The growth–weather relationships of trees and their responses to neighbourhood traits were explored.
The daily radial growth of most species was positively correlated with temperature and moisture variables.
Contrasting resource-use strategies and functional diversity increased the growth–weather relationships.
The study offers an explanation for positive biodiversity–productivity relationship at neighbourhood scale.
[1] | Pan, Y., Birdsey, R.A., Fang, J., et al. (2011). A large and persistent carbon sink in the world’s forests. Science 333: 988−993. DOI: 10.1126/science.1201609. |
[2] | Griscom, B.W., Adams, J., Ellis, P.W., et al. (2017). Natural climate solutions. Proc. Natl. Acad. Sci. USA 114: 11645−11650. DOI: 10.1073/pnas.171046511. |
[3] | Toledo, M., Poorter, L., Pena-Claros, M., et al. (2011). Climate is a stronger driver of tree and forest growth rates than soil and disturbance. J. Ecol. 99: 254−264. DOI: 10.1111/j.1365-2745.2010.01741.x. |
[4] | Rossi, S., Anfodillo, T., Čufar, K., et al. (2016). Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Glob. Chang. Biol. 22: 3804−3813. DOI: 10.1111/gcb.13317. |
[5] | Galván, J.D., Camarero, J.J., and Gutiérrez, E. (2014). Seeing the trees for the forest: drivers of individual growth responses to climate in Pinus uncinata mountain forests. J. Ecol. 102: 1244−1257. DOI: 10.1111/1365-2745.12268. |
[6] | Bauman, D., Fortunel, C., Cernusak, L. A., et al. (2022). Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits. Glob. Change Biol. 28: 1414−1432. DOI: 10.1111/gcb.15982. |
[7] | Aldea, J., Bravo, F., Vázquez-Piqué, J., et al. (2018). Species-specific weather response in the daily stem variation cycles of Mediterranean pine-oak mixed stands. Agr. Forest Meteorol. 256–257 : 220–230. DOI: 10.1016/j.agrformet.2018.03.013. |
[8] | Gheyret, G., Zhang, H.T., Guo, Y., et al. (2021). Radial growth response of trees to seasonal soil humidity in a subtropical forest. Basic Appl. Ecol. 55: 74−86. DOI: 10.1016/j.baae.2021.02.015. |
[9] | Xiao, S., Xiao, H., Peng, X., et al. (2014). Daily and seasonal stem radial activity of Populus euphratica and its association with hydroclimatic factors in the lower reaches of China’s Heihe River basin. Environ. Earth Sci. 72: 609−621. DOI: 10.1007/s12665-013-2982-y. |
[10] | He, M., Yang, B., Wang, Z., et al. (2016). Climatic forcing of xylem formation in Qilian juniper on the northeastern Tibetan Plateau. Trees 30: 923−933. DOI: 10.1007/s00468-015-1333-x. |
[11] | Kašpar, J., Krůček, M., and Král, K. (2024). The effects of solar radiation on daily and seasonal stem increment of canopy trees in European temperate old-growth forests. New Phytol. 243: 662−673. DOI: 10.1111/nph.19852. |
[12] | Boyden, S., Montgomery, R., Reich, P.B., et al. (2012). Seeing the forest for the heterogeneous trees: stand-scale resource distributions emerge from tree-scale structure. Ecol. Appl. 22: 1578−1588. DOI: 10.1890/11-1469.1. |
[13] | Weng, X., Guo, Y., and Tang, Z. (2022). Spatial-temporal dependence of the neighborhood interaction in regulating tree growth in a tropical rainforest. Forest Ecol. Manag. 508: 120032. DOI: 10.1016/j.foreco.2022.120032. |
[14] | Fichtner, A., Hardtle, W., Bruelheide, H., et al. (2018). Neighbourhood interactions drive overyielding in mixed-species tree communities. Nat. Commun. 9: 1144. DOI: 10.1038/s41467-018-03529-w. |
[15] | Salmon, Y., Li, X., Yang, B., et al. (2018). Surrounding species diversity improves subtropical seedlings’ carbon dynamics. Ecol. Evol. 8: 7055−7067. DOI: 10.1002/ece3.4225. |
[16] | Wieczynski, D.J., Boyle, B., Buzzard, V., et al. (2019). Climate shapes and shifts functional biodiversity in forests worldwide. Proc. Natl. Acad. Sci. USA 116: 587−592. DOI: 10.1073/pnas.1813723116. |
[17] | Reich, P.B. (2014). The world-wide ‘fast–slow’ plant economics spectrum: A traits manifesto. J. Ecol. 102: 275−301. DOI: 10.1111/1365-2745.12211. |
[18] | Castellano, P.L., Srur, A.M., and Bianchi, L.O. (2019). Climate-growth relationships of deciduous and evergreen Nothofagus species in Southern Patagonia, Argentina. Dendrochronologia 58: 125646. DOI: 10.1016/j.dendro.2019.125646. |
[19] | Li, X., Pei, K., Kéry, M., et al. (2017). Decomposing functional trait associations in a Chinese subtropical forest. PLoS One 12: e0175727. DOI: 10.1371/journal.pone.0175727. |
[20] | Tomlinson, K.W., Poorter, L., Bongers, F., et al. (2014). Relative growth rate variation of evergreen and deciduous savanna tree species is driven by different traits. Ann. Bot. 114: 315−324. DOI: 10.1093/aob/mcu107. |
[21] | Westoby, M., Falster, D.S., Moles, A.T., et al. (2002). Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33: 125−159. DOI: 10.1146/annurev.ecolsys.33.010802.150452. |
[22] | Fagundes, M.D., Dalmolin, A.C., Lobo, L.S., et al. (2021). Growth and phenotypic plasticity of two tropical tree species under low light availability. J. Plant Ecol. 14: 270−279. DOI: 10.1093/jpe/rtaa095. |
[23] | Wright, I., Reich, P., Westoby, M., et al. (2004). The worldwide leaf economics spectrum. Nature 428: 821−827. DOI: 10.1038/nature02403. |
[24] | Cornwell, W.K., Westoby, M., Falster, D.S., et al. (2014). Functional distinctiveness of major plant lineages. J. Ecol. 102: 345−356. DOI: 10.1111/1365-2745.12208. |
[25] | Wigley, B.J., Slingsby, J.A., Díaz, S., et al. (2016). Leaf traits of African woody savanna species across climate and soil fertility gradients: Evidence for conservative versus acquisitive resource-use strategies. J. Ecol. 104: 1357−1369. DOI: 10.1111/1365-2745.12598. |
[26] | Zhang, H.T., Gheyret, G., Bai, Y.H., et al. (2024). Functional dissimilarity in mixed forests promotes stem radial growth by mitigating tree water deficit. Natl. Sci. Rev. 11: nwad320. DOI: 10.1093/nsr/nwad320. |
[27] | Weemstra, M., Mommer, L., Visser, E.J.W., et al. (2016). Towards a multidimensional root trait framework: a tree root review. New Phytol. 211: 1159−1169. DOI: 10.1111/nph.14003. |
[28] | Schnabel, F., Barry, K.E., Eckhardt, S., et al. (2024). Neighbourhood species richness and drought-tolerance traits modulate tree growth and δ13C responses to drought. Plant Biol. J. 26: 330−345. DOI: 10.1111/plb.13611. |
[29] | Zhang, Y., Bai, Y.-H., Chen, X., et al. (2024). Functional diversity of neighbours mediates sap flow density and radial growth of focal trees, but in different ways between evergreen and deciduous broadleaved species. Funct. Ecol. 38: 1931−1943. DOI: 10.1111/1365-2435.14610. |
[30] | Silvertown, J. (2004). Plant coexistence and the niche. Trends Ecol. Evol. 19: 605−611. DOI: 10.1016/j.tree.2004.09.003. |
[31] | Dias, A.T.C., Berg, M.P., Bello, F., et al. (2013). An experimental framework to identify community functional components driving ecosystem processes and services delivery. J. Ecol. 101: 29−37. DOI: 10.1111/1365-2745.12024. |
[32] | Hisano, M., Chen, H.J.H., Searle, E.B., et al. (2019). Species-rich boreal forests grew more and suffered less mortality than species-poor forests under the environmental change of the past half-century. Ecol. Lett. 22: 999−1008. DOI: 10.1111/ele.13259. |
[33] | Blackford, C., Germain, R.M., and Gilbert, B. (2020). Species Differences in Phenology Shape Coexistence. Am. Nat. 195: E168−E180. DOI: 10.1086/708719. |
[34] | Grossiord, C. (2020). Having the right neighbors: How tree species diversity modulates drought impacts on forests. New Phytol. 228: 42−49. DOI: 10.1111/nph.15667. |
[35] | Niklaus, P.A., Baruffol, M., He, J.S., et al. (2017). Can niche plasticity promote biodiversity–productivity relationships through increased complementarity. Ecology 98: 1104−1116. DOI: 10.1002/ecy.1748. |
[36] | Ammer, C. (2019). Diversity and forest productivity in a changing climate. New Phytol. 221: 50−66. DOI: 10.1111/nph.15263. |
[37] | Bruelheide, H., Böhnke, M., Both, S., et al. (2011). Community assembly during secondary forest succession in a Chinese subtropical forest. Ecol. Monogr. 81: 25−41. DOI: 10.1890/09-2172.1. |
[38] | Bruelheide, H., Nadrowski, K., Assmann, T., et al. (2014). Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol. Evol. 5: 74−89. DOI: 10.1111/2041-210X.12126. |
[39] | Huang, Y., Chen, Y., Castro-Izaguirre, N., et al. (2018). Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362: 80−83. DOI: 10.1126/science.aat6405. |
[40] | Gruber, A., Zimmermann, J., Wiseser, G., et al. (2009). Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone. Ann. Forest Sci. 66: 503−510. DOI: 10.1051/forest/2009038. |
[41] | Kröber, W., Zhang, S., Ehmig, M., et al. (2014). Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum--a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species. PLoS One 9 : e109211. DOI: 10.1371/journal.pone.0109211. |
[42] | Kröber, W., Heklau, H., and Bruelheide, H. (2015). Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits. Plant Biol. 17: 373−383. DOI: 10.1111/plb.12250. |
[43] | Kröber, W. and Bruelheide, H. (2014). Transpiration and stomatal control: A cross-species study of leaf traits in 39 evergreen and deciduous broadleaved subtropical tree species. Trees 28: 901−914. DOI: 10.1007/s00468-014-1004-3. |
[44] | Dyderski, M.K. and Jagodziński, A.M. (2019). Functional traits of acquisitive invasive woody species differ from conservative invasive and native species. NeoBiota 41: 91−113. DOI: 10.3897/neobiota.41.31908. |
[45] | Campbell, G.S. and Norman, J.M. (1998). Introduction to environmental biophysics, 2nd ed (Springer). |
[46] | Botta-Dukát, Z. (2005). Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16: 533−540. DOI: 10.1111/j.1654-1103.2005.tb02393.x. |
[47] | R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ |
[48] | Laliberté, E., Legendre, P., and Shipley, B. (2014). FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12. https://github.com/cran/FD/commit/1993781d8fa7e6f4107ebd3f52f919c6fe1760f7. |
[49] | Bates, D., Maechler, M., Bolker, B., et al. (2014). lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4. |
[50] | Sadok, W., Lopez, J.R., and Smith, K.P. (2021). Transpiration increases under high-temperature stress: Potential mechanisms, trade-offs and prospects for crop resilience in a warming world. Plant Cell Environ. 44: 2102−2116. DOI: 10.1111/pce.13970. |
[51] | Michelot, A., Simard, S., Rathgeber, C., et al. (2012). Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiol. 32: 1033−1045. DOI: 10.1093/treephys/tps052. |
[52] | Gea-Izquierdo, G., Fonti, P., Cherubini, P., et al. (2012). Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. To climatic variability. Tree Physiol. 32: 401−413. DOI: 10.1093/treephys/tps026. |
[53] | Fichtner, A., Härdtle, W., Li, Y., et al. (2017). From competition to facilitation: How tree species respond to neighbourhood diversity. Ecol. Lett. 20: 892−900. DOI: 10.1111/ele.12786. |
[54] | Liu, C.C., Liu, Y.G., Guo, K., et al. (2011). Comparative ecophysiological responses to drought of two shrub and four tree species from karst habitats of Southwestern China. Trees 25: 537−549. DOI: 10.1007/s00468-010-0533-7. |
[55] | Way, D.A. and Oren, R. (2010). Differential responses to changes in growth temperature between trees from different functional groups and biomes: A review and synthesis of data. Tree Physiol. 30: 669−688. DOI: 10.1093/treephys/tpq015. |
[56] | Feng, Y., Schmid, B., Loreau, M., et al. (2022). Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 376: 865−868. DOI: 10.1126/science.abm6363. |
[57] | Forrester, D.I. and Bauhus, J. (2016). A review of processes behind diversity—productivity relationships in forests. Curr. For. Rep. 2: 45−61. DOI: 10.1007/s40725-016-0031-2. |
[58] | Rudolf, V.H.W. (2019). The role of seasonal timing and phenological shifts for species coexistence. Ecol. Lett. 22: 1324−1338. DOI: 10.1111/ele.13277. |
[59] | Baert, J.M., Janssen, C.R., Sabbe, K., et al. (2016). Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions. Nat. Commun. 7: 12486. DOI: 10.1038/ncomms12486. |
[60] | Zapater, M., Hossann, C., Bréda, N., et al. (2011). Evidence of hydraulic lift in a young beech and oak mixed forest using 18O soil water labelling. Trees 25: 885−894. DOI: 10.1007/s00468-011-0563-9. |
[61] | Schwendenmann, L., Pendall, E., Sanchez-Bragado, R., et al. (2015). Tree water uptake in a tropical plantation varying in tree diversity. Interspecific differences, seasonal shifts and complementarity. Ecohydrology 8: 1−12. DOI: 10.1002/eco.1479. |
[62] | Kunz, M., Fichtner, A., Härdtle, W., et al. (2019). Neighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual trees. Ecol. Lett. 22: 2130−2140. DOI: 10.1111/ele.13400. |
[63] | Forrester, D.I., Bauhus, J., Cowie, A.L., et al. (2006). Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: A review. Forest Ecol. Manag. 233: 211−230. DOI: 10.1016/j.foreco.2006.05.012. |
[64] | Nickmans, H., Verheyen, K., Guiz, J., et al. (2015). Effects of neighbourhood identity and diversity on the foliar nutrition of sessile oak and beech. Forest Ecol. Manag. 335: 108−117. DOI: 10.1016/j.foreco.2014.09.025. |
[65] | Dietrich, P., Roscher, C., Clark, A.T., et al. (2020). Diverse plant mixtures sustain a greater arbuscular mycorrhizal fungi spore viability than monocultures after 12 years. J. Plant Ecol. 13: 478−488. DOI: 10.1093/jpe/rtaa037. |
[66] | Hafner, B.D., Tomasella, M., Häberle, K.H., et al. (2017). Hydraulic redistribution under moderate drought among English oak, European beech and Norway spruce determined by deuterium isotope labeling in a split-root experiment. Tree Physiol. 37: 950−960. DOI: 10.1093/treephys/tpx050. |
[67] | Sun, Z., Liu, X., Schmid, B., et al. (2017). Positive effects of tree species richness on fine-root production in a subtropical forest in SE-China. J. Plant Ecol. 10: 146−157. DOI: 10.1093/jpe/rtw094. |
[68] | Frey, S.J.K., Hadley, A.S., Johnson, S.L., et al. (2016). Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2: e1501392. DOI: 10.1126/sciadv.1501392. |
[69] | Kovács, B., Tinya, F., and Ódor, P. (2017). Stand structural drivers of microclimate in mature temperate mixed forests. Agric. For. Meteorol. 234–235: 11–21. DOI: 10.1016/j.agrformet.2016.11.268. |
[70] | Proß, T., Bruelheide, H., Potvin, C., et al. (2021) Drivers of within-tree leaf trait variation in a tropical planted forest varying in tree species richness. Basic Appl. Ecol. 50: 203–216. DOI: 10.1016/j.baae.2020.11.001. |
[71] | Phillips, O.L., van der Heijden, G., Lewis, S.L., et al. (2010). Drought–mortality relationships for tropical forests. New Phytol. 187: 631−646. DOI: 10.1111/j.1469-8137.2010.03359.x. |
[72] | Bussotti, F., Pollastrini, M., Holland, V., et al. (2015). Functional traits and adaptive capacity of European forests to climate change. Environ. Experim. Bot. 111: 91−113. DOI: 10.1016/j.envexpbot.2014.11.006. |
[73] | Davrinche, A. and Haider, S. (2021). Intra-specific leaf trait responses to species richness at two different local scales. Basic Appl. Ecol. 55: 20−32. DOI: 10.1016/j.baae.2021.04.011. |
Bai Y. H., Gheyret G., Zhang H.-T., et al., (2024). Trait-based neighbourhood effects modulate the growth-weather relationships of subtropical trees. The Innovation Life 2(4): 100106. https://doi.org/10.59717/j.xinn-life.2024.100106 |
Information on the study site and the focal tree with its neighbourhood
The first principal component of PCA for 5 functional traits of all focal tree and neighbouring species
The slopes of radial growth–temperature/moisture relationships for individual trees of different species and different life forms
The interactive effects between neighbourhood resource acquisitiveness and weather conditions on the daily radial growth of trees
The interactive effects between neighbourhood functional diversity and weather conditions on the daily radial growth of trees