Uniform distribution of different additives within composite phase change materials is achieved.
The total heat releasing time of multifunction composite phase change material is extended to 700 s.
The maximum temperature in battery module can be controlled below 58.5°C at 5 C discharging rate.
[1] | Powell, S., Cezar, G.V., Min, L., et al. (2022). Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption. Nat. Energy 7: 932−945. DOI: 10.1038/s41560-022-01105-7. |
[2] | Chen, S., Wei, X., Zhang, G., et al. (2023). All-temperature area battery application mechanism, performance, and strategies. The Innovation 4: 100465. DOI: 10.1016/j.xinn.2023.100465. |
[3] | Manthiram, A. (2020). A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11: 1550. DOI: 10.1038/s41467-020-15355-0. |
[4] | Simpkins, G. (2023). Benefits of electric vehicle adoption. Nat. Rev. Earth Env. 4: 432−432. DOI: 10.1038/s43017-023-00465-2. |
[5] | Wang, J., Yamada, Y., Sodeyama, K., et al. (2018). Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3: 22−29. DOI: 10.1038/s41560-017-0033-8. |
[6] | Liu, X., Ren, D., Hsu, H., et al. (2018). Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit. Joule 2: 2047−2064. DOI: 10.1016/j.joule.2018.06.015. |
[7] | Ren, D., Liu, X., Feng, X., et al. (2018). Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components. Appl. Energy 228: 633−644. DOI: 10.1016/j.apenergy.2018.06.126. |
[8] | Zeng, Z., Murugesan, V., Han, K.S., et al. (2018). Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 3: 674−681. DOI: 10.1038/s41560-018-0196-y. |
[9] | Zhao, B., Hu, M., Ao, X., et al. (2020). Spectrally selective approaches for passive cooling of solar cells: A review. Appl. Energy 262: 114548. DOI: 10.1016/j.apenergy.2020.114548. |
[10] | Wang, R., Liang, Z., Souri, M., et al. (2022). Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method. Int. J. Heat Mass Tran. 183: 122095. DOI: 10.1016/j.ijheatmasstransfer.2021.122095. |
[11] | Siah Chehreh Ghadikolaei, S. (2021). An enviroeconomic review of the solar PV cells cooling technology effect on the CO2 emission reduction. Sol. Energy 216: 468−492. DOI: 10.1016/j.solener.2021.01.016. |
[12] | Zhang, L., Duan, Q., Meng, X., et al. (2022). Experimental investigation on intermittent spray cooling and toxic hazards of lithium-ion battery thermal runaway. Energ. Convers. Manage. 252: 115091. DOI: 10.1016/j.enconman.2021.115091. |
[13] | Jilte, R., Afzal, A., and Panchal, S. (2021). A novel battery thermal management system using nano-enhanced phase change materials. Energy 219: 119564. DOI: 10.1016/j.energy.2020.119564. |
[14] | Zhang, J., Shao, D., Jiang, L., et al. (2022). Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review. Renew. Sustain. Energy Rev. 159: 112207. DOI: 10.1016/j.rser.2022.112207. |
[15] | Yazdani McCord, M.R., Kankkunen, A., Chatzikosmidou, D., et al. (2024). Polypyrrole-modified flax fiber sponge impregnated with fatty acids as bio-based form-stable phase change materials for enhanced thermal energy storage and conversion. J. Energy Storage 81: 110363. DOI: 10.1016/j.est.2023.110363. |
[16] | Liu, Z., Wei, K., Wang, S., et al. (2021). Effect of high-temperature-resistant epoxy resin/polyethylene glycol 2000 composite stereotyped phase change material particles on asphalt properties. Constr. Build. Mater. 300: 124007. DOI: 10.1016/j.conbuildmat.2021.124007. |
[17] | Gao, D.-c., Sun, Y., Fong, A.M.L., and Gu, X. (2022). Mineral-based form-stable phase change materials for thermal energy storage: A state-of-the art review. Energy Storage Mater. 46: 100−128. DOI: 10.1016/j.ensm.2022.01.003. |
[18] | Chriaa, I., Trigui, A., Karkri, M., et al. (2020). Thermal properties of shape-stabilized phase change materials based on Low Density Polyethylene, Hexadecane and SEBS for thermal energy storage. Appl. Therm. Eng. 171: 115072. DOI: 10.1016/j.applthermaleng.2020.115072. |
[19] | Li, J., Xue, P., Ding, W., et al. (2009). Micro-encapsulated paraffin/high-density polyethylene/wood flour composite as form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. C. 93: 1761−1767. DOI: 10.1016/j.solmat.2009.06.007. |
[20] | Fang, Y., Kang, H., Wang, W., et al. (2010). Study on polyethylene glycol/epoxy resin composite as a form-stable phase change material. Energy Conver. Manage. 51: 2757−2761. DOI: 10.1016/j.enconman.2010.06.012. |
[21] | Yousefi, A., Tang, W., Khavarian, M., et al. (2021). Development of novel form-stable phase change material (PCM) composite using recycled expanded glass for thermal energy storage in cementitious composite. Renew. Energy 175: 14−28. DOI: 10.1016/j.renene.2021.04.123. |
[22] | Huang, Q., Li, X., Zhang, G., et al. (2022). Flexible composite phase change material with anti-leakage and anti-vibration properties for battery thermal management. Appl. Energy 309: 118434. DOI: 10.1016/j.apenergy.2021.118434. |
[23] | Zhao, X., Zou, D., and Wang, S. (2022). Flexible phase change materials: Preparation, properties and application. Chem. Eng. J. 431: 134231. DOI: 10.1016/j.cej.2021.134231. |
[24] | Lv, Y., Situ, W., Yang, X., et al. (2018). A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for battery thermal management. Energy Conver. Manage. 163: 250−259. DOI: 10.1016/j.enconman.2018.02.061. |
[25] | Wu, W., Liu, J., Liu, M., et al. (2020). An innovative battery thermal management with thermally induced flexible phase change material. Energy Conver. Manage. 221: 113145. DOI: 10.1016/j.enconman.2020.113145. |
[26] | Huang, Q., Li, X., Zhang, G., et al. (2021). Pouch lithium battery with a passivethermal management system using form-stable and flexible composite phase change materials. ACS Appl. Energy Mater. 4: 1978−1992. DOI: 10.1021/acsaem.0c03116. |
[27] | Wu, T., Hu, Y., Rong, H., and Wang, C. (2021). SEBS-based composite phase change material with thermal shape memory for thermal management applications. Energy 221: 119900. DOI: 10.1016/j.energy.2021.119900. |
[28] | Wu, W., Ye, G., Zhang, G., and Yang, X. (2022). Composite phase change material with room-temperature-flexibility for battery thermal management. Chem. Eng. J. 428: 131116. DOI: 10.1016/j.cej.2021.131116. |
[29] | Wang, R., Li, Q., Du, G., et al. (2021). A hydrogel-like form-stable phase change material with high loading efficiency supported by a three dimensional metal–organic network. Chem. Eng. J. 420: 129898. DOI: 10.1016/j.cej.2021.129898. |
[30] | Jiang, Z., Ouyang, T., Ding, L., et al. (2022). 3D self-bonded porous graphite fiber monolith for phase change material composite with high thermal conductivity. Chem. Eng. J. 438: 135496. DOI: 10.1016/j.cej.2022.135496. |
[31] | Feng, X., Ren, D., He, X., and Ouyang, M. (2020). Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule 4: 743−770. DOI: 10.1016/j.joule.2020.02.010. |
[32] | Huang, Q., Li, X., Zhang, G., et al. (2022). Innovative thermal management and thermal runaway suppression for battery module with flame retardant flexible composite phase change material. J. Clean. Prod. 330: 129718. DOI: 10.1016/j.jclepro.2021.129718. |
[33] | Leng, Z., Yuan, Y., Cao, X., et al. (2022). Heat pipe/phase change material thermal management of Li-ion power battery packs: A numerical study on coupled heat transfer performance. Energy 240: 122754. DOI: 10.1016/j.energy.2021.122754. |
[34] | Li, L., Wang, G., and Guo, C. (2016). Influence of intumescent flame retardant on thermal and flame retardancy of eutectic mixed paraffin/polypropylene form-stable phase change materials. Appl. Energy 162: 428−434. DOI: 10.1016/j.apenergy.2015.10.103. |
[35] | Xu, Z., Chen, W., Wu, T., et al. (2023). Thermal management system study of flame retardant solid–solid phase change material battery. Surf. Interfaces 36: 102558. DOI: 10.1016/j.surfin.2022.102558. |
[36] | Liu, F., Wang, J., Wang, F., et al. (2024). Battery thermal safety management with form-stable and flame-retardant phase change materials. Inter. J. Heat Mass Tran. 218: 124764. DOI: 10.1016/j.ijheatmasstransfer.2023.124764. |
[37] | Weng, J., Xiao, C., Ouyang, D., et al. (2022). Mitigation effects on thermal runaway propagation of structure-enhanced phase change material modules with flame retardant additives. Energy 239: 122087. DOI: 10.1016/j.energy.2021.122087. |
[38] | Chen, M., Zhu, M., Zhang, S., et al. (2023). Experimental investigation on mitigation of thermal runaway propagation of lithium-ion battery module with flame retardant phase change materials. Appl. Therm. Eng. 235: 121401. DOI: 10.1016/j.applthermaleng.2023.121401. |
[39] | Wang, X., Guo, W., Cai, W., et al. (2020). Recent advances in construction of hybrid nano-structures for flame retardant polymers application. Appl. Mater. Today 20: 100762. DOI: 10.1016/j.apmt.2020.100762. |
[40] | Gao, S., Ding, J., Wang, W., and Lu, J. (2023). MXene based flexible composite phase change material with shape memory, self-healing and flame retardant for thermal management. Compos. Sci. Technol. 234: 109945. DOI: 10.1016/j.compscitech.2023.109945. |
[41] | Senthil, C., Kim, S.-S., and Jung, H.Y. (2022). Flame retardant high-power Li-S flexible batteries enabled by bio-macromolecular binder integrating conformal fractions. Nat. Commun. 13: 145. DOI: 10.1038/s41467-021-27777-5. |
[42] | Wu, Q., Guo, J., Fei, B., et al. (2020). Synthesis of a novel polyhydroxy triazine-based charring agent and its effects on improving the flame retardancy of polypropylene with ammonium polyphosphate and zinc borate. Polym. Degrad.Stabil. 175: 109123. DOI: 10.1016/j.polymdegradstab.2020.109123. |
[43] | Zhang, J., Li, X., Zhang, G., et al. (2020). Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system. J. Power Sources 480: 229116. DOI: 10.1016/j.jpowsour.2020.229116. |
[44] | Wang, B., Xu, Y.-J., Li, P., et al. (2020). Flame-retardant polyester/cotton blend with phosphorus/nitrogen/silicon-containing nano-coating by layer-by-layer assembly. Appl. Surf. Sci. 509: 145323. DOI: 10.1016/j.apsusc.2020.145323. |
[45] | Greiner, L., Döring, M., and Eibl, S. (2021). Prevention of the formation of respirable fibers in carbon fiber reinforced epoxy resins during combustion by phosphorus or silicon containing flame retardants. Polym.Degrad. Stabil. 185: 109497. DOI: 10.1016/j.polymdegradstab.2021.109497. |
[46] | Wang, F., Li, J.-Y., Pi, J., et al. (2021). Superamphiphobic and flame-retardant coatings with highly chemical and mechanical robustness. Chem. Eng. J. 421: 127793. DOI: 10.1016/j.cej.2020.127793. |
[47] | Shao, Z.-B., Cui, J., Lin, X.-B., et al. (2022). In-situ coprecipitation formed Fe/Zn-layered double hydroxide/ammonium polyphosphate hybrid material for flame retardant epoxy resin via synergistic catalytic charring. Compos. Part A: Appl. S. 155: 106841. DOI: 10.1016/j.compositesa.2022.106841. |
[48] | Wei, W., Ramakrishnan, S., Needell, Z.A., and Trancik, J.E. (2021). Personal vehicle electrification and charging solutions for high-energy days. Nat. Energy 6: 105−114. DOI: 10.1038/s41560-020-00752-y. |
[49] | Nunes, A., Woodley, L., and Rossetti, P. (2022). Re-thinking procurement incentives for electric vehicles to achieve net-zero emissions. Nat. Sustain. 5: 527−532. DOI: 10.1038/s41893-022-00862-3. |
Huang Q., Li C., Li X., et al., (2024). Multifunction composite phase change material with inorganic flame retardant and organic form stability for improving battery thermal safety. The Innovation Materials 2(1): 100048. https://doi.org/10.59717/j.xinn-mater.2024.100048 |
Synthesis process of APP/SiO2@C micro-nano aggregates and the preparation of flame-retardant FPCMs
Microstructure analysis of flame retardants
Thermal physical properties of flame-retardant FPCMs.
Thermal stability of flame-retardant FPCMs
Flame-retardant property of flame-retardant FPCMs
Thermal safety of EVs thanks to the contribution of FPCMs
Thermal management capability and thermal runaway protection