A two-dimensional undulating transistor biosensing interface is constructed via sacrificial templates.
The influence of the nanostructure of the sensing interface on ion distribution is confirmed and verified.
A transistor biosensor based on nanostructured interfaces is constructed for serum miRNA detection.
The relationship between cardiovascular diseases and miRNAs is established via machine learning algorithms.
[1] | Geng, Y., Wang, Z., Zhou, J., et al. (2023). Recent progress in the development of fluorescent probes for imaging pathological oxidative stress. Chem. Soc. Rev. 52: 3873−3926. DOI: 10.1039/D2CS00172A. |
[2] | Ladner, J.T., Grubaugh, N.D., Pybus, O.G., et al. (2019). Precision epidemiology for infectious disease control. Nat. Med. 25: 206−211. DOI: 10.1038/s41591-019-0345-2. |
[3] | Perkins, M.D., Dye, C., Balasegaram, M., et al. (2017). Diagnostic preparedness for infectious disease outbreaks. The Lancet 390: 2211−2214. DOI: 10.1016/S0140-6736(17)31224-2. |
[4] | Wiersinga, W.J., Rhodes, A., Cheng, A.C., et al. (2020). Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19). Jama 324: 782−793. DOI: 10.1001/jama.2020.12839. |
[5] | Dai, C., Liu, Y., and Wei, D. (2022). Two-dimensional field-effect transistor sensors: The road toward commercialization. Chem. Rev. 122: 10319−10392. DOI: 10.1021/acs.chemrev.1c00924. |
[6] | Torricelli, F., Adrahtas, D.Z., Bao, Z., et al. (2021). Electrolyte-gated transistors for enhanced performance bioelectronics. Nat. Rev. Methods Primers 1: 66. DOI: 10.1038/s43586-021-00065-8. |
[7] | Yang, Y., Wang, J., Huang, W., et al. (2022). Integrated urinalysis devices based on interface‐engineered field‐effect transistor biosensors incorporated with electronic circuits. Adv. Mater. 34: 2203224. DOI: 10.1002/adma.202203224. |
[8] | Sakata, T., Nishimura, K., Miyazawa, Y., et al. (2017). Ion sensitive transparent-gate transistor for visible cell sensing. Anal. Chem. 89: 3901−3908. DOI: 10.1021/acs.analchem.6b02246. |
[9] | Balderston, S., Taulbee, J.J., Celaya, E., et al. (2021). Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 5: 713−725. DOI: 10.1038/s41551-021-00706-z. |
[10] | Bonafè, F., Decataldo, F., Zironi, I., et al. (2022). AC amplification gain in organic electrochemical transistors for impedance-based single cell sensors. Nat. Commun. 13: 5423. DOI: 10.1038/s41467-022-33094-2. |
[11] | Chen, D., Huang, W., Zhang, Y., et al. (2023). CRISPR‐mediated profiling of viral RNA at single‐nucleotide resolution. Angew. Chem. Int. Ed. 62: e202304298. DOI: 10.1002/anie.202304298. |
[12] | Gu, Y., Wang, C., Kim, N., et al. (2021). Three-dimensional transistor arrays for intra- and inter-cellular recording. Nat. Nanotechnol. 17: 292−300. DOI: 10.1038/s41565-021-01040-w. |
[13] | Luo, X. and Davis, J.J. (2013). Electrical biosensors and the label free detection of protein disease biomarkers. Chem. Soc. Rev. 42: 5944−5962. DOI: 10.1039/C3CS60077G. |
[14] | Souteyrand, E., Cloarec, J.P., Martin, J.R., et al. (1997). Direct detection of the hybridization of synthetic homo-oligomer DNA sequences by field effect. J. Phys. Chem. B 101: 2980−2985. DOI: 10.1021/jp963056h. |
[15] | Song, J., Liu, H., Zhao, Z., et al. (2023). Flexible organic transistors for biosensing: Devices and applications. Adv. Mater. 36 : 2300034. DOI: 10.1002/adma.202300034. |
[16] | Wang, Q., Ai, Z., Guo, Q., et al. (2023). Photo-enhanced chemo-transistor platform for ultrasensitive assay of small molecules. J. Am. Chem. Soc. 145: 10035−10044. DOI: 10.1021/jacs.2c13655. |
[17] | Zhang, Y., Chen, D., He, W., et al. (2023). Interface‐engineered field‐effect transistor electronic devices for biosensing. Adv. Mater. Early View : 2306252. DOI: 10.1002/adma.202306252. |
[18] | Sakara, T. (2024). Signal transduction interfaces for field-effect transistor-based biosensors. Commun. Chem. 7: 35. DOI: 10.1038/s42004-024-01121-6. |
[19] | Hueckel, T., Hocky, G.M., Palacci, J., et al. (2020). Ionic solids from common colloids. Nature 580: 487−490. DOI: 10.1038/s41586-020-2205-0. |
[20] | Krämer, J., Kang, R., Grimm, L.M., et al. (2022). Molecular probes, chemosensors, and nanosensors for optical detection of biorelevant molecules and ions in aqueous media and biofluids. Chem. Rev. 122: 3459−3636. DOI: 10.1021/acs.chemrev.1c00746. |
[21] | Sarker, B.K., Shrestha, R., Singh, K.M., et al. (2023). Label-free neuropeptide detection beyond the Debye length limit. ACS Nano 17: 20968−20978. DOI: 10.1021/acsnano.3c02537. |
[22] | Kesler, V., Murmann, B., and Soh, H.T. (2020). Going beyond the Debye length: Overcoming charge screening limitations in next-generation bioelectronic sensors. ACS Nano 14: 16194−16201. DOI: 10.1021/acsnano.0c08622. |
[23] | Wang, L., Wang, X., Wu, Y., et al. (2022). Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nat. Biomed. Eng. 6: 276−285. DOI: 10.1038/s41551-021-00833-7. |
[24] | Wang, X., Dai, C., Wu, Y., et al. (2023). Molecular-electromechanical system for unamplified detection of trace analytes in biofluids. Nat. Protoc. 18: 2313−2348. DOI: 10.1038/s41596-023-00830-x. |
[25] | Stern, E., Wagner, R., Sigworth, F.J., et al. (2007). Importance of the debye screening length on nanowire field effect transistor sensors. Nano Lett. 7: 3405−3409. DOI: 10.1021/nl071792z. |
[26] | Hwang, M.T., Heiranian, M., Kim, Y., et al. (2020). Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat. Commun. 11: 1543. DOI: 10.1038/s41467-020-15330-9. |
[27] | Kobayashi, N.P., Talin, A.A., Davydov, A.V., et al. (2014). Understanding and optimization of the sensitivity of nanoscale FET-based biosensors. Nanoepitaxy: Materials and Devices VI. 9174: 917413. DOI: 10.1117/12.2064899. |
[28] | Park, I., Lim, J., You, S., et al. (2021). Detection of SARS-CoV-2 virus amplification using a crumpled graphene field-effect transistor biosensor. ACS Sens. 6: 4461−4470. DOI: 10.1021/acssensors.1c01937. |
[29] | Shoorideh, K. and Chui, C.O. (2014). On the origin of enhanced sensitivity in nanoscale FET-based biosensors. Proc. Natl Acad. Sci. USA 111: 5111−5116. DOI: 10.1073/pnas.1315485111. |
[30] | Li Y., Hu H., Xu W., et al., (2024). Nanoripples in graphene: A remarkable structure for proton mass transport. The Innovation Materials 2 : 100053. DOI: 10.59717/j.xinn-mater.2024.100053. |
[31] | Plimpton, S. (1995). Fast parallel algorithm for short-range molecular dynamics. J. Comput. Phys. 117: 1−19. DOI: 10.1006/jcph.1995.1039. |
[32] | Zhang, Y., Chen, B., Chen, D., et al. (2023). Electrical detection assay based on programmable nucleic acid probe for efficient single-nucleotide polymorphism identification. ACS Sens. 8: 2096−2104. DOI: 10.1021/acssensors.3c00453. |
[33] | Vogel, B., Claessen, B.E., Arnold, S.V., et al. (2019). ST-segment elevation myocardial infarction. Nat. Rev. Dis. Primers 5: 40. DOI: 10.1038/s41572-019-0094-z. |
[34] | Westermann, D., Neumann, J.T., Sörensen, N.A., et al. (2017). High-sensitivity assays for troponin in patients with cardiac disease. Nat. Rev. Cardiol. 14: 472−483. DOI: 10.1038/nrcardio.2017.48. |
[35] | Gorgannezhad, L., Umer, M., Islam, M.N., et al. (2018). Circulating tumor DNA and liquid biopsy: opportunities, challenges, and recent advances in detection technologies. Lab Chip 18: 1174. DOI: 10.1039/c8lc00100f. |
[36] | Masud, M.K., Umer, M., Hossain, M.S.A, et al. (2019). Nanoarchitecture frameworks for electrochemical miRNA detection. Trends Biochem. Sci. 44: 433−452. DOI: 10.1016/j.tibs.2018.11.012. |
[37] | Tao Q., Cai X., Xue Y., et al. (2024). Alzheimer’s disease early diagnostic and staging biomarkers revealed by large-scale cerebrospinal fluid and serum proteomic profiling. The Innovation. 5: 100544. DOI: 10.1016/j.xinn.2023.100544. |
[38] | Sheng, C., Zhao, J., Di, Z., et al. (2022). Spatially resolved in vivo imaging of inflammation-associated mRNA via enzymatic fluorescence amplification in a molecular beacon. Nat. Biomed. Eng. 6: 1074−1084. DOI: 10.1038/s41551-022-00932-z. |
[39] | Viereck, J. and Thum, T. (2017). Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ. Res. 120: 381−399. DOI: 10.1161/circresaha.116.308434. |
[40] | Rincon, L.M., Rodriguez-Serrano, E.M., Gonzalez-Portilla, P., et al. (2020). Predicting adverse ventricular remodelling and poor outcome after acute myocardial infarction by a distinctive miRNA signature. Eur. Heart J. 41: ehaa946.1670. DOI: 10.1093/ehjci/ehaa946.1670. |
[41] | Lu H., Wang Y., and Yu R. (2023). Immune cell membrane-coated nanoparticles for targeted myocardial ischemia/reperfusion injury therapy. The Innovation Medicine 1: 100015. DOI: 10.59717/j.xinn-med.2023.100015. |
[42] | Islam, M.N., Musad, M.K., Haque, M.H., et al. (2017). RNA biomarkers: Diagnostic and prognostic potentials and recent developments of electrochemical biosensors. Small Methods 1: 1700131. DOI: 10.1002/smtd.201700131. |
[43] | Chatterjee, N.A., Tikkanen, J.T., Panicker, G.K., et al. (2020). Simple electrocardiographic measures improve sudden arrhythmic death prediction in coronary disease. Eur. Heart J. 41: 1988−1999. DOI: 10.1093/eurheartj/ehaa177. |
[44] | Godinez Cordova, L.B., Sanchez-Amaya, D.J., Zebadua-Torres, R., et al. (2023). Pulmonary hypertension and atrial arrhythmias: Incidence, risk factors, and clinical impact. Eur. Heart J. 44: ehad655.1636. DOI: 10.1093/eurheartj/ehad655.1636. |
[45] | Sandhu, R.K., Dron, J.S., Liu, Y., et al. (2022). Polygenic risk score predicts sudden death in patients with coronary disease and preserved systolic function. J. Am. Coll. Cardiol. 80: 873−883. DOI: 10.1016/j.jacc.2022.05.049. |
Chen D., Lu Q., Song N., et al., (2024). Nanostructured interface-engineered field-effect transistor biosensors for sensitive detection of serum miRNAs. The Innovation Materials 2(4): 100091. https://doi.org/10.59717/j.xinn-mater.2024.100091 |
Fabrication and characterization of NIE FET biosensors
Molecular mechanism of the biosensing interfaces
Detection of miRNA-208 via NIE FET biosensors
miRNA profiling of CVD patients via NIE FET biosensors
Classification of CVD types in a validation cohort