ARTICLE   Open Access    

Multifunction composite phase change material with inorganic flame retardant and organic form stability for improving battery thermal safety

More Information
    1. Uniform distribution of different additives within composite phase change materials is achieved.

      The total heat releasing time of multifunction composite phase change material is extended to 700 s.

      The maximum temperature in battery module can be controlled below 58.5°C at 5 C discharging rate.

  • Phase change materials (PCMs) with superior cooling capacity and temperature equalization have great potential to mitigate thermal accumulation, benefiting the safety of electric vehicles (EVs) drivers. Although the composite phase change materials (CPCMs) with organic form stable addition can prevent leakage, they are still restricted in battery module due to easy flammable performance. Another challenge is that the inorganic flame retardants always distribute unevenly in organic CPCMs. Herein, to overcome the drawback of uneven additives dispersion within paraffin, we proposed a novel CPCM with inorganic flame-retardant and organic form stable material, composed of Paraffin/Styrene-Ethylene-Butylene-Styrene/AmmoniumPolyphosphate/Silicon dioxide/Carbon micro-nano aggregates (PS/APP/SiO2@C). The prepared material exhibits anti-leakage property with 99.5 % mass retention after heating for 10 h at 70 °C, and the smoke generation rate is only 0.01 m2·s-1. The total heat releasing time is extended to 700 s, three times longer than that of PS. As for battery thermal management system, the maximum temperature and the temperature difference of battery module with PS/APP are 81.2 °C and 5.6 °C at 5 C discharge rate, respectively. In comparison, the maximum temperature and maximum temperature difference can be controlled to 58.5 °C and 1.5 °C, respectively, without heat accumulation during the twenty cycles. It indicates that the temperature is lower than the critical one to avoid thermal runaway of EVs. Therefore, this study presents CPCMs as an advanced thermal management approach that can enhance the thermal safety of battery packs, resulting in a significant impact on millions of drivers of EVs around the world.
  • 加载中
  • [1] Powell, S., Cezar, G.V., Min, L., et al. (2022). Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption. Nature Energy 7(10): 932−945. DOI: 10.1038/s41560-022-01105-7.

    View in Article CrossRef Google Scholar

    [2] Chen, S., Wei, X., Zhang, G., et al. (2023). All-temperature area battery application mechanism, performance, and strategies. The Innovation 4(4): 100465. DOI: 10.1016/j.xinn.2023.100465.

    View in Article CrossRef Google Scholar

    [3] Manthiram, A. (2020). A reflection on lithium-ion battery cathode chemistry. Nature Communications 11(1): 1550. DOI: 10.1038/s41467-020-15355-0.

    View in Article CrossRef Google Scholar

    [4] Simpkins, G. (2023). Benefits of electric vehicle adoption. Nature Reviews Earth & Environment 4(7): 432−432. DOI: 10.1038/s43017-023-00465-2.

    View in Article CrossRef Google Scholar

    [5] Wang, J., Yamada, Y., Sodeyama, K., et al. (2018). Fire-extinguishing organic electrolytes for safe batteries. Nature Energy 3(1): 22−29. DOI: 10.1038/s41560-017-0033-8.

    View in Article CrossRef Google Scholar

    [6] Liu, X., Ren, D., Hsu, H., et al. (2018). Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit. Joule 2(10): 2047−2064. DOI: 10.1016/j.joule.2018.06.015.

    View in Article CrossRef Google Scholar

    [7] Ren, D., Liu, X., Feng, X., et al. (2018). Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components. Applied Energy 228: 633−644. DOI: 10.1016/j.apenergy.2018.06.126.

    View in Article CrossRef Google Scholar

    [8] Zeng, Z., Murugesan, V., Han, K.S., et al. (2018). Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nature Energy 3(8): 674−681. DOI: 10.1038/s41560-018-0196-y.

    View in Article CrossRef Google Scholar

    [9] Zhao, B., Hu, M., Ao, X., et al. (2020). Spectrally selective approaches for passive cooling of solar cells: A review. Applied Energy 262: 114548. DOI: 10.1016/j.apenergy.2020.114548.

    View in Article CrossRef Google Scholar

    [10] Wang, R., Liang, Z., Souri, M., et al. (2022). Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method. International Journal of Heat and Mass Transfer 183: 122095. DOI: 10.1016/j.ijheatmasstransfer.2021.122095.

    View in Article CrossRef Google Scholar

    [11] Siah Chehreh Ghadikolaei, S. (2021). An enviroeconomic review of the solar PV cells cooling technology effect on the CO2 emission reduction. Solar Energy 216: 468−492. DOI: 10.1016/j.solener.2021.01.016.

    View in Article CrossRef Google Scholar

    [12] Zhang, L., Duan, Q., Meng, X., et al. (2022). Experimental investigation on intermittent spray cooling and toxic hazards of lithium-ion battery thermal runaway. Energy Conversion and Management 252: 115091. DOI: 10.1016/j.enconman.2021.115091.

    View in Article CrossRef Google Scholar

    [13] Jilte, R., Afzal, A., and Panchal, S. (2021). A novel battery thermal management system using nano-enhanced phase change materials. Energy 219: 119564. DOI: 10.1016/j.energy.2020.119564.

    View in Article CrossRef Google Scholar

    [14] Zhang, J., Shao, D., Jiang, L., et al. (2022). Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review. Renewable and Sustainable Energy Reviews 159: 112207. DOI: 10.1016/j.rser.2022.112207.

    View in Article CrossRef Google Scholar

    [15] Yazdani McCord, M.R., Kankkunen, A., Chatzikosmidou, D., et al. (2024). Polypyrrole-modified flax fiber sponge impregnated with fatty acids as bio-based form-stable phase change materials for enhanced thermal energy storage and conversion. Journal of Energy Storage 81: 110363. DOI: 10.1016/j.est.2023.110363.

    View in Article CrossRef Google Scholar

    [16] Liu, Z., Wei, K., Wang, S., et al. (2021). Effect of high-temperature-resistant epoxy resin/polyethylene glycol 2000 composite stereotyped phase change material particles on asphalt properties. Construction and Building Materials 300: 124007. DOI: 10.1016/j.conbuildmat.2021.124007.

    View in Article CrossRef Google Scholar

    [17] Gao, D.-c., Sun, Y., Fong, A.M.L., and Gu, X. (2022). Mineral-based form-stable phase change materials for thermal energy storage: A state-of-the art review. Energy Storage Materials 46: 100−128. DOI: 10.1016/j.ensm.2022.01.003.

    View in Article CrossRef Google Scholar

    [18] Chriaa, I., Trigui, A., Karkri, M., et al. (2020). Thermal properties of shape-stabilized phase change materials based on Low Density Polyethylene, Hexadecane and SEBS for thermal energy storage. Applied Thermal Engineering 171: 115072. DOI: 10.1016/j.applthermaleng.2020.115072.

    View in Article CrossRef Google Scholar

    [19] Li, J., Xue, P., Ding, W., et al. (2009). Micro-encapsulated paraffin/high-density polyethylene/wood flour composite as form-stable phase change material for thermal energy storage. Solar Energy Materials and Solar Cells 93(10): 1761−1767. DOI: 10.1016/j.solmat.2009.06.007.

    View in Article CrossRef Google Scholar

    [20] Fang, Y., Kang, H., Wang, W., et al. (2010). Study on polyethylene glycol/epoxy resin composite as a form-stable phase change material. Energy Conversion and Management 51(12): 2757−2761. DOI: 10.1016/j.enconman.2010.06.012.

    View in Article CrossRef Google Scholar

    [21] Yousefi, A., Tang, W., Khavarian, M., and Fang, C. (2021). Development of novel form-stable phase change material (PCM) composite using recycled expanded glass for thermal energy storage in cementitious composite. Renewable Energy 175: 14−28. DOI: 10.1016/j.renene.2021.04.123.

    View in Article CrossRef Google Scholar

    [22] Huang, Q., Li, X., Zhang, G., et al. (2022). Flexible composite phase change material with anti-leakage and anti-vibration properties for battery thermal management. Applied Energy 309: 118434. DOI: 10.1016/j.apenergy.2021.118434.

    View in Article CrossRef Google Scholar

    [23] Zhao, X., Zou, D., and Wang, S. (2022). Flexible phase change materials: Preparation, properties and application. Chemical Engineering Journal 431: 134231. DOI: 10.1016/j.cej.2021.134231.

    View in Article CrossRef Google Scholar

    [24] Lv, Y., Situ, W., Yang, X., et al. (2018). A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for battery thermal management. Energy Conversion and Management 163: 250−259. DOI: 10.1016/j.enconman.2018.02.061.

    View in Article CrossRef Google Scholar

    [25] Wu, W., Liu, J., Liu, M., et al. (2020). An innovative battery thermal management with thermally induced flexible phase change material. Energy Conversion and Management 221: 113145. DOI: 10.1016/j.enconman.2020.113145.

    View in Article CrossRef Google Scholar

    [26] Huang, Q., Li, X., Zhang, G., et al. (2021). Pouch Lithium Battery with a PassiveThermal Management System Using Form-Stable and Flexible Composite Phase Change Materials. ACS Appl. Energy Mater 4(2): 1978−1992. DOI: 10.1021/acsaem.0c03116.

    View in Article CrossRef Google Scholar

    [27] Wu, T., Hu, Y., Rong, H., and Wang, C. (2021). SEBS-based composite phase change material with thermal shape memory for thermal management applications. Energy 221: 119900. DOI: 10.1016/j.energy.2021.119900.

    View in Article CrossRef Google Scholar

    [28] Wu, W., Ye, G., Zhang, G., and Yang, X. (2022). Composite phase change material with room-temperature-flexibility for battery thermal management. Chemical Engineering Journal 428: 131116. DOI: 10.1016/j.cej.2021.131116.

    View in Article CrossRef Google Scholar

    [29] Wang, R., Li, Q., Du, G., et al. (2021). A hydrogel-like form-stable phase change material with high loading efficiency supported by a three dimensional metal–organic network. Chemical Engineering Journal 420: 129898. DOI: 10.1016/j.cej.2021.129898.

    View in Article CrossRef Google Scholar

    [30] Jiang, Z., Ouyang, T., Ding, L., et al. (2022). 3D self-bonded porous graphite fiber monolith for phase change material composite with high thermal conductivity. Chemical Engineering Journal 438: 135496. DOI: 10.1016/j.cej.2022.135496.

    View in Article CrossRef Google Scholar

    [31] Feng, X., Ren, D., He, X., and Ouyang, M. (2020). Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule 4(4): 743−770. DOI: 10.1016/j.joule.2020.02.010.

    View in Article CrossRef Google Scholar

    [32] Huang, Q., Li, X., Zhang, G., et al. (2022). Innovative thermal management and thermal runaway suppression for battery module with flame retardant flexible composite phase change material. Journal of Cleaner Production 330: 129718. DOI: 10.1016/j.jclepro.2021.129718.

    View in Article CrossRef Google Scholar

    [33] Leng, Z., Yuan, Y., Cao, X., et al. (2022). Heat pipe/phase change material thermal management of Li-ion power battery packs: A numerical study on coupled heat transfer performance. Energy 240: 122754. DOI: 10.1016/j.energy.2021.122754.

    View in Article CrossRef Google Scholar

    [34] Li, L., Wang, G., and Guo, C. (2016). Influence of intumescent flame retardant on thermal and flame retardancy of eutectic mixed paraffin/polypropylene form-stable phase change materials. Applied Energy 162: 428−434. DOI: 10.1016/j.apenergy.2015.10.103.

    View in Article CrossRef Google Scholar

    [35] Xu, Z., Chen, W., Wu, T., et al. (2023). Thermal management system study of flame retardant solid–solid phase change material battery. Surfaces and Interfaces 36: 102558. DOI: 10.1016/j.surfin.2022.102558.

    View in Article CrossRef Google Scholar

    [36] Liu, F., Wang, J., Wang, F., et al. (2024). Battery thermal safety management with form-stable and flame-retardant phase change materials. International Journal of Heat and Mass Transfer 218: 124764. DOI: 10.1016/j.ijheatmasstransfer.2023.124764.

    View in Article CrossRef Google Scholar

    [37] Weng, J., Xiao, C., Ouyang, D., et al. (2022). Mitigation effects on thermal runaway propagation of structure-enhanced phase change material modules with flame retardant additives. Energy 239: 122087. DOI: 10.1016/j.energy.2021.122087.

    View in Article CrossRef Google Scholar

    [38] Chen, M., Zhu, M., Zhang, S., et al. (2023). Experimental investigation on mitigation of thermal runaway propagation of lithium-ion battery module with flame retardant phase change materials. Applied Thermal Engineering 235: 121401. DOI: 10.1016/j.applthermaleng.2023.121401.

    View in Article CrossRef Google Scholar

    [39] Wang, X., Guo, W., Cai, W., et al. (2020). Recent advances in construction of hybrid nano-structures for flame retardant polymers application. Applied Materials Today 20: 100762. DOI: 10.1016/j.apmt.2020.100762.

    View in Article CrossRef Google Scholar

    [40] Gao, S., Ding, J., Wang, W., and Lu, J. (2023). MXene based flexible composite phase change material with shape memory, self-healing and flame retardant for thermal management. Composites Science and Technology 234: 109945. DOI: 10.1016/j.compscitech.2023.109945.

    View in Article CrossRef Google Scholar

    [41] Senthil, C., Kim, S.-S., and Jung, H.Y. (2022). Flame retardant high-power Li-S flexible batteries enabled by bio-macromolecular binder integrating conformal fractions. Nature Communications 13(1): 145. DOI: 10.1038/s41467-021-27777-5.

    View in Article CrossRef Google Scholar

    [42] Wu, Q., Guo, J., Fei, B., et al. (2020). Synthesis of a novel polyhydroxy triazine-based charring agent and its effects on improving the flame retardancy of polypropylene with ammonium polyphosphate and zinc borate. Polymer Degradation and Stability 175: 109123. DOI: 10.1016/j.polymdegradstab.2020.109123.

    View in Article CrossRef Google Scholar

    [43] Zhang, J., Li, X., Zhang, G., et al. (2020). Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system. Journal of Power Sources 480: 229116. DOI: 10.1016/j.jpowsour.2020.229116.

    View in Article CrossRef Google Scholar

    [44] Wang, B., Xu, Y.-J., Li, P., et al. (2020). Flame-retardant polyester/cotton blend with phosphorus/nitrogen/silicon-containing nano-coating by layer-by-layer assembly. Applied Surface Science 509: 145323. DOI: 10.1016/j.apsusc.2020.145323.

    View in Article CrossRef Google Scholar

    [45] Greiner, L., Döring, M., and Eibl, S. (2021). Prevention of the formation of respirable fibers in carbon fiber reinforced epoxy resins during combustion by phosphorus or silicon containing flame retardants. Polymer Degradation and Stability 185: 109497. DOI: 10.1016/j.polymdegradstab.2021.109497.

    View in Article CrossRef Google Scholar

    [46] Wang, F., Li, J.-Y., Pi, J., et al. (2021). Superamphiphobic and flame-retardant coatings with highly chemical and mechanical robustness. Chemical Engineering Journal 421: 127793. DOI: 10.1016/j.cej.2020.127793.

    View in Article CrossRef Google Scholar

    [47] Shao, Z.-B., Cui, J., Lin, X.-B., et al. (2022). In-situ coprecipitation formed Fe/Zn-layered double hydroxide/ammonium polyphosphate hybrid material for flame retardant epoxy resin via synergistic catalytic charring. Composites Part A: Applied Science and Manufacturing 155: 106841. DOI: 10.1016/j.compositesa.2022.106841.

    View in Article CrossRef Google Scholar

    [48] Wei, W., Ramakrishnan, S., Needell, Z.A., and Trancik, J.E. (2021). Personal vehicle electrification and charging solutions for high-energy days. Nature Energy 6(1): 105−114. DOI: 10.1038/s41560-020-00752-y.

    View in Article CrossRef Google Scholar

    [49] Nunes, A., Woodley, L., and Rossetti, P. (2022). Re-thinking procurement incentives for electric vehicles to achieve net-zero emissions. Nature Sustainability 5(6): 527−532. DOI: 10.1038/s41893-022-00862-3.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Huang Q., Li C., Li X., et al., (2024). Multifunction composite phase change material with inorganic flame retardant and organic form stability for improving battery thermal safety. The Innovation Materials 2(1): 100048. https://doi.org/10.59717/j.xinn-mater.2024.100048
    Huang Q., Li C., Li X., et al., (2024). Multifunction composite phase change material with inorganic flame retardant and organic form stability for improving battery thermal safety. The Innovation Materials 2(1): 100048. https://doi.org/10.59717/j.xinn-mater.2024.100048

Figures(7)    

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(1361) PDF downloads(227) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint