ARTICLE   Open Access     Cite

Nanostructured interface-engineered field-effect transistor biosensors for sensitive detection of serum miRNAs

More Information
  • Corresponding author: yangyanbing@whu.edu.cn
    1. A two-dimensional undulating transistor biosensing interface is constructed via sacrificial templates.

      The influence of the nanostructure of the sensing interface on ion distribution is confirmed and verified.

      A transistor biosensor based on nanostructured interfaces is constructed for serum miRNA detection.

      The relationship between cardiovascular diseases and miRNAs is established via machine learning algorithms.

  • The efficient detection of disease-relevant biomolecules in untreated clinical samples is highly desired, especially for acute diseases. Field-effect transistor (FET) biosensors allow label-free and rapid detection of biomolecules through the measurement of their intrinsic charges. However, the sensitivity of FET biosensors would be undermined by the charge screening effect in practical biological media with high ionic strength. Here, we report the design and performance of a nanostructured interface-engineered field effect transistor (NIE FET) biosensor for highly sensitive detection of cardiovascular disease (CVD)-associated miRNAs in serum samples. Molecular dynamic simulations and electrochemical characterizations demonstrate that the nanostructured interface with concave regions alleviates the charge screening effect and enlarges the Debye length. The rationally designed NIE FET biosensor exhibits high sensitivity and reproducibility in detecting miRNA in untreated serum samples with a detection limit of pM level. Benefiting from its excellent detection capabilities, NIE FET reveals the relationship between miRNAs and CVDs and realizes the effective classification of different CVD types with the help of machine learning algorithms. The construction of NIE FET defines a robust strategy for electrical biomolecular detection in practical clinical samples.
  • 加载中
  • [1] Geng, Y., Wang, Z., Zhou, J., et al. (2023). Recent progress in the development of fluorescent probes for imaging pathological oxidative stress. Chem. Soc. Rev. 52: 3873−3926. DOI: 10.1039/D2CS00172A.

    View in Article CrossRef Google Scholar

    [2] Ladner, J.T., Grubaugh, N.D., Pybus, O.G., et al. (2019). Precision epidemiology for infectious disease control. Nat. Med. 25: 206−211. DOI: 10.1038/s41591-019-0345-2.

    View in Article CrossRef Google Scholar

    [3] Perkins, M.D., Dye, C., Balasegaram, M., et al. (2017). Diagnostic preparedness for infectious disease outbreaks. The Lancet 390: 2211−2214. DOI: 10.1016/S0140-6736(17)31224-2.

    View in Article CrossRef Google Scholar

    [4] Wiersinga, W.J., Rhodes, A., Cheng, A.C., et al. (2020). Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19). Jama 324: 782−793. DOI: 10.1001/jama.2020.12839.

    View in Article CrossRef Google Scholar

    [5] Dai, C., Liu, Y., and Wei, D. (2022). Two-dimensional field-effect transistor sensors: The road toward commercialization. Chem. Rev. 122: 10319−10392. DOI: 10.1021/acs.chemrev.1c00924.

    View in Article CrossRef Google Scholar

    [6] Torricelli, F., Adrahtas, D.Z., Bao, Z., et al. (2021). Electrolyte-gated transistors for enhanced performance bioelectronics. Nat. Rev. Methods Primers 1: 66. DOI: 10.1038/s43586-021-00065-8.

    View in Article CrossRef Google Scholar

    [7] Yang, Y., Wang, J., Huang, W., et al. (2022). Integrated urinalysis devices based on interface‐engineered field‐effect transistor biosensors incorporated with electronic circuits. Adv. Mater. 34: 2203224. DOI: 10.1002/adma.202203224.

    View in Article CrossRef Google Scholar

    [8] Sakata, T., Nishimura, K., Miyazawa, Y., et al. (2017). Ion sensitive transparent-gate transistor for visible cell sensing. Anal. Chem. 89: 3901−3908. DOI: 10.1021/acs.analchem.6b02246.

    View in Article CrossRef Google Scholar

    [9] Balderston, S., Taulbee, J.J., Celaya, E., et al. (2021). Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 5: 713−725. DOI: 10.1038/s41551-021-00706-z.

    View in Article CrossRef Google Scholar

    [10] Bonafè, F., Decataldo, F., Zironi, I., et al. (2022). AC amplification gain in organic electrochemical transistors for impedance-based single cell sensors. Nat. Commun. 13: 5423. DOI: 10.1038/s41467-022-33094-2.

    View in Article CrossRef Google Scholar

    [11] Chen, D., Huang, W., Zhang, Y., et al. (2023). CRISPR‐mediated profiling of viral RNA at single‐nucleotide resolution. Angew. Chem. Int. Ed. 62: e202304298. DOI: 10.1002/anie.202304298.

    View in Article CrossRef Google Scholar

    [12] Gu, Y., Wang, C., Kim, N., et al. (2021). Three-dimensional transistor arrays for intra- and inter-cellular recording. Nat. Nanotechnol. 17: 292−300. DOI: 10.1038/s41565-021-01040-w.

    View in Article CrossRef Google Scholar

    [13] Luo, X. and Davis, J.J. (2013). Electrical biosensors and the label free detection of protein disease biomarkers. Chem. Soc. Rev. 42: 5944−5962. DOI: 10.1039/C3CS60077G.

    View in Article CrossRef Google Scholar

    [14] Souteyrand, E., Cloarec, J.P., Martin, J.R., et al. (1997). Direct detection of the hybridization of synthetic homo-oligomer DNA sequences by field effect. J. Phys. Chem. B 101: 2980−2985. DOI: 10.1021/jp963056h.

    View in Article CrossRef Google Scholar

    [15] Song, J., Liu, H., Zhao, Z., et al. (2023). Flexible organic transistors for biosensing: Devices and applications. Adv. Mater. 36 : 2300034. DOI: 10.1002/adma.202300034.

    View in Article Google Scholar

    [16] Wang, Q., Ai, Z., Guo, Q., et al. (2023). Photo-enhanced chemo-transistor platform for ultrasensitive assay of small molecules. J. Am. Chem. Soc. 145: 10035−10044. DOI: 10.1021/jacs.2c13655.

    View in Article CrossRef Google Scholar

    [17] Zhang, Y., Chen, D., He, W., et al. (2023). Interface‐engineered field‐effect transistor electronic devices for biosensing. Adv. Mater. Early View : 2306252. DOI: 10.1002/adma.202306252.

    View in Article Google Scholar

    [18] Sakara, T. (2024). Signal transduction interfaces for field-effect transistor-based biosensors. Commun. Chem. 7: 35. DOI: 10.1038/s42004-024-01121-6.

    View in Article CrossRef Google Scholar

    [19] Hueckel, T., Hocky, G.M., Palacci, J., et al. (2020). Ionic solids from common colloids. Nature 580: 487−490. DOI: 10.1038/s41586-020-2205-0.

    View in Article CrossRef Google Scholar

    [20] Krämer, J., Kang, R., Grimm, L.M., et al. (2022). Molecular probes, chemosensors, and nanosensors for optical detection of biorelevant molecules and ions in aqueous media and biofluids. Chem. Rev. 122: 3459−3636. DOI: 10.1021/acs.chemrev.1c00746.

    View in Article CrossRef Google Scholar

    [21] Sarker, B.K., Shrestha, R., Singh, K.M., et al. (2023). Label-free neuropeptide detection beyond the Debye length limit. ACS Nano 17: 20968−20978. DOI: 10.1021/acsnano.3c02537.

    View in Article CrossRef Google Scholar

    [22] Kesler, V., Murmann, B., and Soh, H.T. (2020). Going beyond the Debye length: Overcoming charge screening limitations in next-generation bioelectronic sensors. ACS Nano 14: 16194−16201. DOI: 10.1021/acsnano.0c08622.

    View in Article CrossRef Google Scholar

    [23] Wang, L., Wang, X., Wu, Y., et al. (2022). Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nat. Biomed. Eng. 6: 276−285. DOI: 10.1038/s41551-021-00833-7.

    View in Article CrossRef Google Scholar

    [24] Wang, X., Dai, C., Wu, Y., et al. (2023). Molecular-electromechanical system for unamplified detection of trace analytes in biofluids. Nat. Protoc. 18: 2313−2348. DOI: 10.1038/s41596-023-00830-x.

    View in Article CrossRef Google Scholar

    [25] Stern, E., Wagner, R., Sigworth, F.J., et al. (2007). Importance of the debye screening length on nanowire field effect transistor sensors. Nano Lett. 7: 3405−3409. DOI: 10.1021/nl071792z.

    View in Article CrossRef Google Scholar

    [26] Hwang, M.T., Heiranian, M., Kim, Y., et al. (2020). Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat. Commun. 11: 1543. DOI: 10.1038/s41467-020-15330-9.

    View in Article CrossRef Google Scholar

    [27] Kobayashi, N.P., Talin, A.A., Davydov, A.V., et al. (2014). Understanding and optimization of the sensitivity of nanoscale FET-based biosensors. Nanoepitaxy: Materials and Devices VI. 9174: 917413. DOI: 10.1117/12.2064899.

    View in Article CrossRef Google Scholar

    [28] Park, I., Lim, J., You, S., et al. (2021). Detection of SARS-CoV-2 virus amplification using a crumpled graphene field-effect transistor biosensor. ACS Sens. 6: 4461−4470. DOI: 10.1021/acssensors.1c01937.

    View in Article CrossRef Google Scholar

    [29] Shoorideh, K. and Chui, C.O. (2014). On the origin of enhanced sensitivity in nanoscale FET-based biosensors. Proc. Natl Acad. Sci. USA 111: 5111−5116. DOI: 10.1073/pnas.1315485111.

    View in Article CrossRef Google Scholar

    [30] Li Y., Hu H., Xu W., et al., (2024). Nanoripples in graphene: A remarkable structure for proton mass transport. The Innovation Materials 2 : 100053. DOI: 10.59717/j.xinn-mater.2024.100053.

    View in Article Google Scholar

    [31] Plimpton, S. (1995). Fast parallel algorithm for short-range molecular dynamics. J. Comput. Phys. 117: 1−19. DOI: 10.1006/jcph.1995.1039.

    View in Article CrossRef Google Scholar

    [32] Zhang, Y., Chen, B., Chen, D., et al. (2023). Electrical detection assay based on programmable nucleic acid probe for efficient single-nucleotide polymorphism identification. ACS Sens. 8: 2096−2104. DOI: 10.1021/acssensors.3c00453.

    View in Article CrossRef Google Scholar

    [33] Vogel, B., Claessen, B.E., Arnold, S.V., et al. (2019). ST-segment elevation myocardial infarction. Nat. Rev. Dis. Primers 5: 40. DOI: 10.1038/s41572-019-0094-z.

    View in Article CrossRef Google Scholar

    [34] Westermann, D., Neumann, J.T., Sörensen, N.A., et al. (2017). High-sensitivity assays for troponin in patients with cardiac disease. Nat. Rev. Cardiol. 14: 472−483. DOI: 10.1038/nrcardio.2017.48.

    View in Article CrossRef Google Scholar

    [35] Gorgannezhad, L., Umer, M., Islam, M.N., et al. (2018). Circulating tumor DNA and liquid biopsy: opportunities, challenges, and recent advances in detection technologies. Lab Chip 18: 1174. DOI: 10.1039/c8lc00100f.

    View in Article CrossRef Google Scholar

    [36] Masud, M.K., Umer, M., Hossain, M.S.A, et al. (2019). Nanoarchitecture frameworks for electrochemical miRNA detection. Trends Biochem. Sci. 44: 433−452. DOI: 10.1016/j.tibs.2018.11.012.

    View in Article CrossRef Google Scholar

    [37] Tao Q., Cai X., Xue Y., et al. (2024). Alzheimer’s disease early diagnostic and staging biomarkers revealed by large-scale cerebrospinal fluid and serum proteomic profiling. The Innovation. 5: 100544. DOI: 10.1016/j.xinn.2023.100544.

    View in Article CrossRef Google Scholar

    [38] Sheng, C., Zhao, J., Di, Z., et al. (2022). Spatially resolved in vivo imaging of inflammation-associated mRNA via enzymatic fluorescence amplification in a molecular beacon. Nat. Biomed. Eng. 6: 1074−1084. DOI: 10.1038/s41551-022-00932-z.

    View in Article CrossRef Google Scholar

    [39] Viereck, J. and Thum, T. (2017). Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ. Res. 120: 381−399. DOI: 10.1161/circresaha.116.308434.

    View in Article CrossRef Google Scholar

    [40] Rincon, L.M., Rodriguez-Serrano, E.M., Gonzalez-Portilla, P., et al. (2020). Predicting adverse ventricular remodelling and poor outcome after acute myocardial infarction by a distinctive miRNA signature. Eur. Heart J. 41: ehaa946.1670. DOI: 10.1093/ehjci/ehaa946.1670.

    View in Article CrossRef Google Scholar

    [41] Lu H., Wang Y., and Yu R. (2023). Immune cell membrane-coated nanoparticles for targeted myocardial ischemia/reperfusion injury therapy. The Innovation Medicine 1: 100015. DOI: 10.59717/j.xinn-med.2023.100015.

    View in Article CrossRef Google Scholar

    [42] Islam, M.N., Musad, M.K., Haque, M.H., et al. (2017). RNA biomarkers: Diagnostic and prognostic potentials and recent developments of electrochemical biosensors. Small Methods 1: 1700131. DOI: 10.1002/smtd.201700131.

    View in Article CrossRef Google Scholar

    [43] Chatterjee, N.A., Tikkanen, J.T., Panicker, G.K., et al. (2020). Simple electrocardiographic measures improve sudden arrhythmic death prediction in coronary disease. Eur. Heart J. 41: 1988−1999. DOI: 10.1093/eurheartj/ehaa177.

    View in Article CrossRef Google Scholar

    [44] Godinez Cordova, L.B., Sanchez-Amaya, D.J., Zebadua-Torres, R., et al. (2023). Pulmonary hypertension and atrial arrhythmias: Incidence, risk factors, and clinical impact. Eur. Heart J. 44: ehad655.1636. DOI: 10.1093/eurheartj/ehad655.1636.

    View in Article CrossRef Google Scholar

    [45] Sandhu, R.K., Dron, J.S., Liu, Y., et al. (2022). Polygenic risk score predicts sudden death in patients with coronary disease and preserved systolic function. J. Am. Coll. Cardiol. 80: 873−883. DOI: 10.1016/j.jacc.2022.05.049.

    View in Article CrossRef Google Scholar

  • Cite this article:

    Chen D., Lu Q., Song N., et al., (2024). Nanostructured interface-engineered field-effect transistor biosensors for sensitive detection of serum miRNAs. The Innovation Materials 2(4): 100091. https://doi.org/10.59717/j.xinn-mater.2024.100091
    Chen D., Lu Q., Song N., et al., (2024). Nanostructured interface-engineered field-effect transistor biosensors for sensitive detection of serum miRNAs. The Innovation Materials 2(4): 100091. https://doi.org/10.59717/j.xinn-mater.2024.100091

Figures(5)    

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(1390) PDF downloads(479) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint