REVIEW   Open Access     Cite

Artificial intelligence for medicine 2025: Navigating the endless frontier

    Show all affliationsShow less
More Information
    1. AI helps us understand the complex medical phenotypes and diverse data.

      AI forecasts the forthcoming medical innovations in surgical robots and BCI.

      AI will solve the low birth rate and aging population challenges of human beings.

  • Artificial intelligence (AI) is driving transformative changes in the field of medicine, with its successful application relying on accurate data and rigorous quality standards. By integrating clinical information, pathology, medical imaging, physiological signals, and omics data, AI significantly enhances the precision of research into disease mechanisms and patient prognoses. AI technologies also demonstrate exceptional potential in drug development, surgical automation, and brain-computer interface (BCI) research. Through the simulation of biological systems and prediction of intervention outcomes, AI enables researchers to rapidly translate innovations into practical clinical applications. While challenges such as computational demands, software development, and ethical considerations persist, the future of AI remains highly promising. AI plays a pivotal role in addressing societal issues like low birth rates and aging populations. AI can contribute to mitigating low birth rate issues through enhanced ovarian reserve evaluation, menopause forecasting, optimization of Assisted Reproductive Technologies (ART), sperm analysis and selection, endometrial receptivity evaluation, fertility forecasting, and remote consultations. In addressing the challenges posed by an aging population, AI can facilitate the development of dementia prediction models, cognitive health monitoring and intervention strategies, early disease screening and prediction systems, AI-driven telemedicine platforms, intelligent health monitoring systems, smart companion robots, and smart environments for aging-in-place. AI profoundly shapes the future of medicine.
  • 加载中
  • [1] Xu Y., Liu X., Cao X., et al. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2:100179 DOI:10.1016/j.xinn.2021.100179

    View in Article CrossRef Google Scholar

    [2] Luo M., Yang W., Bai L., et al. (2024). Artificial intelligence for life sciences: A comprehensive guide and future trends. Innov. Life 2:100105 DOI:10.59717/j.xinn-life.2024.100105

    View in Article CrossRef Google Scholar

    [3] Zhao T., Wang S., Ouyang C., et al. (2024). Artificial intelligence for geoscience: Progress, challenges, and perspectives. The Innovation 5:100691 DOI:10.1016/j.xinn.2024.100691

    View in Article CrossRef Google Scholar

    [4] Xiao N., Ding Y., Cui B., et al. (2024). Navigating obesity: A comprehensive review of epidemiology, pathophysiology, complications and management strategies. Innov. Med. 2:100090 DOI:10.59717/j.xinn-med.2024.100090

    View in Article CrossRef Google Scholar

    [5] Huang T., Xu H., Wang H., et al. (2023). Artificial intelligence for medicine: Progress, challenges, and perspectives. Innov. Med. 1:100030 DOI:10.59717/j.xinn-med.2023.100030

    View in Article CrossRef Google Scholar

    [6] Guo Y., You J., Zhang Y., et al. (2024). Plasma proteomic profiles predict future dementia in healthy adults. Nat. Aging 4 . DOI:10.1038/s43587-023-00565-0

    View in Article Google Scholar

    [7] Teede H. J., Misso M. L., Costello M. F., et al. (2018). Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil. Steril. 110:364−379 DOI:10.1016/j.fertnstert.2018.05.004

    View in Article CrossRef Google Scholar

    [8] Ringwald F. G., Martynova A., Mierisch J., et al. (2024). Explainable Artificial Intelligence for Deep-Learning Based Classification of Cystic Fibrosis Lung Changes in MRI. Stud. Health Technol. Inform. 310:921−925 DOI:10.3233/shti231099

    View in Article CrossRef Google Scholar

    [9] Zhao X., Liao Y., Xie J., et al. (2023). BreastDM: A DCE-MRI dataset for breast tumor image segmentation and classification. Comput. Biol. Med. 164:107255 DOI:10.1016/j.compbiomed.2023.107255

    View in Article CrossRef Google Scholar

    [10] Liu X., Zhang S., Shao L., et al. (2024). Improving prediction of treatment response and prognosis in colorectal cancer with AI-based medical image analysis. Innov. Med. 2:100069 DOI:10.59717/j.xinn-med.2024.100069

    View in Article CrossRef Google Scholar

    [11] Jin L. (2021). Welcome to the Phenomics Journal. Phenomics (Cham, Switzerland) 1:1−2 DOI:10.1007/s43657-020-00009-4

    View in Article CrossRef Google Scholar

    [12] Hood L. and Flores M. (2012). A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. New Biotechnol. 29:613−624 DOI:10.1016/j.nbt.2012.03.004

    View in Article CrossRef Google Scholar

    [13] Tang X., Zhang J., He Y., et al. (2023). Explainable multi-task learning for multi-modality biological data analysis. Nat. Commun. 14:2546 DOI:10.1038/s41467-023-37477-x

    View in Article CrossRef Google Scholar

    [14] Walker K. A., Chen J., Zhang J., et al. (2021). Large-scale plasma proteomic analysis identifies proteins and pathways associated with dementia risk. Nat. Aging 1:473−489 DOI:10.1038/s43587-021-00064-0

    View in Article CrossRef Google Scholar

    [15] Wang T., Shi Z., Ren H., et al. (2024). Divergent age-associated and metabolism-associated gut microbiome signatures modulate cardiovascular disease risk. Nat. Med. 30:1722−1731 DOI:10.1038/s41591-024-03038-y

    View in Article CrossRef Google Scholar

    [16] Zhao B., Li T., Fan Z., et al. (2023). Heart-brain connections: Phenotypic and genetic insights from magnetic resonance images. Science (New York, N.Y.) 380:abn6598 DOI:10.1126/science.abn6598

    View in Article CrossRef Google Scholar

    [17] Zhang M., Wu S., Du S., et al. (2022). Genetic variants underlying differences in facial morphology in East Asian and European populations. Nat. Genet. 54:403−411 DOI:10.1038/s41588-022-01038-7

    View in Article CrossRef Google Scholar

    [18] Zheng Y., Liu Y., Yang J., et al. (2024). Multi-omics data integration using ratio-based quantitative profiling with Quartet reference materials. Nat. Biotechnol. 42:1133−1149 DOI:10.1038/s41587-023-01934-1

    View in Article CrossRef Google Scholar

    [19] Iturria-Medina Y., Adewale Q., Khan A. F., et al. (2022). Unified epigenomic, transcriptomic, proteomic, and metabolomic taxonomy of Alzheimer's disease progression and heterogeneity. Sci. Adv. 8:eabo6764 DOI:10.1126/sciadv.abo6764

    View in Article CrossRef Google Scholar

    [20] Xue C., Kowshik S. S., Lteif D., et al. (2024). AI-based differential diagnosis of dementia etiologies on multimodal data. Nat. Med. 30:2977−2989 DOI:10.1038/s41591-024-03118-z

    View in Article CrossRef Google Scholar

    [21] Cai J. C., Nakai H., Kuanar S., et al. (2024). Fully Automated Deep Learning Model to Detect Clinically Significant Prostate Cancer at MRI. Radiology 312:e232635 DOI:10.1148/radiol.232635

    View in Article CrossRef Google Scholar

    [22] Wang C., Shao J., He Y., et al. (2024). Data-driven risk stratification and precision management of pulmonary nodules detected on chest computed tomography. Nat. Med. 30:3184−3195 DOI:10.1038/s41591-024-03211-3

    View in Article CrossRef Google Scholar

    [23] Wang Y. J., Yang K., Wen Y., et al. (2024). Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging. Nat. Med. 30:1471−1480 DOI:10.1038/s41591-024-02971-2

    View in Article CrossRef Google Scholar

    [24] Zhang Q., Liao Y., Wang X., et al. (2021). A deep learning framework for (18)F-FDG PET imaging diagnosis in pediatric patients with temporal lob Eur. J. Nucl. Med. Mol. Imaging 48:2476−2485 DOI:10.1007/s00259-020-05108-y

    View in Article CrossRef Google Scholar

    [25] Li J., Guan Z., Wang J., et al. (2024). Integrated image-based deep learning and language models for primary diabetes care. Nat. Med. 30:2886−2896 DOI:10.1038/s41591-024-03139-8

    View in Article CrossRef Google Scholar

    [26] Luo Y., Eran A., Palmer N., et al. (2020). A multidimensional precision medicine approach identifies an autism subtype characterized by dyslipidemia. Nat. Med. 26:1375−1379 DOI:10.1038/s41591-020-1007-0

    View in Article CrossRef Google Scholar

    [27] Wang T., Shao W., Huang Z., et al. (2021). MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nat. Commun. 12:3445 DOI:10.1038/s41467-021-23774-w

    View in Article CrossRef Google Scholar

    [28] Acosta J. N., Falcone G. J., Rajpurkar P., et al. (2022). Multimodal biomedical AI. Nat. Med. 28:1773−1784 DOI:10.1038/s41591-022-01981-2

    View in Article CrossRef Google Scholar

    [29] Cosentino J., Belyaeva A., Liu X., et al. (2024). Towards a Personal Health Large Language Model. arXiv. DOI:10.48550/arXiv.2406.06474

    View in Article Google Scholar

    [30] Elhussein A., Baymuradov U., Elhadad N., et al. (2024). A framework for sharing of clinical and genetic data for precision medicine applications. Nat. Med. 30:3578−3589 DOI:10.1038/s41591-024-03239-5

    View in Article CrossRef Google Scholar

    [31] Sicklick J. K., Kato S., Okamura R., et al. (2019). Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Nat. Med. 25:744−750 DOI:10.1038/s41591-019-0407-5

    View in Article CrossRef Google Scholar

    [32] Tong X., Qu N., Kong X., et al. (2024). Deep representation learning of chemical-induced transcriptional profile for phenotype-based drug discovery. Nat. Commun. 15:5378 DOI:10.1038/s41467-024-49620-3

    View in Article CrossRef Google Scholar

    [33] Wen J., Tian Y. E., Skampardoni I., et al. (2024). The genetic architecture of biological age in nine human organ systems. Nat. Aging 4:1290−1307 DOI:10.1038/s43587-024-00662-8

    View in Article CrossRef Google Scholar

    [34] Yang Z., Wen J., Erus G., et al. (2024). Brain aging patterns in a large and diverse cohort of 49,482 individuals. Nat. Med. 30:3015−3026 DOI:10.1038/s41591-024-03144-x

    View in Article CrossRef Google Scholar

    [35] Li Q., Hu Z., Wang Y., et al. (2024). Progress and opportunities of foundation models in bioinformatics. Brief. Bioinform. 25 . DOI:10.1093/bib/bbae548

    View in Article Google Scholar

    [36] Yang X., Chen A., PourNejatian N., et al. (2022). A large language model for electronic health records. NPJ Digit. Med. 5:194 DOI:10.1038/s41746-022-00742-2

    View in Article CrossRef Google Scholar

    [37] Xu H., Usuyama N., Bagga J., et al. (2024). A whole-slide foundation model for digital pathology from real-world data. Nature 630:181−188 DOI:10.1038/s41586-024-07441-w

    View in Article CrossRef Google Scholar

    [38] Wang J., Wang K., Yu Y., et al. (2024). Self-improving generative foundation model for synthetic medical image generation and clinical applications. Nat. Med. DOI:10.1038/s41591-024-03359-y

    View in Article Google Scholar

    [39] Tian Y., Li Z., Jin Y., et al. (2024). Foundation model of ECG diagnosis: Diagnostics and explanations of any form and rhythm on ECG. Cell Rep. Med. 5:101875 DOI:10.1016/j.xcrm.2024.101875

    View in Article CrossRef Google Scholar

    [40] Wang F. A., Zhuang Z., Gao F., et al. (2024). TMO-Net: An explainable pretrained multi-omics model for multi-task learning in oncology. Genome Biol. 25:149 DOI:10.1186/s13059-024-03293-9

    View in Article CrossRef Google Scholar

    [41] Guan Z., Li H., Liu R., et al. (2023). Artificial intelligence in diabetes management: Advancements, opportunities, and challenges. Cell Rep. Med. 4:101213 DOI:10.1016/j.xcrm.2023.101213

    View in Article CrossRef Google Scholar

    [42] Goh E., Gallo R., Hom J., et al. (2024). Large language model influence on diagnostic reasoning: A randomized clinical trial. JAMA Netw. Open 7:e2440969 DOI:10.1001/jamanetworkopen.2024.40969

    View in Article CrossRef Google Scholar

    [43] Chen R. J., Ding T., Lu M. Y., et al. (2024). Towards a general-purpose foundation model for computational pathology. Nat. Med. 30:850−862 DOI:10.1038/s41591-024-02857-3

    View in Article CrossRef Google Scholar

    [44] Vorontsov E., Bozkurt A., Casson A., et al. (2024). A foundation model for clinical-grade computational pathology and rare cancers detection. Nat. Med. 30:2924−2935 DOI:10.1038/s41591-024-03141-0

    View in Article CrossRef Google Scholar

    [45] Lee D. N., Li Y., Olsson L. T., et al. (2024). Image analysis-based identification of high risk ER-positive, HER2-negative breast cancers. Breast Cancer Res. 26:177 DOI:10.1186/s13058-024-01915-5

    View in Article CrossRef Google Scholar

    [46] Sode M., Thagaard J., Eriksen J. O., et al. (2023). Digital image analysis and assisted reading of the HER2 score display reduced concordance: pitfalls in the categorisation of HER2-low breast cancer. Histopathology 82:912−924 DOI:10.1111/his.14877

    View in Article CrossRef Google Scholar

    [47] Yang L., Liu Q., Kumar P., et al. (2024). LungVis 1.0: an automatic AI-powered 3D imaging ecosystem unveils spatial profiling of nanoparticle delivery and acinar migration of lung macrophages. Nat. Commun. 15 :10138. DOI:10.1038/s41467-024-54267-1

    View in Article Google Scholar

    [48] Sadeghi A. H., Bakhuis W., Van Schaagen F., et al. (2020). Immersive 3D virtual reality imaging in planning minimally invasive and complex adult cardiac surgery. Eur. Heart J. Digit. Health 1:62−70 DOI:10.1093/ehjdh/ztaa011

    View in Article CrossRef Google Scholar

    [49] Kawamura M., Kamomae T., Yanagawa M., et al. (2024). Revolutionizing radiation therapy: The role of AI in clinical practice. J. Radiat. Res. 65:1−9 DOI:10.1093/jrr/rrad090

    View in Article CrossRef Google Scholar

    [50] Siontis K. C., Noseworthy P. A., Attia Z. I., et al. (2021). Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat. Rev. Cardiol. 18:465−478 DOI:10.1038/s41569-020-00503-2

    View in Article CrossRef Google Scholar

    [51] Sau A., Pastika L., Sieliwonczyk E., et al. (2024). Artificial intelligence-enabled electrocardiogram for mortality and cardiovascular risk estimation: A model development and validation study. Lancet Digit. Health 6:e791−e802 DOI:10.1016/s2589-7500(24)00172-9

    View in Article CrossRef Google Scholar

    [52] Pandey A. and Adedinsewo D. (2022). The future of AI-enhanced ECG interpretation for valvular heart disease screening. J. Am. Coll. Cardiol. 80:627−630 DOI:10.1016/j.jacc.2022.05.034

    View in Article CrossRef Google Scholar

    [53] Yang Y., Xu S., Hong Y., et al. (2024). Computational modeling for medical data: From data collection to knowledge discovery. Innov. Life 2:100079 DOI:10.59717/j.xinn-life.2024.100079

    View in Article CrossRef Google Scholar

    [54] Wen L., Li G., Huang T., et al. (2022). Single-cell technologies: From research to application. The Innovation 3:100342 DOI:10.1016/j.xinn.2022.100342

    View in Article CrossRef Google Scholar

    [55] Chen G. B., Liu S., Zhang L., et al. (2024). Building and sharing medical cohorts for research. The Innovation 5:100623 DOI:10.1016/j.xinn.2024.100623

    View in Article CrossRef Google Scholar

    [56] Golriz Khatami S., Mubeen S., Bharadhwaj V. S., et al. (2021). Using predictive machine learning models for drug response simulation by calibrating patient-specific pathway signatures. NPJ Syst. Biol. Appl. 7:40 DOI:10.1038/s41540-021-00199-1

    View in Article CrossRef Google Scholar

    [57] Yan C., Grabowska M. E., Dickson A. L., et al. (2024). Leveraging generative AI to prioritize drug repurposing candidates for Alzheimer's disease with real-world clinical validation. NPJ Digit. Med. 7:46 DOI:10.1038/s41746-024-01038-3

    View in Article CrossRef Google Scholar

    [58] Krentz A., Fournier L., Castiglione T., et al. (2025). Optimising the therapeutic response of statins using real-world evidence and machine learning: Personalised precision dosing recommends lower statin doses for some patients. Diabetes Obes. Metab. 27:432−434 DOI:10.1111/dom.16029

    View in Article CrossRef Google Scholar

    [59] Li X., Loscalzo J., Mahmud A., et al. (2025). Digital twins as global learning health and disease models for preventive and personalized medicine. Genome Med. 17:11 DOI:10.1186/s13073-025-01435-7

    View in Article CrossRef Google Scholar

    [60] Wang Y., Zhu M., Chen X., et al. (2024). The application of metaverse in healthcare. Front. Public Health 12:1420367 DOI:10.3389/fpubh.2024.1420367

    View in Article CrossRef Google Scholar

    [61] Abramson J., Adler J., Dunger J., et al. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630:493−500 DOI:10.1038/s41586-024-07487-w

    View in Article CrossRef Google Scholar

    [62] Xiong P., Wu R., Zhan J., et al. (2021). Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement. Nat. Commun. 12:2777 DOI:10.1038/s41467-021-23100-4

    View in Article CrossRef Google Scholar

    [63] Chen K., Zhou Y., Wang S., et al. (2023). RNA tertiary structure modeling with BRiQ potential in CASP15. Proteins 91:1771−1778 DOI:10.1002/prot.26574

    View in Article CrossRef Google Scholar

    [64] Das R., Kretsch R. C., Simpkin A. J., et al. (2023). Assessment of three-dimensional RNA structure prediction in CASP15. Proteins 91:1747−1770 DOI:10.1002/prot.26602

    View in Article CrossRef Google Scholar

    [65] Lin Z., Akin H., Rao R., et al. (2023). Evolutionary-scale prediction of atomic-level protein structure with a language model. Science (New York, N.Y.) 379:1123−1130 DOI:10.1126/science.ade2574

    View in Article CrossRef Google Scholar

    [66] Del Alamo D., Sala D., McHaourab H. S., et al. (2022). Sampling alternative conformational states of transporters and receptors with AlphaFold2. eLife 11 . DOI:10.7554/eLife.75751

    View in Article Google Scholar

    [67] Stein R. A. and McHaourab H. S. (2022). SPEACH_AF: Sampling protein ensembles and conformational heterogeneity with Alphafold2. PLoS Comput. Biol. 18:e1010483 DOI:10.1371/journal.pcbi.1010483

    View in Article CrossRef Google Scholar

    [68] Wayment-Steele H. K., Ojoawo A., Otten R., et al. (2024). Predicting multiple conformations via sequence clustering and AlphaFold2. Nature 625:832−839 DOI:10.1038/s41586-023-06832-9

    View in Article CrossRef Google Scholar

    [69] Monteiro da Silva G., Cui J. Y., Dalgarno D. C., et al. (2024). High-throughput prediction of protein conformational distributions with subsampled AlphaFold2. Nat. Commun. 15:2464 DOI:10.1038/s41467-024-46715-9

    View in Article CrossRef Google Scholar

    [70] Guan X., Tang Q. Y., Ren W., et al. (2024). Predicting protein conformational motions using energetic frustration analysis and AlphaFold2. Proc. Natl. Acad. Sci. U. S. A. 121:e2410662121 DOI:10.1073/pnas.2410662121

    View in Article CrossRef Google Scholar

    [71] Liu Y., Chen L. and Liu H. (2023). Diffusion in a quantized vector space generates non-idealized protein structures and predicts conformational distributions. bioRxiv. DOI:10.1101/2023.11.18.567666

    View in Article Google Scholar

    [72] Jing B., Erives E., Pao-Huang P., et al. (2023). EigenFold: Generative protein structure prediction with diffusion models. ArXiv

    View in Article Google Scholar

    [73] Jing B., Berger B. and Jaakkola T. (2024). AlphaFold meets flow matching for generating protein ensembles. ArXiv. DOI:10.48550/arXiv.2402.04845

    View in Article Google Scholar

    [74] Tang J., Zhang Z., Zhan J., et al. (2023). Effective high-accuracy prediction of protein structures from easily obtainable artificial homologous sequences by structure-stability-based selection. bioRxiv. DOI:10.1101/2023.11.22.568372

    View in Article Google Scholar

    [75] He S., Huang R., Townley J., et al. (2024). Ribonanza: Deep learning of RNA structure through dual crowdsourcing. bioRxiv. DOI:10.1101/2024.02.24.581671

    View in Article Google Scholar

    [76] Lee A., Baker T. S., Bederson J. B., et al. (2024). Levels of autonomy in FDA-cleared surgical robots: a systematic review. NPJ Digit. Med. 7:103 DOI:10.1038/s41746-024-01102-y

    View in Article CrossRef Google Scholar

    [77] Coussons H., Feldstein J. and McCarus S. (2021). Senhance surgical system in benign hysterectomy: A real-world comparative assessment of case times and instrument costs versus da Vinci robotics and laparoscopic-assisted vaginal hysterectomy procedures. Int. J. Med. Robot. 17:e2261 DOI:10.1002/rcs.2261

    View in Article CrossRef Google Scholar

    [78] Cancelliere N. M., Lynch J., Nicholson P., et al. (2022). Robotic-assisted intracranial aneurysm treatment: 1 year follow-up imaging and clinical outcomes. J. Neurointerv. Surg. 14:1229−1233 DOI:10.1136/neurintsurg-2021-017865

    View in Article CrossRef Google Scholar

    [79] Gilling P., Barber N., Bidair M., et al. (2020). Three-year outcomes after Aquablation therapy compared to TURP: Results from a blinded randomized trial. Can. J. Urol. 27:10072−10079

    View in Article Google Scholar

    [80] Desai M., Bidair M., Bhojani N., et al. (2020). Aquablation for benign prostatic hyperplasia in large prostates (80-150 cc): 2-year results. Can. J. Urol. 27:10147−10153

    View in Article Google Scholar

    [81] Bach T., Gilling P., El Hajj A., et al. (2020). First Multi-Center All-Comers Study for the Aquablation Procedure. J. Clin. Med. 9:603 DOI:10.3390/jcm9020603

    View in Article CrossRef Google Scholar

    [82] Alargkof V., Engesser C., Breit H. C., et al. (2024). The learning curve for robotic-assisted transperineal MRI/US fusion-guided prostate biopsy. Sci. Rep. 14:5638 DOI:10.1038/s41598-024-55492-w

    View in Article CrossRef Google Scholar

    [83] Zhang X., Ma Z., Zheng H., et al. (2020). The combination of brain-computer interfaces and artificial intelligence: applications and challenges. Ann. Transl. Med. 8:712 DOI:10.21037/atm.2019.11.109

    View in Article CrossRef Google Scholar

    [84] Berisha V. and Liss J. M. (2024). Responsible development of clinical speech AI: Bridging the gap between clinical research and technology. NPJ Digit. Med. 7:208 DOI:10.1038/s41746-024-01199-1

    View in Article CrossRef Google Scholar

    [85] Deng C., Li X. and Dai J. (2023). Challenges for translating implantable brain-computer interface to medical device. Innov. Med. 1:100040 DOI:10.59717/j.xinn-med.2023.100040

    View in Article CrossRef Google Scholar

    [86] Zhao Y., Chen Y., Cheng K., et al. (2023). Artificial intelligence based multimodal language decoding from brain activity: A review. Brain Res. Bull. 201:110713 DOI:10.1016/j.brainresbull.2023.110713

    View in Article CrossRef Google Scholar

    [87] Rajpura P., Cecotti H. and Kumar Meena Y. (2024). Explainable artificial intelligence approaches for brain-computer interfaces: A review and design space. J. Neural Eng. 21 . DOI:10.1088/1741-2552/ad6593

    View in Article Google Scholar

    [88] Zhang Z. and Dai J. (2024). Fully implantable wireless brain-computer interface for humans: Advancing toward the future. The Innovation 5 . DOI:10.1016/j.xinn.2024.100595

    View in Article Google Scholar

    [89] Asgher U., Ayaz Y. and Taiar R. (2023). Editorial: Advances in artificial intelligence (AI) in brain computer interface (BCI) and Industry 4.0 for human machine interaction (HMI). Front. Human Neurosci. 17 :1320536. DOI:10.3389/fnhum.2023.1320536

    View in Article Google Scholar

    [90] Chen X., Wang R., Khalilian-Gourtani A., et al. (2023). A Neural Speech Decoding Framework Leveraging Deep Learning and Speech Synthesis. bioRxiv. DOI:10.1101/2023.09.16.558028

    View in Article Google Scholar

    [91] Fox E. L., Ugolini M. and Houpt J. W. (2022). Predictions of task using neural modeling. Front. Neuroergono. 3:1007673 DOI:10.3389/fnrgo.2022.1007673

    View in Article CrossRef Google Scholar

    [92] Lenharo M. (2023). An AI revolution is brewing in medicine. What will it look like? Nature 622:686−688 DOI:10.1038/d41586-023-03302-0

    View in Article CrossRef Google Scholar

    [93] Patterson D., Gonzalez J., Hölzle U., et al. (2022). The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink. Computer 55:18−28 DOI:10.1109/MC.2022.3148714

    View in Article CrossRef Google Scholar

    [94] Achiam O. J., Adler S., Agarwal S., et al. (2023). GPT-4 Technical Report. arXiv. DOI:10.48550/arXiv.2303.08774

    View in Article Google Scholar

    [95] Moslemi A., Briskina A., Dang Z., et al. (2024). A survey on knowledge distillation: Recent advancements. Machine Learning with Applications 18:100605 DOI:10.1016/j.mlwa.2024.100605

    View in Article CrossRef Google Scholar

    [96] Li Z., Xu T., Zhang Y., et al. (2023). ReMax: A Simple, Effective, and Efficient Reinforcement Learning Method for Aligning Large Language Models. arXiv. DOI:abs/2310.10505

    View in Article Google Scholar

    [97] Li D., Shao R., Xie A., et al. (2023). How Long Can Context Length of Open-Source LLMs truly Promise? NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following

    View in Article Google Scholar

    [98] DeepSeek-AI, Liu A., Feng B., et al. (2024). DeepSeek-V3 Technical Report. arXiv. DOI:10.48550/arXiv.2412.19437

    View in Article Google Scholar

    [99] Wu Y., Zhang Z., Wang F., et al. (2025). Towards more economical large-scale foundation models : No longer a game for the few. The Innovation 100832. DOI:10.1016/j.xinn.2025.100832

    View in Article Google Scholar

    [100] Reuther A., Michaleas P., Jones M., et al. (2020). Survey of Machine Learning Accelerators. 2020 IEEE High Performance Extreme Computing Conference (HPEC). DOI:10.1109/HPEC43674.2020.9286149

    View in Article Google Scholar

    [101] Li J., Sun Z., He X., et al. (2024). LocMoE: A Low-overhead MoE for Large Language Model Training. arXiv. DOI:10.48550/arXiv.2401.13920

    View in Article Google Scholar

    [102] Jin Y., Wang T., Lin H., et al. (2024). P/D-Serve: Serving Disaggregated Large Language Model at Scale. arXiv. DOI:10.48550/arXiv.2408.08147

    View in Article Google Scholar

    [103] Ma X.-K., Yu Y., Huang T., et al. (2024). Bioinformatics software development: Principles and future directions. Innov. Life 2:100083 DOI:10.59717/j.xinn-life.2024.100083

    View in Article CrossRef Google Scholar

    [104] Liu J.-L., Yang L.-G., Xiao Q.-Y., et al. (2024). Bio-medical big data operating system (Bio-OS): An integrated data mining environment for data intensive scientific research. bioRxiv:2024.2010.2017.612997. DOI:10.1101/2024.10.17.612997

    View in Article Google Scholar

    [105] Xu H., Feng G., Yang R., et al. (2023). OvaRePred: Online tool for predicting the age of fertility milestones. The Innovation 4:100490 DOI:10.1016/j.xinn.2023.100490

    View in Article CrossRef Google Scholar

    [106] Xu H., Wang W., Han Y., et al. (2024). OvaRePred: Redefing ovarian aging and pioneering the journey towards women's health management. Innov. Med. 2:100068 DOI:10.59717/j.xinn-med.2024.100068

    View in Article CrossRef Google Scholar

    [107] Innovation Editorial Team (2024). Innovation focus in 2023. The Innovation 5 :100560. DOI:10.1016/j.xinn.2023.100560

    View in Article Google Scholar

    [108] Xu H., Feng G., Han Y., et al. (2023). POvaStim: An online tool for directing individualized FSH doses in ovarian stimulation. The Innovation 4:100401 DOI:10.1016/j.xinn.2023.100401

    View in Article CrossRef Google Scholar

    [109] No authors listed. (2022). The alarming rise of complex genetic testing in human embryo selection. Nature 603:549−550 DOI:10.1038/d41586-022-00787-z

    View in Article CrossRef Google Scholar

    [110] Serrano R. Y., Palomar A., Quionero A., et al. (2024). Non-Invasive Biomarkers for Embryo Selection in Ivf: Unveiling Secreted Signatures for Implantation Prediction. Fertil. Steril. 122:E187−E188

    View in Article Google Scholar

    [111] Cao P., Derhaag J., Coonen E., et al. (2024). Generative artificial intelligence to produce high-fidelity blastocyst-stage embryo images. Hum. Reprod. 39 . DOI:10.1093/humrep/deae064

    View in Article Google Scholar

    [112] Bhide P., Chan D. Y. L., Lanz D., et al. (2024). Clinical effectiveness and safety of time-lapse imaging systems for embryo incubation and selection in in-vitro fertilisation treatment (TILT): a multicentre, three-parallel- group, double-blind, randomised controlled trial. Lancet 404:256−265

    View in Article Google Scholar

    [113] Illingworth P. J., Venetis C., Gardner D. K., et al. (2024). Deep learning versus manual morphology-based embryo selection in IVF: A randomized, double-blind noninferiority trial. Nat. Med. 30 . DOI:10.1038/s41591-024-03166-5

    View in Article Google Scholar

    [114] Kieslinger D. C., Lambalk C. B. and Vergouw C. G. (2024). The inconvenient reality of AI-assisted embryo selection in IVF. Nat. Med. 30:3059−3060 DOI:10.1038/s41591-024-03289-9

    View in Article CrossRef Google Scholar

    [115] You J. B., McCallum C., Wang Y. H., et al. (2021). Machine learning for sperm selection. Nat. Rev. Urol. 18:387−403 DOI:10.1038/s41585-021-00465-1

    View in Article CrossRef Google Scholar

    [116] Guahmich N. L., Borini E. and Zaninovic N. (2023). Improving outcomes of assisted reproductive technologies using artificial intelligence for sperm selection. Fertil. Steril. 120:729−734 DOI:10.1016/j.fertnstert.2023.06.009

    View in Article CrossRef Google Scholar

    [117] Cherouveim P., Velmahos C. and Bormann C. L. (2023). Artificial intelligence for sperm selection-a systematic review. Fertil. Steril. 120:24−31 DOI:10.1016/j.fertnstert.2023.05.157

    View in Article CrossRef Google Scholar

    [118] Fjeldstad J., Qi W., Siddique N., et al. (2024). An artificial intelligence (AI) model non-invasively evaluates endometrial receptivity from ultrasound images, surpassing endometrial thickness (EMT) in predicting implantation. Hum. Reprod. 39 . DOI:10.1093/humrep/deae108.025

    View in Article Google Scholar

    [119] Asch Schuff R. H., Suarez J., Laugas N., et al. (2024). Artificial intelligence model utilizing endometrial analysis to contribute as a predictor of assisted reproductive technology success. Journal of IVF-Worldwide. 2:1−8 DOI:10.46989/​001c.115893

    View in Article CrossRef Google Scholar

    [120] Grigovich M., Kacharia V. S., Bharwani N., et al. (2021). Evaluating fallopian tube patency: What the radiologist needs to know. Radiographics 41:1876−1896 DOI:10.1148/rg.2021210033

    View in Article CrossRef Google Scholar

    [121] Lee L. Y., Vaghari D., Burkhart M. C., et al. (2024). Robust and interpretable AI-guided marker for early dementia prediction in real-world clinical settings. EClinicalMedicine 74:102725 DOI:10.1016/j.eclinm.2024.102725

    View in Article CrossRef Google Scholar

    [122] Xu H., Feng G., Li R., et al. (2023). ADpred: A non-invasive model for three different types of dementia, and mild cognitive impairment. Innov. Med. 1:100026

    View in Article Google Scholar

    [123] Sheikh M., Qassem M. and Kyriacou P. A. (2021). Wearable, environmental, and smartphone-based passive sensing for mental health monitoring. Front. Digit. Health 3:662811 DOI:10.3389/fdgth.2021.662811

    View in Article CrossRef Google Scholar

    [124] Razjouyan J., Najafi B., Horstman M., et al. (2020). Toward using wearables to remotely monitor cognitive frailty in community-living older adults: An observational study. Sensors-Basel 20 . DOI:10.3390/s20082218

    View in Article Google Scholar

    [125] Reddy M. V., Ganesh G. N. K., Rudhresh D., et al. (2024). Neuro receptor signal detecting and monitoring smart devices for biological changes in cognitive health conditions. Ann. Neurosci. 31:225−233 DOI:10.1177/09727531231206888

    View in Article CrossRef Google Scholar

    [126] Townsend R., Fairley A., Gregory S., et al. (2024). Nutrition for dementia prevention: A state of the art update for clinicians. Age Ageing 53:ii30−ii38 DOI:10.1093/ageing/afae030

    View in Article CrossRef Google Scholar

    [127] Yassine H. N., Samieri C., Livingston G., et al. (2022). Nutrition state of science and dementia prevention: Recommendations of the Nutrition for Dementia Prevention Working Group. Lancet Health Longev. 3:E501−E512 DOI:10.1016/s2666-7568(22)00120-9

    View in Article CrossRef Google Scholar

    [128] Shibata S., Noguchi-Shinohara M., Shima A., et al. (2025). Green tea consumption and cerebral white matter lesions in community-dwelling older adults without dementia. NPJ Sci. Food 9:2 DOI:10.1038/s41538-024-00364-w

    View in Article CrossRef Google Scholar

    [129] Samieri C., Yassine H. N., van Lent D. M., et al. (2022). Personalized nutrition for dementia prevention. Alzheimers Dement. 18:1424−1437 DOI:10.1002/alz.12486

    View in Article CrossRef Google Scholar

    [130] Liu Q., Vaci N., Koychev I., et al. (2022). Personalised treatment for cognitive impairment in dementia: Development and validation of an artificial intelligence model. BMC Med. 20:45 DOI:10.1186/s12916-022-02250-2

    View in Article CrossRef Google Scholar

    [131] Su Z. H., Bentley B. L., McDonnell D., et al. (2022). 6G and artificial intelligence technologies for dementia care: Literature review and practical analysis. J. Med. Internet. Res. 24:e30503 DOI:10.2196/30503

    View in Article CrossRef Google Scholar

    [132] Veneziani I., Marra A., Formica C., et al. (2024). Applications of artificial intelligence in the neuropsychological assessment of dementia: A systematic review. J. Pers. Med. 14:113 DOI:10.3390/jpm14010113

    View in Article CrossRef Google Scholar

    [133] Kameyama M. and Umeda-Kameyama Y. (2024). Applications of artificial intelligence in dementia. Geriatr. Gerontol. Int. 24:25−30 DOI:10.1111/ggi.14709

    View in Article CrossRef Google Scholar

    [134] Abramson J., Adler J., Dunger J., et al. (2024). Addendum: Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 636:E4 DOI:10.1038/s41586-024-08416-7

    View in Article CrossRef Google Scholar

    [135] Xu H., Feng G., Shi L., et al. (2023). PCOSt: A non-invasive and cost-effective screening tool for polycystic ovary syndrome. The Innovation 4:100407 DOI:10.1016/j.xinn.2023.100407

    View in Article CrossRef Google Scholar

    [136] Brandt A., Hazel S., Mckinnon R., et al. (2024). Educating Dora: Teaching a conversational agent to talk. Discourse Commun. 18:905−916 DOI:10.1177/17504813241267109

    View in Article CrossRef Google Scholar

    [137] Karako K., Song P. P., Chen Y., et al. (2023). New possibilities for medical support systems utilizing artificial intelligence (AI) and data platforms. Biosci. Trends 17:186−189 DOI:10.5582/bst.2023.01138

    View in Article CrossRef Google Scholar

    [138] Elendu C., Elendu T. C. and Elendu I. D. (2024). 5G-enabled smart hospitals: Innovations in patient care and facility management. Medicine 103 . DOI:10.1097/MD.0000000000038239

    View in Article Google Scholar

    [139] Amiri Z. (2024). Leveraging AI-enabled information systems for healthcare management. J. Comput. Inform. Syst. 1-28. DOI:10.1080/08874417.2024.2414216

    View in Article Google Scholar

    [140] Wang C. L., Li C. X. and Liang S. F. (2024). The lifestyle of new middle-aged and older adults in Taiwan described by wearable device: age and gender differences. Eur. J. Ageing 21:27 DOI:10.1007/s10433-024-00824-y

    View in Article CrossRef Google Scholar

    [141] AbbasiMoradi F., Mogavero M. P., Palomino M., et al. (2024). Age related disparities in sleep apnea diagnosis using a wearable device: Implications of 4% vs. 3% hypopnea scoring criteria. Sleep Med. 118 :88-92. DOI:10.1016/j.sleep.2024.03.046

    View in Article Google Scholar

    [142] Abbasi J. and Hswen Y. (2024). Tapping AI's strengths-from operating room safety to wearable device interpretation. JAMA 332:354−358 DOI:10.1001/jama.2024.0802

    View in Article CrossRef Google Scholar

    [143] Brasier N., Wang J., Gao W., et al. (2024). Applied body-fluid analysis by wearable devices. Nature 636:57−68 DOI:10.1038/s41586-024-08249-4

    View in Article CrossRef Google Scholar

    [144] Liang F., Su Z. D., Zhang Z. H., et al. (2024). A deep Q learning based method for optimized monitoring of activities of daily living using a smart watch and a companion robot. 2024 4th International Conference on Computer Communication and Artificial Intelligence, CCAI 2024 :503-508. DOI:10.1109/Ccai61966.2024.10603092

    View in Article Google Scholar

    [145] Capatu M., Lehner S., Schranz L., et al. (2023). Smart Companion 2: Acceptance of a vacuum cleaning robot in use for detection and alerting in case of ffalls. Z Gerontol. Geriatr. 56:S4−S5

    View in Article Google Scholar

    [146] Tan C. K., Lou V. W. Q., Cheng C. Y. M., et al. (2024). Improving the social well-being of single older adults using the LOVOT social robot: Qualitative phenomenological study. JMIR Hum. Factors 11:e56669 DOI:10.2196/56669

    View in Article CrossRef Google Scholar

    [147] Schneider C., Nissen M., Kowatsch T., et al. (2024). Impact of digital assistive technologies on the quality of life for people with dementia: a scoping review. BMJ Open 14:e080545 DOI:10.1136/bmjopen-2023-080545

    View in Article CrossRef Google Scholar

    [148] Chen Y. Y., Zhang H. and Zhong S. J. (2024). Design and implementation of smart home system based on IoT. Results Eng. 24:103410 DOI:10.1016/j.rineng.2024.103410

    View in Article CrossRef Google Scholar

    [149] Christopoulos M., Spantideas S., Giannopoulos A., et al. (2024). Deep reinforcement learning for smart home temperature comfort in IoT-edge computing systems. Proceedings of the 1st International Workshop on Metaos for the Cloud-Edge-Iot Continuum, MECC 2024 :1-7. DOI:10.1145/3642975.3678961

    View in Article Google Scholar

    [150] Dui H., Wang X. Y., Dong X. H., et al. (2024). Reliability model and emergency maintenance strategies for smart home systems. Reliab. Eng. Syst. Safe. 251:110402 DOI:10.1016/j.ress.2024.110402

    View in Article CrossRef Google Scholar

    [151] Lee K. Y., Yi J. E. and Lee S. H. (2024). Effects of community-based fall prevention interventions for older adults using information and communication technology: A systematic review and meta-analysis. Health Informatics J. 30 :14604582241259324. DOI:10.1177/14604582241259324

    View in Article Google Scholar

  • Cite this article:

    Dai J., Xu H., Chen T., et al. (2025). Artificial intelligence for medicine 2025: Navigating the endless frontier. The Innovation Medicine 3:100120. https://doi.org/10.59717/j.xinn-med.2025.100120
    Dai J., Xu H., Chen T., et al. (2025). Artificial intelligence for medicine 2025: Navigating the endless frontier. The Innovation Medicine 3:100120. https://doi.org/10.59717/j.xinn-med.2025.100120

Welcome!

To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.

Figures(7)    

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(14561) PDF downloads(2008) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint