved atlas of the human lung characterizes a gland-associated immune niche. Nat. Genet. 55: 66−77. DOI: 10.1038/s41588-022-01243-4.

    View in Article CrossRef Google Scholar

    [106] Xia, K., Sun, H.X., Li, J., et al. (2022). The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in arabidopsis leaves. Dev. Cell 57 : 1299-1310.e1294. DOI: 10.1016/j.devcel.2022.04.011.

    View in Article Google Scholar

    [107] Scheres, B. (2001). Plant cell identity. The role of position and lineage. Plant Physiol. 125 : 112−114. DOI: 10.1104/pp.125.1.112.

    View in Article Google Scholar

    [108] Du, J., Wang, Y., Chen, W., et al. (2023). High-resolution anatomical and spatial transcriptome analyses reveal two types of meristematic cell pools within the secondary vascular tissue of poplar stem. Mol. Plant 16: 809−828. DOI: 10.1016/j.molp.2023.03.005.

    View in Article CrossRef Google Scholar

    [109] Li, R., Wang, Z., Wang, J.W., et al. (2023). Combining single-cell rna sequencing with spatial transcriptome analysis reveals dynamic molecular maps of cambium differentiation in the primary and secondary growth of trees. Plant Commun. 4: 100665. DOI: 10.1016/j.xplc.2023.100665.

    View in Article CrossRef Google Scholar

    [110] Song, X., Guo, P., Xia, K., et al. (2023). Spatial transcriptomics reveals light-induced chlorenchyma cells involved in promoting shoot regeneration in tomato callus. Proc. Natl. Acad. Sci. USA 120: e2310163120. DOI: 10.1073/pnas.2310163120.

    View in Article CrossRef Google Scholar

    [111] Wahle, P., Brancati, G., Harmel, C., et al. (2023). Multimodal spatiotemporal phenotyping of human retinal organoid development. Nat. Biotechnol. 41: 1765−1775. DOI: 10.1038/s41587-023-01747-2.

    View in Article CrossRef Google Scholar

    [112] Sampath Kumar, A., Tian, L., Bolondi, A., et al. (2023). Spatiotemporal transcriptomic maps of whole mouse embryos at the onset of organogenesis. Nat. Genet. 55: 1176−1185. DOI: 10.1038/s41588-023-01435-6.

    View in Article CrossRef Google Scholar

    [113] Xu, Y. and Shi, W. (2023). Single-cell and spatial transcriptomics during human organogenesis. Nat. Cell Biol. 25 : 522-523. DOI: 10.1038/s41556-023-01113-z.

    View in Article Google Scholar

    [114] Srivatsan, S.R., Regier, M.C., Barkan, E., et al. (2021). Embryo-scale, single-cell spatial transcriptomics. Science 373 : 111−117. DOI: 10.1126/science.abb9536.

    View in Article Google Scholar

    [115] Legnini, I., Emmenegger, L., Zappulo, A., et al. (2023). Spatiotemporal, optogenetic control of gene expression in organoids. Nat. Methods 20: 1544−1552. DOI: 10.1038/s41592-023-01986-w.

    View in Article CrossRef Google Scholar

    [116] Markram, H., Muller, E., Ramaswamy, S., et al. (2015). Reconstruction and simulation of neocortical microcircuitry. Cell 163 : 456-492. DOI: 10.1016/j.cell.2015.09.029.

    View in Article Google Scholar

    [117] Zhao, Z., Zhang, D., Yang, F., et al. (2022). Evolutionarily conservative and non-conservative regulatory networks during primate interneuron development revealed by single-cell rna and atac sequencing. Cell Res. 32 : 12. DOI: 10.1038/s41422-022-00757-0.

    View in Article Google Scholar

    [118] Di Bella, D.J., Habibi, E., Stickels, R.R., et al. (2021). Molecular logic of cellular diversification in the mouse cerebral cortex. Nature 595: 554−559. DOI: 10.1038/s41586-021-03670-5.

    View in Article CrossRef Google Scholar

    [119] Tian, L., Chen, F., and Macosko, E.Z. (2022). The expanding vistas of spatial transcriptomics. Nat. Biotechnol. 41: 773−782. DOI: 10.1038/s41587-022-01448-2.

    View in Article CrossRef Google Scholar

    [120] Zhang, M., Eichhorn, S.W., Zingg, B., et al. (2021). Spatially resolved cell atlas of the mouse primary motor cortex by merfish. Nature 598: 137−143. DOI: 10.1038/s41586-021-03705-x.

    View in Article CrossRef Google Scholar

    [121] Callaway, E.M.Dong, H.-W.Ecker, J.R., et al. (2021). A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598: 86−102. DOI: 10.1038/s41586-021-03950-0.

    View in Article CrossRef Google Scholar

    [122] Maynard, K.R., Collado-Torres, L., Weber, L.M., et al. (2021). Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat. Neurosci. 24: 425−436. DOI: 10.1038/s41593-020-00787-0.

    View in Article CrossRef Google Scholar

    [123] Zeng, B., Liu, Z., Lu, Y., et al. (2023). The single-cell and spatial transcriptional landscape of human gastrulation and early brain development. Cell Stem Cell 30: 851−866.e857. DOI: 10.1016/j.stem.2023.04.016.

    View in Article CrossRef Google Scholar

    [124] La Manno, G., Siletti, K., Furlan, A., et al. (2021). Molecular architecture of the developing mouse brain. Nature 596: 92−96. DOI: 10.1038/s41586-021-03775-x.

    View in Article CrossRef Google Scholar

    [125] Rao, A., Barkley, D., França, G.S., et al. (2021). Exploring tissue architecture using spatial transcriptomics. Nature 596: 211−220. DOI: 10.1038/s41586-021-03634-9.

    View in Article CrossRef Google Scholar

    [126] Stogsdill, J.A., Kim, K., Binan, L., et al. (2022). Pyramidal neuron subtype diversity governs microglia states in the neocortex. Nature 608: 750−756. DOI: 10.1038/s41586-022-05056-7.

    View in Article CrossRef Google Scholar

    [127] Moffitt, J.R., Bambah-Mukku, D., Eichhorn, S.W., et al. (2018). Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362 . DOI: 10.1126/science.aau5324.

    View in Article Google Scholar

    [128] Aldinger, K.A., Thomson, Z., Phelps, I.G., et al. (2021). Spatial and cell type transcriptional landscape of human cerebellar development. Nat. Neurosci. 24: 1163−1175. DOI: 10.1038/s41593-021-00872-y.

    View in Article CrossRef Google Scholar

    [129] Tavares-Ferreira, D., Shiers, S., Ray, P.R., et al. (2022). Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci. Transl. Med. 14: eabj8186. DOI. DOI: 10.1126/scitranslmed.abj8186.

    View in Article CrossRef Google Scholar

    [130] Chartrand, T., Dalley, R., Close, J., et al. (2023). Morphoelectric and transcriptomic divergence of the layer 1 interneuron repertoire in human versus mouse neocortex. Science 382: eadf0805. DOI: 10.1126/science.adf0805.

    View in Article CrossRef Google Scholar

    [131] Velmeshev, D., Perez, Y., Yan, Z., et al. (2023). Single-cell analysis of prenatal and postnatal human cortical development. Science 382: eadf0834. DOI: 10.1126/science.adf0834.

    View in Article CrossRef Google Scholar

    [132] Ayala, R., Shu, T., and Tsai, L.H. (2007). Trekking across the brain: The journey of neuronal migration. Cell 128 : 29−43. DOI: 10.1016/j.cell.2006.12.021.

    View in Article Google Scholar

    [133] Bernard, A., Lubbers, L., Tanis, K., et al. (2012). Transcriptional architecture of the primate neocortex. Neuron 73: 1083−1099. DOI: 10.1016/j.neuron.2012.03.002.

    View in Article CrossRef Google Scholar

    [134] Ren, Y., Huang, Z., Zhou, L., et al. (2023). Spatial transcriptomics reveals niche-specific enrichment and vulnerabilities of radial glial stem-like cells in malignant gliomas. Nat. Commun. 14 . DOI: 10.1038/s41467-023-36707-6.

    View in Article Google Scholar

    [135] Kim, C.N., Shin, D., Wang, A., et al. (2023). Spatiotemporal molecular dynamics of the developing human thalamus. Science 382 . DOI: 10.1126/science.adf9941.

    View in Article Google Scholar

    [136] Jiang, F., Zhou, X., Qian, Y., et al. (2023). Simultaneous profiling of spatial gene expression and chromatin accessibility during mouse brain development. Nat. Methods 20: 1048−1057. DOI: 10.1038/s41592-023-01884-1.

    View in Article CrossRef Google Scholar

    [137] Allen, W.E., Blosser, T.R., Sullivan, Z.A., et al. (2023). Molecular and spatial signatures of mouse brain aging at single-cell resolution. Cell 186: 194−208.e118. DOI: 10.1016/j.cell.2022.12.010.

    View in Article CrossRef Google Scholar

    [138] Fang, R., Xia, C., Close, J.L., et al. (2022). Conservation and divergence of cortical cell organization in human and mouse revealed by merfish. Science 377: 56−62. DOI. DOI: 10.1126/science.abm1741.

    View in Article CrossRef Google Scholar

    [139] Jaffe, A.E., Hoeppner, D.J., Saito, T., et al. (2020). Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk. Nat. Neurosci. 23: 510−519. DOI: 10.1038/s41593-020-0604-z.

    View in Article CrossRef Google Scholar

    [140] Wu, J., Li, Y., Huang, Y., et al. (2023). Integrating spatial and single-nucleus transcriptomic data elucidates microglial-specific responses in female cynomolgus macaques with depressive-like behaviors. Nat. Neurosci. 26: 1352−1364. DOI: 10.1038/s41593-023-01379-4.

    View in Article CrossRef Google Scholar

    [141] Maniatis S, Ä.T., Vickovic S, Braine C, et al. (2019). Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science. 364 : 89-93. DOI: 10.1126/science.aav9776.

    View in Article Google Scholar

    [142] Chen, W.-T., Lu, A., Craessaerts, K., et al. (2020). Spatial transcriptomics and in situ sequencing to study alzheimer’s disease. Cell 182: 976−991.e919. DOI: 10.1016/j.cell.2020.06.038.

    View in Article CrossRef Google Scholar

    [143] Chen, S., Chang, Y., Li, L., et al. (2022). Spatially resolved transcriptomics reveals genes associated with the vulnerability of middle temporal gyrus in alzheimer’s disease. Acta Neuropathol. Commun. 10 : 188. DOI: 10.1186/s40478-022-01494-6.

    View in Article Google Scholar

    [144] Cain, A., Taga, M., McCabe, C., et al. (2023). Multicellular communities are perturbed in the aging human brain and alzheimer’s disease. Nat. Neurosci. 26: 1267−1280. DOI: 10.1038/s41593-023-01356-x.

    View in Article CrossRef Google Scholar

    [145] Kamath, T., Abdulraouf, A., Burris, S.J., et al. (2022). Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in parkinson’s disease. Nat. Neurosci. 25: 588−595. DOI: 10.1038/s41593-022-01061-1.

    View in Article CrossRef Google Scholar

    [146] Kaufmann, M., Schaupp, A.-L., Sun, R., et al. (2022). Identification of early neurodegenerative pathways in progressive multiple sclerosis. Nat. Neurosci. 25: 944−955. DOI: 10.1038/s41593-022-01097-3.

    View in Article CrossRef Google Scholar

    [147] Luo, W., Lin, G.N., Song, W., et al. (2021). Single-cell spatial transcriptomic analysis reveals common and divergent features of developing postnatal granule cerebellar cells and medulloblastoma. BMC Biol. 19 : 135. DOI: 10.1186/s12915-021-01071-8.

    View in Article Google Scholar

    [148] Stacho, M., Herold, C., Rook, N., et al. (2020). A cortex-like canonical circuit in the avian forebrain. Science 369 : eabc5534. DOI: 10.1126/science.abc5534.

    View in Article Google Scholar

    [149] Sun, Y.-C., Chen, X., Fischer, S., et al. (2021). Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections. Nat. Neurosci. 24: 873−885. DOI: 10.1038/s41593-021-00842-4.

    View in Article CrossRef Google Scholar

    [150] Klingler, E., Tomasello, U., Prados, J., et al. (2021). Temporal controls over inter-areal cortical projection neuron fate diversity. Nature 599: 453−457. DOI: 10.1038/s41586-021-04048-3.

    View in Article CrossRef Google Scholar

    [151] Siegel, R.L., Miller, K.D., Wagle, N.S., et al. (2023). Cancer statistics, 2023. CA Cancer J. Clin. 73: 17−48. DOI. DOI: 10.3322/caac.21763.

    View in Article CrossRef Google Scholar

    [152] Ren, X., Zhang, L., Zhang, Y., et al. (2021). Insights gained from single-cell analysis of immune cells in the tumor microenvironment. Annu. Rev. Immunol. 39 : 583−609. DOI: 10.1146/annurev-immunol-110519-071134.

    View in Article Google Scholar

    [153] Kaymak, I., Williams, K.S., Cantor, J.R., et al. (2021). Immunometabolic interplay in the tumor microenvironment. Cancer Cell 39 : 28−37. DOI: 10.1016/j.ccell.2020.09.004.

    View in Article Google Scholar

    [154] Pombo Antunes, A.R., Scheyltjens, I., Lodi, F., et al. (2021). Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat. Neurosci. 24: 595−610. DOI. DOI: 10.1038/s41593-020-00789-y.

    View in Article CrossRef Google Scholar

    [155] Abdel-Hafiz, H.A., Schafer, J.M., Chen, X., et al. (2023). Y chromosome loss in cancer drives growth by evasion of adaptive immunity. Nature 619 : 624–631 . DOI: 10.1038/s41586-023-06234-x.

    View in Article Google Scholar

    [156] Tirosh, I., Izar, B., Prakadan, S.M., et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell rna-seq. Science 352 : 189−196. DOI: 10.1126/science.aad0501.

    View in Article Google Scholar

    [157] Seferbekova, Z., Lomakin, A., Yates, L.R., et al. (2023). Spatial biology of cancer evolution. Nat. Rev. Genet. 24 : 295−313. DOI: 10.1038/s41576-022-00553-x.

    View in Article Google Scholar

    [158] Ou, Z., Yin, J., Wu, L., et al. (2023). Spatial transcriptomics in cancer research: Opportunities and challenges. The Innovation Life 1: 100006. DOI: 10.59717/j.xinn-life.2023.100006.

    View in Article CrossRef Google Scholar

    [159] Wang, Q., Zhi, Y., Zi, M., et al. (2023). Spatially resolved transcriptomics technology facilitates cancer research. Adv. Sci. 10 : 2302558. DOI: 10.1002/advs.202302558.

    View in Article Google Scholar

    [160] Wu, R., Guo, W., Qiu, X., et al. (2021). Comprehensive analysis of spatial architecture in primary liver cancer. Sci. Adv. 7: eabg3750. DOI: 10.1126/sciadv.abg3750.

    View in Article CrossRef Google Scholar

    [161] Sun, H., Zhang, D., Huang, C., et al. (2021). Hypoxic microenvironment induced spatial transcriptome changes in pancreatic cancer. Cancer Biol Med. 18 :616–630. DOI: 10.20892/j.issn.2095-3941.2021.0158.

    View in Article Google Scholar

    [162] Ji, A.L., Rubin, A.J., Thrane, K., et al. (2020). Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell 182: 1661−1662. DOI: 10.1016/j.cell.2020.08.043.

    View in Article CrossRef Google Scholar

    [163] Wu, L., Yan, J., Bai, Y., et al. (2023). An invasive zone in human liver cancer identified by stereo-seq promotes hepatocyte–tumor cell crosstalk, local immunosuppression and tumor progression. Cell Res. 33 :1-19. DOI: 10.1038/s41422-023-00831-1.

    View in Article Google Scholar

    [164] Ravi, V.M., Neidert, N., Will, P., et al. (2022). T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10. Nat. Commun. 13: 925. DOI: 10.1038/s41467-022-28523-1.

    View in Article CrossRef Google Scholar

    [165] Sautes-Fridman, C., Petitprez, F., Calderaro, J., et al. (2019). Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19: 307−325. DOI: 10.1038/s41568-019-0144-6.

    View in Article CrossRef Google Scholar

    [166] Sautes-Fridman, C., Verneau, J., Sun, C.M., et al. (2020). Tertiary lymphoid structures and b cells: Clinical impact and therapeutic modulation in cancer. Semin. Immunol. 48: 101406. DOI: 10.1016/j.smim.2020.101406.

    View in Article CrossRef Google Scholar

    [167] Dieu-Nosjean, M.C., Goc, J., Giraldo, N.A., et al. (2014). Tertiary lymphoid structures in cancer and beyond. Trends Immunol. 35: 571−580. DOI: 10.1016/j.it.2014.09.006.

    View in Article CrossRef Google Scholar

    [168] Helmink, B.A., Reddy, S.M., Gao, J., et al. (2020). B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577: 549−555. DOI: 10.1038/s41586-019-1922-8.

    View in Article CrossRef Google Scholar

    [169] Petitprez, F., de Reynies, A., Keung, E.Z., et al. (2020). B cells are associated with survival and immunotherapy response in sarcoma. Nature 577: 556−560. DOI: 10.1038/s41586-019-1906-8.

    View in Article CrossRef Google Scholar

    [170] Cabrita, R., Lauss, M., Sanna, A., et al. (2020). Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577: 561−565. DOI: 10.1038/s41586-019-1914-8.

    View in Article CrossRef Google Scholar

    [171] Meylan, M., Petitprez, F., Becht, E., et al. (2022). Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 55 : 527-541.e525. DOI: 10.1016/j.immuni.2022.02.001.

    View in Article Google Scholar

    [172] Erickson, A., He, M., Berglund, E., et al. (2022). Spatially resolved clonal copy number alterations in benign and malignant tissue. Nature 608: 360−367. DOI: 10.1038/s41586-022-05023-2.

    View in Article CrossRef Google Scholar

    [173] Rao, A., Barkley, D., Franca, G.S., et al. (2021). Exploring tissue architecture using spatial transcriptomics. Nature 596: 211−220. DOI: 10.1038/s41586-021-03634-9.

    View in Article CrossRef Google Scholar

    [174] Liao, J., Lu, X., Shao, X., et al. (2021). Uncovering an organ's molecular architecture at single-cell resolution by spatially resolved transcriptomics. Trends Biotechnol. 39: 43−58. DOI: 10.1016/j.tibtech.2020.05.006.

    View in Article CrossRef Google Scholar

    [175] Chen, C., Wang, J., Pan, D., et al. (2023). Applications of multi-omics analysis in human diseases. MedComm (2020) 4 : e315. DOI: 10.1002/mco2.315.

    View in Article Google Scholar

    [176] Van de Sande, B., Lee, J.S., Mutasa-Gottgens, E., et al. (2023). Applications of single-cell rna sequencing in drug discovery and development. Nat. Rev. Drug Discov. 22: 496−520. DOI: 10.1038/s41573-023-00688-4.

    View in Article CrossRef Google Scholar

    [177] Musa, A., Ghoraie, L.S., Zhang, S.D., et al. (2018). A review of connectivity map and computational approaches in pharmacogenomics. Brief Bioinform. 19: 506−523. DOI: 10.1093/bib/bbw112.

    View in Article CrossRef Google Scholar

    [178] Moffat, J.G., Vincent, F., Lee, J.A., et al. (2017). Opportunities and challenges in phenotypic drug discovery: An industry perspective. Nat. Rev. Drug Discov. 16: 531−543. DOI: 10.1038/nrd.2017.111.

    View in Article CrossRef Google Scholar

    [179] Gerdes, M.J., Sevinsky, C.J., Sood, A., et al. (2013). Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl. Acad. Sci. USA 110: 11982−11987. DOI: 10.1073/pnas.1300136110.

    View in Article CrossRef Google Scholar

    [180] Giesen, C., Wang, H.A., Schapiro, D., et al. (2014). Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11: 417−422. DOI: 10.1038/nmeth.2869.

    View in Article CrossRef Google Scholar

    [181] Angelo, M., Bendall, S.C., Finck, R., et al. (2014). Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20: 436−442. DOI: 10.1038/nm.3488.

    View in Article CrossRef Google Scholar

    [182] Gustafsson, M.G., Shao, L., Carlton, P.M., et al. (2008). Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94: 4957−4970. DOI: 10.1529/biophysj.107.120345.

    View in Article CrossRef Google Scholar

    [183] Moffitt, J.R., Hao, J., Wang, G., et al. (2016). High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proc. Natl. Acad. Sci. USA 113: 11046−11051. DOI: 10.1073/pnas.1612826113.

    View in Article CrossRef Google Scholar

    [184] Boutros, P.C., Fraser, M., Harding, N.J., et al. (2015). Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat. Genet. 47: 736−745. DOI: 10.1038/ng.3315.

    View in Article CrossRef Google Scholar

    [185] Tan, P.H., Chia, S.S., Toh, S.L., et al. (2016). Three-dimensional spatial configuration of tumour cells confers resistance to chemotherapy independent of drug delivery. J. Tissue Eng. Regen. Med. 10: 637−646. DOI: 10.1002/term.1800.

    View in Article CrossRef Google Scholar

    [186] De Jong, M.G. and Wood, K.B. (2018). Tuning spatial profiles of selection pressure to modulate the evolution of drug resistance. Phys. Rev. Lett. 120: 238102. DOI: 10.1103/PhysRevLett.120.238102.

    View in Article CrossRef Google Scholar

    [187] Backdahl, J., Franzen, L., Massier, L., et al. (2021). Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metab. 33 : 1869-1882.e1866. DOI: 10.1016/j.cmet.2021.07.018.

    View in Article Google Scholar

    [188] Cai, S., Allam, M., and Coskun, A.F. (2020). Multiplex spatial bioimaging for combination therapy design. Trends Cancer 6: 813−818. DOI: 10.1016/j.trecan.2020.05.003.

    View in Article CrossRef Google Scholar

    [189] Jean Beltran, P.M., Federspiel, J.D., Sheng, X., et al. (2017). Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious diseases. Mol. Syst. Biol. 13: 922. DOI: 10.15252/msb.20167062.

    View in Article CrossRef Google Scholar

    [190] Yousuf, S., Qiu, M., Voith von Voithenberg, L., et al. (2023). Spatially resolved multi-omics single-cell analyses inform mechanisms of immune dysfunction in pancreatic cancer. Gastroenterology 165 : 891-908.e14. DOI: 10.1053/j.gastro.2023.05.036.

    View in Article Google Scholar

    [191] Moffitt, J.R., Hao, J., Bambah-Mukku, D., et al. (2016). High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc. Natl. Acad. Sci. USA 113: 14456−14461. DOI: 10.1073/pnas.1617699113.

    View in Article CrossRef Google Scholar

    [192] Cross, A.R., de Andrea, C.E., Villalba-Esparza, M., et al. (2023). Spatial transcriptomic characterization of covid-19 pneumonitis identifies immune circuits related to tissue injury. JCI Insight 8 : e157837. DOI: 10.1172/jci.insight.157837.

    View in Article Google Scholar

    [193] de Maar, J.S., Sofias, A.M., Porta Siegel, T., et al. (2020). Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour environment. Theranostics 10: 1884−1909. DOI: 10.7150/thno.38625.

    View in Article CrossRef Google Scholar

    [194] Andersson, A., Larsson, L., Stenbeck, L., et al. (2021). Spatial deconvolution of her2-positive breast cancer delineates tumor-associated cell type interactions. Nat. Commun. 12: 6012. DOI: 10.1038/s41467-021-26271-2.

    View in Article CrossRef Google Scholar

    [195] Zong, X., Zhang, J., Li, L., et al. (2023). Virtual histology of morphometric similarity network after risperidone monotherapy and imaging-epigenetic biomarkers for treatment response in first-episode schizophrenia. Asian J. Psychiatr. 80: 103406. DOI: 10.1016/j.ajp.2022.103406.

    View in Article CrossRef Google Scholar

    [196] Alarcon-Zendejas, A.P., Scavuzzo, A., Jimenez-Rios, M.A., et al. (2022). The promising role of new molecular biomarkers in prostate cancer: From coding and non-coding genes to artificial intelligence approaches. Prostate Cancer Prostatic Dis. 25: 431−443. DOI: 10.1038/s41391-022-00537-2.

    View in Article CrossRef Google Scholar

    [197] Chen, W., Liu, X., Xiao, Y., et al. (2015). Overcoming multiple drug resistance by spatial-temporal synchronization of epirubicin and pooled sirnas. Small 11: 1775−1781. DOI: 10.1002/smll.201402377.

    View in Article CrossRef Google Scholar

    [198] Wang, J., Mi, P., Lin, G., et al. (2016). Imaging-guided delivery of rnai for anticancer treatment. Adv. Drug Deliv. Rev. 104: 44−60. DOI: 10.1016/j.addr.2016.01.008.

    View in Article CrossRef Google Scholar

    [199] Madkour, L.H. (2022). Nanoparticle-based drug delivery in cancer treatment. Nanotechnology for drugs, vaccines and smart delivery systems. First edition (Taylor & Francis Group). DOI: 10.1201/9781003229674.

    View in Article Google Scholar

    [200] Rauscher, I., Maurer, T., Steiger, K., et al. (2017). Image of the month: Multifocal 68ga prostate-specific membrane antigen ligand uptake in the skeleton in a man with both prostate cancer and multiple myeloma. Clin. Nucl. Med. 42: 547−548. DOI: 10.1097/RLU.0000000000001649.

    View in Article CrossRef Google Scholar

    [201] Tang, H., Yuan, J., Gong, Y.F., et al. (2022). Single-cell transcriptome sequencing reveals potential novel combination of biomarkers for antibody-based cancer therapeutics in hepatocellular carcinoma. Front. Genet. 13: 928256. DOI: 10.3389/fgene.2022.928256.

    View in Article CrossRef Google Scholar

    [202] Hickey, J.W., Neumann, E.K., Radtke, A.J., et al. (2022). Spatial mapping of protein composition and tissue organization: A primer for multiplexed antibody-based imaging. Nat. Methods 19: 284−295. DOI: 10.1038/s41592-021-01316-y.

    View in Article CrossRef Google Scholar

    [203] Williams, C.G., Lee, H.J., Asatsuma, T., et al. (2022). An introduction to spatial transcriptomics for biomedical research. Genome Med. 14: 68. DOI: 10.1186/s13073-022-01075-1.

    View in Article CrossRef Google Scholar

    [204] Yan, H., Shi, J., Dai, Y., et al. (2022). Technique integration of single-cell rna sequencing with spatially resolved transcriptomics in the tumor microenvironment. Cancer Cell Int. 22: 155. DOI: 10.1186/s12935-022-02580-4.

    View in Article CrossRef Google Scholar

    [205] El-Achkar, T.M., Eadon, M.T., Menon, R., et al. (2021). A multimodal and integrated approach to interrogate human kidney biopsies with rigor and reproducibility: Guidelines from the kidney precision medicine project. Physiol. Genomics 53: 1−11. DOI: 10.1152/physiolgenomics.00104.2020.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Miao Z., Tian T., Chen W., et al., (2024). Spatial resolved transcriptomics: Computational insights into gene transcription across tissue and organ architecture in diverse applications. The Innovation Life 2(4): 100097. https://doi.org/10.59717/j.xinn-life.2024.100097
    Miao Z., Tian T., Chen W., et al., (2024). Spatial resolved transcriptomics: Computational insights into gene transcription across tissue and organ architecture in diverse applications. The Innovation Life 2(4): 100097. https://doi.org/10.59717/j.xinn-life.2024.100097

Figures(3)     Tables(3)

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(394) PDF downloads(137) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint