AI helps us understand the complex medical phenotypes and diverse data.
AI forecasts the forthcoming medical innovations in surgical robots and BCI.
AI will solve the low birth rate and aging population challenges of human beings.
[1] | Xu Y., Liu X., Cao X., et al. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2:100179 DOI:10.1016/j.xinn.2021.100179 |
[2] | Luo M., Yang W., Bai L., et al. (2024). Artificial intelligence for life sciences: A comprehensive guide and future trends. Innov. Life 2:100105 DOI:10.59717/j.xinn-life.2024.100105 |
[3] | Zhao T., Wang S., Ouyang C., et al. (2024). Artificial intelligence for geoscience: Progress, challenges, and perspectives. The Innovation 5:100691 DOI:10.1016/j.xinn.2024.100691 |
[4] | Xiao N., Ding Y., Cui B., et al. (2024). Navigating obesity: A comprehensive review of epidemiology, pathophysiology, complications and management strategies. Innov. Med. 2:100090 DOI:10.59717/j.xinn-med.2024.100090 |
[5] | Huang T., Xu H., Wang H., et al. (2023). Artificial intelligence for medicine: Progress, challenges, and perspectives. Innov. Med. 1:100030 DOI:10.59717/j.xinn-med.2023.100030 |
[6] | Guo Y., You J., Zhang Y., et al. (2024). Plasma proteomic profiles predict future dementia in healthy adults. Nat. Aging 4 . DOI:10.1038/s43587-023-00565-0 |
[7] | Teede H. J., Misso M. L., Costello M. F., et al. (2018). Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil. Steril. 110:364−379 DOI:10.1016/j.fertnstert.2018.05.004 |
[8] | Ringwald F. G., Martynova A., Mierisch J., et al. (2024). Explainable Artificial Intelligence for Deep-Learning Based Classification of Cystic Fibrosis Lung Changes in MRI. Stud. Health Technol. Inform. 310:921−925 DOI:10.3233/shti231099 |
[9] | Zhao X., Liao Y., Xie J., et al. (2023). BreastDM: A DCE-MRI dataset for breast tumor image segmentation and classification. Comput. Biol. Med. 164:107255 DOI:10.1016/j.compbiomed.2023.107255 |
[10] | Liu X., Zhang S., Shao L., et al. (2024). Improving prediction of treatment response and prognosis in colorectal cancer with AI-based medical image analysis. Innov. Med. 2:100069 DOI:10.59717/j.xinn-med.2024.100069 |
[11] | Jin L. (2021). Welcome to the Phenomics Journal. Phenomics (Cham, Switzerland) 1:1−2 DOI:10.1007/s43657-020-00009-4 |
[12] | Hood L. and Flores M. (2012). A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. New Biotechnol. 29:613−624 DOI:10.1016/j.nbt.2012.03.004 |
[13] | Tang X., Zhang J., He Y., et al. (2023). Explainable multi-task learning for multi-modality biological data analysis. Nat. Commun. 14:2546 DOI:10.1038/s41467-023-37477-x |
[14] | Walker K. A., Chen J., Zhang J., et al. (2021). Large-scale plasma proteomic analysis identifies proteins and pathways associated with dementia risk. Nat. Aging 1:473−489 DOI:10.1038/s43587-021-00064-0 |
[15] | Wang T., Shi Z., Ren H., et al. (2024). Divergent age-associated and metabolism-associated gut microbiome signatures modulate cardiovascular disease risk. Nat. Med. 30:1722−1731 DOI:10.1038/s41591-024-03038-y |
[16] | Zhao B., Li T., Fan Z., et al. (2023). Heart-brain connections: Phenotypic and genetic insights from magnetic resonance images. Science (New York, N.Y.) 380:abn6598 DOI:10.1126/science.abn6598 |
[17] | Zhang M., Wu S., Du S., et al. (2022). Genetic variants underlying differences in facial morphology in East Asian and European populations. Nat. Genet. 54:403−411 DOI:10.1038/s41588-022-01038-7 |
[18] | Zheng Y., Liu Y., Yang J., et al. (2024). Multi-omics data integration using ratio-based quantitative profiling with Quartet reference materials. Nat. Biotechnol. 42:1133−1149 DOI:10.1038/s41587-023-01934-1 |
[19] | Iturria-Medina Y., Adewale Q., Khan A. F., et al. (2022). Unified epigenomic, transcriptomic, proteomic, and metabolomic taxonomy of Alzheimer's disease progression and heterogeneity. Sci. Adv. 8:eabo6764 DOI:10.1126/sciadv.abo6764 |
[20] | Xue C., Kowshik S. S., Lteif D., et al. (2024). AI-based differential diagnosis of dementia etiologies on multimodal data. Nat. Med. 30:2977−2989 DOI:10.1038/s41591-024-03118-z |
[21] | Cai J. C., Nakai H., Kuanar S., et al. (2024). Fully Automated Deep Learning Model to Detect Clinically Significant Prostate Cancer at MRI. Radiology 312:e232635 DOI:10.1148/radiol.232635 |
[22] | Wang C., Shao J., He Y., et al. (2024). Data-driven risk stratification and precision management of pulmonary nodules detected on chest computed tomography. Nat. Med. 30:3184−3195 DOI:10.1038/s41591-024-03211-3 |
[23] | Wang Y. J., Yang K., Wen Y., et al. (2024). Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging. Nat. Med. 30:1471−1480 DOI:10.1038/s41591-024-02971-2 |
[24] | Zhang Q., Liao Y., Wang X., et al. (2021). A deep learning framework for (18)F-FDG PET imaging diagnosis in pediatric patients with temporal lob Eur. J. Nucl. Med. Mol. Imaging 48:2476−2485 DOI:10.1007/s00259-020-05108-y |
[25] | Li J., Guan Z., Wang J., et al. (2024). Integrated image-based deep learning and language models for primary diabetes care. Nat. Med. 30:2886−2896 DOI:10.1038/s41591-024-03139-8 |
[26] | Luo Y., Eran A., Palmer N., et al. (2020). A multidimensional precision medicine approach identifies an autism subtype characterized by dyslipidemia. Nat. Med. 26:1375−1379 DOI:10.1038/s41591-020-1007-0 |
[27] | Wang T., Shao W., Huang Z., et al. (2021). MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nat. Commun. 12:3445 DOI:10.1038/s41467-021-23774-w |
[28] | Acosta J. N., Falcone G. J., Rajpurkar P., et al. (2022). Multimodal biomedical AI. Nat. Med. 28:1773−1784 DOI:10.1038/s41591-022-01981-2 |
[29] | Cosentino J., Belyaeva A., Liu X., et al. (2024). Towards a Personal Health Large Language Model. arXiv. DOI:10.48550/arXiv.2406.06474 |
[30] | Elhussein A., Baymuradov U., Elhadad N., et al. (2024). A framework for sharing of clinical and genetic data for precision medicine applications. Nat. Med. 30:3578−3589 DOI:10.1038/s41591-024-03239-5 |
[31] | Sicklick J. K., Kato S., Okamura R., et al. (2019). Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Nat. Med. 25:744−750 DOI:10.1038/s41591-019-0407-5 |
[32] | Tong X., Qu N., Kong X., et al. (2024). Deep representation learning of chemical-induced transcriptional profile for phenotype-based drug discovery. Nat. Commun. 15:5378 DOI:10.1038/s41467-024-49620-3 |
[33] | Wen J., Tian Y. E., Skampardoni I., et al. (2024). The genetic architecture of biological age in nine human organ systems. Nat. Aging 4:1290−1307 DOI:10.1038/s43587-024-00662-8 |
[34] | Yang Z., Wen J., Erus G., et al. (2024). Brain aging patterns in a large and diverse cohort of 49,482 individuals. Nat. Med. 30:3015−3026 DOI:10.1038/s41591-024-03144-x |
[35] | Li Q., Hu Z., Wang Y., et al. (2024). Progress and opportunities of foundation models in bioinformatics. Brief. Bioinform. 25 . DOI:10.1093/bib/bbae548 |
[36] | Yang X., Chen A., PourNejatian N., et al. (2022). A large language model for electronic health records. NPJ Digit. Med. 5:194 DOI:10.1038/s41746-022-00742-2 |
[37] | Xu H., Usuyama N., Bagga J., et al. (2024). A whole-slide foundation model for digital pathology from real-world data. Nature 630:181−188 DOI:10.1038/s41586-024-07441-w |
[38] | Wang J., Wang K., Yu Y., et al. (2024). Self-improving generative foundation model for synthetic medical image generation and clinical applications. Nat. Med. DOI:10.1038/s41591-024-03359-y |
[39] | Tian Y., Li Z., Jin Y., et al. (2024). Foundation model of ECG diagnosis: Diagnostics and explanations of any form and rhythm on ECG. Cell Rep. Med. 5:101875 DOI:10.1016/j.xcrm.2024.101875 |
[40] | Wang F. A., Zhuang Z., Gao F., et al. (2024). TMO-Net: An explainable pretrained multi-omics model for multi-task learning in oncology. Genome Biol. 25:149 DOI:10.1186/s13059-024-03293-9 |
[41] | Guan Z., Li H., Liu R., et al. (2023). Artificial intelligence in diabetes management: Advancements, opportunities, and challenges. Cell Rep. Med. 4:101213 DOI:10.1016/j.xcrm.2023.101213 |
[42] | Goh E., Gallo R., Hom J., et al. (2024). Large language model influence on diagnostic reasoning: A randomized clinical trial. JAMA Netw. Open 7:e2440969 DOI:10.1001/jamanetworkopen.2024.40969 |
[43] | Chen R. J., Ding T., Lu M. Y., et al. (2024). Towards a general-purpose foundation model for computational pathology. Nat. Med. 30:850−862 DOI:10.1038/s41591-024-02857-3 |
[44] | Vorontsov E., Bozkurt A., Casson A., et al. (2024). A foundation model for clinical-grade computational pathology and rare cancers detection. Nat. Med. 30:2924−2935 DOI:10.1038/s41591-024-03141-0 |
[45] | Lee D. N., Li Y., Olsson L. T., et al. (2024). Image analysis-based identification of high risk ER-positive, HER2-negative breast cancers. Breast Cancer Res. 26:177 DOI:10.1186/s13058-024-01915-5 |
[46] | Sode M., Thagaard J., Eriksen J. O., et al. (2023). Digital image analysis and assisted reading of the HER2 score display reduced concordance: pitfalls in the categorisation of HER2-low breast cancer. Histopathology 82:912−924 DOI:10.1111/his.14877 |
[47] | Yang L., Liu Q., Kumar P., et al. (2024). LungVis 1.0: an automatic AI-powered 3D imaging ecosystem unveils spatial profiling of nanoparticle delivery and acinar migration of lung macrophages. Nat. Commun. 15 :10138. DOI:10.1038/s41467-024-54267-1 |
[48] | Sadeghi A. H., Bakhuis W., Van Schaagen F., et al. (2020). Immersive 3D virtual reality imaging in planning minimally invasive and complex adult cardiac surgery. Eur. Heart J. Digit. Health 1:62−70 DOI:10.1093/ehjdh/ztaa011 |
[49] | Kawamura M., Kamomae T., Yanagawa M., et al. (2024). Revolutionizing radiation therapy: The role of AI in clinical practice. J. Radiat. Res. 65:1−9 DOI:10.1093/jrr/rrad090 |
[50] | Siontis K. C., Noseworthy P. A., Attia Z. I., et al. (2021). Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat. Rev. Cardiol. 18:465−478 DOI:10.1038/s41569-020-00503-2 |
[51] | Sau A., Pastika L., Sieliwonczyk E., et al. (2024). Artificial intelligence-enabled electrocardiogram for mortality and cardiovascular risk estimation: A model development and validation study. Lancet Digit. Health 6:e791−e802 DOI:10.1016/s2589-7500(24)00172-9 |
[52] | Pandey A. and Adedinsewo D. (2022). The future of AI-enhanced ECG interpretation for valvular heart disease screening. J. Am. Coll. Cardiol. 80:627−630 DOI:10.1016/j.jacc.2022.05.034 |
[53] | Yang Y., Xu S., Hong Y., et al. (2024). Computational modeling for medical data: From data collection to knowledge discovery. Innov. Life 2:100079 DOI:10.59717/j.xinn-life.2024.100079 |
[54] | Wen L., Li G., Huang T., et al. (2022). Single-cell technologies: From research to application. The Innovation 3:100342 DOI:10.1016/j.xinn.2022.100342 |
[55] | Chen G. B., Liu S., Zhang L., et al. (2024). Building and sharing medical cohorts for research. The Innovation 5:100623 DOI:10.1016/j.xinn.2024.100623 |
[56] | Golriz Khatami S., Mubeen S., Bharadhwaj V. S., et al. (2021). Using predictive machine learning models for drug response simulation by calibrating patient-specific pathway signatures. NPJ Syst. Biol. Appl. 7:40 DOI:10.1038/s41540-021-00199-1 |
[57] | Yan C., Grabowska M. E., Dickson A. L., et al. (2024). Leveraging generative AI to prioritize drug repurposing candidates for Alzheimer's disease with real-world clinical validation. NPJ Digit. Med. 7:46 DOI:10.1038/s41746-024-01038-3 |
[58] | Krentz A., Fournier L., Castiglione T., et al. (2025). Optimising the therapeutic response of statins using real-world evidence and machine learning: Personalised precision dosing recommends lower statin doses for some patients. Diabetes Obes. Metab. 27:432−434 DOI:10.1111/dom.16029 |
[59] | Li X., Loscalzo J., Mahmud A., et al. (2025). Digital twins as global learning health and disease models for preventive and personalized medicine. Genome Med. 17:11 DOI:10.1186/s13073-025-01435-7 |
[60] | Wang Y., Zhu M., Chen X., et al. (2024). The application of metaverse in healthcare. Front. Public Health 12:1420367 DOI:10.3389/fpubh.2024.1420367 |
[61] | Abramson J., Adler J., Dunger J., et al. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630:493−500 DOI:10.1038/s41586-024-07487-w |
[62] | Xiong P., Wu R., Zhan J., et al. (2021). Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement. Nat. Commun. 12:2777 DOI:10.1038/s41467-021-23100-4 |
[63] | Chen K., Zhou Y., Wang S., et al. (2023). RNA tertiary structure modeling with BRiQ potential in CASP15. Proteins 91:1771−1778 DOI:10.1002/prot.26574 |
[64] | Das R., Kretsch R. C., Simpkin A. J., et al. (2023). Assessment of three-dimensional RNA structure prediction in CASP15. Proteins 91:1747−1770 DOI:10.1002/prot.26602 |
[65] | Lin Z., Akin H., Rao R., et al. (2023). Evolutionary-scale prediction of atomic-level protein structure with a language model. Science (New York, N.Y.) 379:1123−1130 DOI:10.1126/science.ade2574 |
[66] | Del Alamo D., Sala D., McHaourab H. S., et al. (2022). Sampling alternative conformational states of transporters and receptors with AlphaFold2. eLife 11 . DOI:10.7554/eLife.75751 |
[67] | Stein R. A. and McHaourab H. S. (2022). SPEACH_AF: Sampling protein ensembles and conformational heterogeneity with Alphafold2. PLoS Comput. Biol. 18:e1010483 DOI:10.1371/journal.pcbi.1010483 |
[68] | Wayment-Steele H. K., Ojoawo A., Otten R., et al. (2024). Predicting multiple conformations via sequence clustering and AlphaFold2. Nature 625:832−839 DOI:10.1038/s41586-023-06832-9 |
[69] | Monteiro da Silva G., Cui J. Y., Dalgarno D. C., et al. (2024). High-throughput prediction of protein conformational distributions with subsampled AlphaFold2. Nat. Commun. 15:2464 DOI:10.1038/s41467-024-46715-9 |
[70] | Guan X., Tang Q. Y., Ren W., et al. (2024). Predicting protein conformational motions using energetic frustration analysis and AlphaFold2. Proc. Natl. Acad. Sci. U. S. A. 121:e2410662121 DOI:10.1073/pnas.2410662121 |
[71] | Liu Y., Chen L. and Liu H. (2023). Diffusion in a quantized vector space generates non-idealized protein structures and predicts conformational distributions. bioRxiv. DOI:10.1101/2023.11.18.567666 |
[72] | Jing B., Erives E., Pao-Huang P., et al. (2023). EigenFold: Generative protein structure prediction with diffusion models. ArXiv |
[73] | Jing B., Berger B. and Jaakkola T. (2024). AlphaFold meets flow matching for generating protein ensembles. ArXiv. DOI:10.48550/arXiv.2402.04845 |
[74] | Tang J., Zhang Z., Zhan J., et al. (2023). Effective high-accuracy prediction of protein structures from easily obtainable artificial homologous sequences by structure-stability-based selection. bioRxiv. DOI:10.1101/2023.11.22.568372 |
[75] | He S., Huang R., Townley J., et al. (2024). Ribonanza: Deep learning of RNA structure through dual crowdsourcing. bioRxiv. DOI:10.1101/2024.02.24.581671 |
[76] | Lee A., Baker T. S., Bederson J. B., et al. (2024). Levels of autonomy in FDA-cleared surgical robots: a systematic review. NPJ Digit. Med. 7:103 DOI:10.1038/s41746-024-01102-y |
[77] | Coussons H., Feldstein J. and McCarus S. (2021). Senhance surgical system in benign hysterectomy: A real-world comparative assessment of case times and instrument costs versus da Vinci robotics and laparoscopic-assisted vaginal hysterectomy procedures. Int. J. Med. Robot. 17:e2261 DOI:10.1002/rcs.2261 |
[78] | Cancelliere N. M., Lynch J., Nicholson P., et al. (2022). Robotic-assisted intracranial aneurysm treatment: 1 year follow-up imaging and clinical outcomes. J. Neurointerv. Surg. 14:1229−1233 DOI:10.1136/neurintsurg-2021-017865 |
[79] | Gilling P., Barber N., Bidair M., et al. (2020). Three-year outcomes after Aquablation therapy compared to TURP: Results from a blinded randomized trial. Can. J. Urol. 27:10072−10079 |
[80] | Desai M., Bidair M., Bhojani N., et al. (2020). Aquablation for benign prostatic hyperplasia in large prostates (80-150 cc): 2-year results. Can. J. Urol. 27:10147−10153 |
[81] | Bach T., Gilling P., El Hajj A., et al. (2020). First Multi-Center All-Comers Study for the Aquablation Procedure. J. Clin. Med. 9:603 DOI:10.3390/jcm9020603 |
[82] | Alargkof V., Engesser C., Breit H. C., et al. (2024). The learning curve for robotic-assisted transperineal MRI/US fusion-guided prostate biopsy. Sci. Rep. 14:5638 DOI:10.1038/s41598-024-55492-w |
[83] | Zhang X., Ma Z., Zheng H., et al. (2020). The combination of brain-computer interfaces and artificial intelligence: applications and challenges. Ann. Transl. Med. 8:712 DOI:10.21037/atm.2019.11.109 |
[84] | Berisha V. and Liss J. M. (2024). Responsible development of clinical speech AI: Bridging the gap between clinical research and technology. NPJ Digit. Med. 7:208 DOI:10.1038/s41746-024-01199-1 |
[85] | Deng C., Li X. and Dai J. (2023). Challenges for translating implantable brain-computer interface to medical device. Innov. Med. 1:100040 DOI:10.59717/j.xinn-med.2023.100040 |
[86] | Zhao Y., Chen Y., Cheng K., et al. (2023). Artificial intelligence based multimodal language decoding from brain activity: A review. Brain Res. Bull. 201:110713 DOI:10.1016/j.brainresbull.2023.110713 |
[87] | Rajpura P., Cecotti H. and Kumar Meena Y. (2024). Explainable artificial intelligence approaches for brain-computer interfaces: A review and design space. J. Neural Eng. 21 . DOI:10.1088/1741-2552/ad6593 |
[88] | Zhang Z. and Dai J. (2024). Fully implantable wireless brain-computer interface for humans: Advancing toward the future. The Innovation 5 . DOI:10.1016/j.xinn.2024.100595 |
[89] | Asgher U., Ayaz Y. and Taiar R. (2023). Editorial: Advances in artificial intelligence (AI) in brain computer interface (BCI) and Industry 4.0 for human machine interaction (HMI). Front. Human Neurosci. 17 :1320536. DOI:10.3389/fnhum.2023.1320536 |
[90] | Chen X., Wang R., Khalilian-Gourtani A., et al. (2023). A Neural Speech Decoding Framework Leveraging Deep Learning and Speech Synthesis. bioRxiv. DOI:10.1101/2023.09.16.558028 |
[91] | Fox E. L., Ugolini M. and Houpt J. W. (2022). Predictions of task using neural modeling. Front. Neuroergono. 3:1007673 DOI:10.3389/fnrgo.2022.1007673 |
[92] | Lenharo M. (2023). An AI revolution is brewing in medicine. What will it look like? Nature 622:686−688 DOI:10.1038/d41586-023-03302-0 |
[93] | Patterson D., Gonzalez J., Hölzle U., et al. (2022). The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink. Computer 55:18−28 DOI:10.1109/MC.2022.3148714 |
[94] | Achiam O. J., Adler S., Agarwal S., et al. (2023). GPT-4 Technical Report. arXiv. DOI:10.48550/arXiv.2303.08774 |
[95] | Moslemi A., Briskina A., Dang Z., et al. (2024). A survey on knowledge distillation: Recent advancements. Machine Learning with Applications 18:100605 DOI:10.1016/j.mlwa.2024.100605 |
[96] | Li Z., Xu T., Zhang Y., et al. (2023). ReMax: A Simple, Effective, and Efficient Reinforcement Learning Method for Aligning Large Language Models. arXiv. DOI:abs/2310.10505 |
[97] | Li D., Shao R., Xie A., et al. (2023). How Long Can Context Length of Open-Source LLMs truly Promise? NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following |
[98] | DeepSeek-AI, Liu A., Feng B., et al. (2024). DeepSeek-V3 Technical Report. arXiv. DOI:10.48550/arXiv.2412.19437 |
[99] | Wu Y., Zhang Z., Wang F., et al. (2025). Towards more economical large-scale foundation models : No longer a game for the few. The Innovation 100832. DOI:10.1016/j.xinn.2025.100832 |
[100] | Reuther A., Michaleas P., Jones M., et al. (2020). Survey of Machine Learning Accelerators. 2020 IEEE High Performance Extreme Computing Conference (HPEC). DOI:10.1109/HPEC43674.2020.9286149 |
[101] | Li J., Sun Z., He X., et al. (2024). LocMoE: A Low-overhead MoE for Large Language Model Training. arXiv. DOI:10.48550/arXiv.2401.13920 |
[102] | Jin Y., Wang T., Lin H., et al. (2024). P/D-Serve: Serving Disaggregated Large Language Model at Scale. arXiv. DOI:10.48550/arXiv.2408.08147 |
[103] | Ma X.-K., Yu Y., Huang T., et al. (2024). Bioinformatics software development: Principles and future directions. Innov. Life 2:100083 DOI:10.59717/j.xinn-life.2024.100083 |
[104] | Liu J.-L., Yang L.-G., Xiao Q.-Y., et al. (2024). Bio-medical big data operating system (Bio-OS): An integrated data mining environment for data intensive scientific research. bioRxiv:2024.2010.2017.612997. DOI:10.1101/2024.10.17.612997 |
[105] | Xu H., Feng G., Yang R., et al. (2023). OvaRePred: Online tool for predicting the age of fertility milestones. The Innovation 4:100490 DOI:10.1016/j.xinn.2023.100490 |
[106] | Xu H., Wang W., Han Y., et al. (2024). OvaRePred: Redefing ovarian aging and pioneering the journey towards women's health management. Innov. Med. 2:100068 DOI:10.59717/j.xinn-med.2024.100068 |
[107] | Innovation Editorial Team (2024). Innovation focus in 2023. The Innovation 5 :100560. DOI:10.1016/j.xinn.2023.100560 |
[108] | Xu H., Feng G., Han Y., et al. (2023). POvaStim: An online tool for directing individualized FSH doses in ovarian stimulation. The Innovation 4:100401 DOI:10.1016/j.xinn.2023.100401 |
[109] | No authors listed. (2022). The alarming rise of complex genetic testing in human embryo selection. Nature 603:549−550 DOI:10.1038/d41586-022-00787-z |
[110] | Serrano R. Y., Palomar A., Quionero A., et al. (2024). Non-Invasive Biomarkers for Embryo Selection in Ivf: Unveiling Secreted Signatures for Implantation Prediction. Fertil. Steril. 122:E187−E188 |
[111] | Cao P., Derhaag J., Coonen E., et al. (2024). Generative artificial intelligence to produce high-fidelity blastocyst-stage embryo images. Hum. Reprod. 39 . DOI:10.1093/humrep/deae064 |
[112] | Bhide P., Chan D. Y. L., Lanz D., et al. (2024). Clinical effectiveness and safety of time-lapse imaging systems for embryo incubation and selection in in-vitro fertilisation treatment (TILT): a multicentre, three-parallel- group, double-blind, randomised controlled trial. Lancet 404:256−265 |
[113] | Illingworth P. J., Venetis C., Gardner D. K., et al. (2024). Deep learning versus manual morphology-based embryo selection in IVF: A randomized, double-blind noninferiority trial. Nat. Med. 30 . DOI:10.1038/s41591-024-03166-5 |
[114] | Kieslinger D. C., Lambalk C. B. and Vergouw C. G. (2024). The inconvenient reality of AI-assisted embryo selection in IVF. Nat. Med. 30:3059−3060 DOI:10.1038/s41591-024-03289-9 |
[115] | You J. B., McCallum C., Wang Y. H., et al. (2021). Machine learning for sperm selection. Nat. Rev. Urol. 18:387−403 DOI:10.1038/s41585-021-00465-1 |
[116] | Guahmich N. L., Borini E. and Zaninovic N. (2023). Improving outcomes of assisted reproductive technologies using artificial intelligence for sperm selection. Fertil. Steril. 120:729−734 DOI:10.1016/j.fertnstert.2023.06.009 |
[117] | Cherouveim P., Velmahos C. and Bormann C. L. (2023). Artificial intelligence for sperm selection-a systematic review. Fertil. Steril. 120:24−31 DOI:10.1016/j.fertnstert.2023.05.157 |
[118] | Fjeldstad J., Qi W., Siddique N., et al. (2024). An artificial intelligence (AI) model non-invasively evaluates endometrial receptivity from ultrasound images, surpassing endometrial thickness (EMT) in predicting implantation. Hum. Reprod. 39 . DOI:10.1093/humrep/deae108.025 |
[119] | Asch Schuff R. H., Suarez J., Laugas N., et al. (2024). Artificial intelligence model utilizing endometrial analysis to contribute as a predictor of assisted reproductive technology success. Journal of IVF-Worldwide. 2:1−8 DOI:10.46989/001c.115893 |
[120] | Grigovich M., Kacharia V. S., Bharwani N., et al. (2021). Evaluating fallopian tube patency: What the radiologist needs to know. Radiographics 41:1876−1896 DOI:10.1148/rg.2021210033 |
[121] | Lee L. Y., Vaghari D., Burkhart M. C., et al. (2024). Robust and interpretable AI-guided marker for early dementia prediction in real-world clinical settings. EClinicalMedicine 74:102725 DOI:10.1016/j.eclinm.2024.102725 |
[122] | Xu H., Feng G., Li R., et al. (2023). ADpred: A non-invasive model for three different types of dementia, and mild cognitive impairment. Innov. Med. 1:100026 |
[123] | Sheikh M., Qassem M. and Kyriacou P. A. (2021). Wearable, environmental, and smartphone-based passive sensing for mental health monitoring. Front. Digit. Health 3:662811 DOI:10.3389/fdgth.2021.662811 |
[124] | Razjouyan J., Najafi B., Horstman M., et al. (2020). Toward using wearables to remotely monitor cognitive frailty in community-living older adults: An observational study. Sensors-Basel 20 . DOI:10.3390/s20082218 |
[125] | Reddy M. V., Ganesh G. N. K., Rudhresh D., et al. (2024). Neuro receptor signal detecting and monitoring smart devices for biological changes in cognitive health conditions. Ann. Neurosci. 31:225−233 DOI:10.1177/09727531231206888 |
[126] | Townsend R., Fairley A., Gregory S., et al. (2024). Nutrition for dementia prevention: A state of the art update for clinicians. Age Ageing 53:ii30−ii38 DOI:10.1093/ageing/afae030 |
[127] | Yassine H. N., Samieri C., Livingston G., et al. (2022). Nutrition state of science and dementia prevention: Recommendations of the Nutrition for Dementia Prevention Working Group. Lancet Health Longev. 3:E501−E512 DOI:10.1016/s2666-7568(22)00120-9 |
[128] | Shibata S., Noguchi-Shinohara M., Shima A., et al. (2025). Green tea consumption and cerebral white matter lesions in community-dwelling older adults without dementia. NPJ Sci. Food 9:2 DOI:10.1038/s41538-024-00364-w |
[129] | Samieri C., Yassine H. N., van Lent D. M., et al. (2022). Personalized nutrition for dementia prevention. Alzheimers Dement. 18:1424−1437 DOI:10.1002/alz.12486 |
[130] | Liu Q., Vaci N., Koychev I., et al. (2022). Personalised treatment for cognitive impairment in dementia: Development and validation of an artificial intelligence model. BMC Med. 20:45 DOI:10.1186/s12916-022-02250-2 |
[131] | Su Z. H., Bentley B. L., McDonnell D., et al. (2022). 6G and artificial intelligence technologies for dementia care: Literature review and practical analysis. J. Med. Internet. Res. 24:e30503 DOI:10.2196/30503 |
[132] | Veneziani I., Marra A., Formica C., et al. (2024). Applications of artificial intelligence in the neuropsychological assessment of dementia: A systematic review. J. Pers. Med. 14:113 DOI:10.3390/jpm14010113 |
[133] | Kameyama M. and Umeda-Kameyama Y. (2024). Applications of artificial intelligence in dementia. Geriatr. Gerontol. Int. 24:25−30 DOI:10.1111/ggi.14709 |
[134] | Abramson J., Adler J., Dunger J., et al. (2024). Addendum: Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 636:E4 DOI:10.1038/s41586-024-08416-7 |
[135] | Xu H., Feng G., Shi L., et al. (2023). PCOSt: A non-invasive and cost-effective screening tool for polycystic ovary syndrome. The Innovation 4:100407 DOI:10.1016/j.xinn.2023.100407 |
[136] | Brandt A., Hazel S., Mckinnon R., et al. (2024). Educating Dora: Teaching a conversational agent to talk. Discourse Commun. 18:905−916 DOI:10.1177/17504813241267109 |
[137] | Karako K., Song P. P., Chen Y., et al. (2023). New possibilities for medical support systems utilizing artificial intelligence (AI) and data platforms. Biosci. Trends 17:186−189 DOI:10.5582/bst.2023.01138 |
[138] | Elendu C., Elendu T. C. and Elendu I. D. (2024). 5G-enabled smart hospitals: Innovations in patient care and facility management. Medicine 103 . DOI:10.1097/MD.0000000000038239 |
[139] | Amiri Z. (2024). Leveraging AI-enabled information systems for healthcare management. J. Comput. Inform. Syst. 1-28. DOI:10.1080/08874417.2024.2414216 |
[140] | Wang C. L., Li C. X. and Liang S. F. (2024). The lifestyle of new middle-aged and older adults in Taiwan described by wearable device: age and gender differences. Eur. J. Ageing 21:27 DOI:10.1007/s10433-024-00824-y |
[141] | AbbasiMoradi F., Mogavero M. P., Palomino M., et al. (2024). Age related disparities in sleep apnea diagnosis using a wearable device: Implications of 4% vs. 3% hypopnea scoring criteria. Sleep Med. 118 :88-92. DOI:10.1016/j.sleep.2024.03.046 |
[142] | Abbasi J. and Hswen Y. (2024). Tapping AI's strengths-from operating room safety to wearable device interpretation. JAMA 332:354−358 DOI:10.1001/jama.2024.0802 |
[143] | Brasier N., Wang J., Gao W., et al. (2024). Applied body-fluid analysis by wearable devices. Nature 636:57−68 DOI:10.1038/s41586-024-08249-4 |
[144] | Liang F., Su Z. D., Zhang Z. H., et al. (2024). A deep Q learning based method for optimized monitoring of activities of daily living using a smart watch and a companion robot. 2024 4th International Conference on Computer Communication and Artificial Intelligence, CCAI 2024 :503-508. DOI:10.1109/Ccai61966.2024.10603092 |
[145] | Capatu M., Lehner S., Schranz L., et al. (2023). Smart Companion 2: Acceptance of a vacuum cleaning robot in use for detection and alerting in case of ffalls. Z Gerontol. Geriatr. 56:S4−S5 |
[146] | Tan C. K., Lou V. W. Q., Cheng C. Y. M., et al. (2024). Improving the social well-being of single older adults using the LOVOT social robot: Qualitative phenomenological study. JMIR Hum. Factors 11:e56669 DOI:10.2196/56669 |
[147] | Schneider C., Nissen M., Kowatsch T., et al. (2024). Impact of digital assistive technologies on the quality of life for people with dementia: a scoping review. BMJ Open 14:e080545 DOI:10.1136/bmjopen-2023-080545 |
[148] | Chen Y. Y., Zhang H. and Zhong S. J. (2024). Design and implementation of smart home system based on IoT. Results Eng. 24:103410 DOI:10.1016/j.rineng.2024.103410 |
[149] | Christopoulos M., Spantideas S., Giannopoulos A., et al. (2024). Deep reinforcement learning for smart home temperature comfort in IoT-edge computing systems. Proceedings of the 1st International Workshop on Metaos for the Cloud-Edge-Iot Continuum, MECC 2024 :1-7. DOI:10.1145/3642975.3678961 |
[150] | Dui H., Wang X. Y., Dong X. H., et al. (2024). Reliability model and emergency maintenance strategies for smart home systems. Reliab. Eng. Syst. Safe. 251:110402 DOI:10.1016/j.ress.2024.110402 |
[151] | Lee K. Y., Yi J. E. and Lee S. H. (2024). Effects of community-based fall prevention interventions for older adults using information and communication technology: A systematic review and meta-analysis. Health Informatics J. 30 :14604582241259324. DOI:10.1177/14604582241259324 |
Dai J., Xu H., Chen T., et al. (2025). Artificial intelligence for medicine 2025: Navigating the endless frontier. The Innovation Medicine 3:100120. https://doi.org/10.59717/j.xinn-med.2025.100120 |
To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.
The foundation models in medicine.
AI methods of protein structure prediction.
Levels of Autonomy in Surgical Robotics (LASR) classification system.
Explainable artificial intelligence tailored for Brain-Computer Interface (BCI).
The technological challenges and solutions for AI development.
AI-assisted optimization of assisted reproductive technologies (ART).
AI for elderly healthcare.