Article Contents
REVIEW   Open Access     Cite

Physical reservoir computing for Edge AI applications

    Show all affliationsShow less
More Information
  • DownLoad: Full size image
    1. Advancements in physical reservoir computing (PRC) for low-latency, energy-efficient Edge AI.

      Highlighting power efficiency, and scalability benefits, among neuromorphic hardware platforms.

      Commented challenges like device variability and system stability in heterogeneous integration.

  • Reservoir computing has emerged as an efficient computational paradigm for processing temporal and dynamic data, driving advancements in neuromorphic electronics for physical implementation. This review covers the advancements in neuromorphic devices for implementing physical reservoir computing, emphasizing device-level innovations that address the challenges of low-latency, energy-efficient, multimodal physical reservoir computing implementations. The advantages, disadvantages, and core challenges of various spatial architectures for building physical reservoir computing systems are discussed. Realistic paths on algorithmic and physical implementations of the input and output layers of the system are investigated, and issues such as heterogeneous device integration, consistent readout, and system stability are analyzed. This topical review emphasizes the reconfigurability and scalability of fully analogized physical reservoir computing architectures and adaptive dynamic nodes. We discuss challenges and future directions of physical reservoir computing across algorithmic, device, architectural, and application domains. This review establishes a foundational framework and provides strategic guidance for implementing physical reservoir computing in neuromorphic edge artificial intelligent systems.
  • 加载中
  • [1] Xu Y., Liu X., Cao X., et al. (2021). Artificial intelligence: A powerful paradigm for scientific research. Innovation 2:100179. DOI:10.1016/j.xinn.2021.100179

    View in Article CrossRef Google Scholar

    [2] Liang X., Tang J., Zhong Y., et al. (2024). Physical reservoir computing with emerging electronics. Nat. Electron. 7:193−206. DOI:10.1038/s41928-024-01133-z

    View in Article CrossRef Google Scholar

    [3] Yan M., Huang C., Bienstman P., et al. (2024). Emerging opportunities and challenges for the future of reservoir computing. Nat. Commun. 15:2056. DOI:10.1038/s41467-024-45187-1

    View in Article CrossRef Google Scholar

    [4] Suarez L. E., Mihalik A., Milisav F., et al. (2024). Connectome-based reservoir computing with the conn2res toolbox. Nat. Commun. 15:656. DOI:10.1038/s41467-024-44900-4

    View in Article CrossRef Google Scholar

    [5] Wu X., Lin Z., Deng J., et al. (2024). Nonmasking-based reservoir computing with a single dynamic memristor for image recognition. Nonlinear Dynam. 112:6663−6678. DOI:10.1007/s11071-024-09338-9

    View in Article CrossRef Google Scholar

    [6] Zhang W., Gao B., Tang J., et al. (2020). Neuro-inspired computing chips. Nat. Electron. 3:371−382. DOI:10.1038/s41928-020-0435-7

    View in Article CrossRef Google Scholar

    [7] Guo D., Yang D., Zhang H., et al. (2025). Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv preprint arXiv:2501.12948. DOI:10.48550/arXiv.2501.12948.

    View in Article Google Scholar

    [8] Liu A., Feng B., Xue B., et al. (2024). Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437. DOI:10.48550/arXiv.2412.19437.

    View in Article Google Scholar

    [9] Liu A., Feng B., Wang B., et al. (2024). Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model. arXiv preprint arXiv:2405.04434. DOI:10.48550/arXiv.2405.04434.

    View in Article Google Scholar

    [10] Bai L., Chen S., Wang P., et al. (2025). DeepSeek or ChatGPT: Can brain-computer interfaces/brain-inspired computing achieve leapfrog development with large AI models. Brain-X 3:e70021. DOI:10.1002/brx2.70021

    View in Article CrossRef Google Scholar

    [11] Finocchio G., Incorvia J. A. C., Friedman J. S., et al. (2024). Roadmap for unconventional computing with nanotechnology. Nano Futures 8:012001. DOI:10.1088/2399-1984/ad299a

    View in Article CrossRef Google Scholar

    [12] Ghenzi N., Park T. W., Kim S. S., et al. (2024). Heterogeneous reservoir computing in second-order Ta2O5/HfO2 memristors. Nanoscale Horiz. 9:427−437. DOI:10.1039/d3nh00493g

    View in Article CrossRef Google Scholar

    [13] Guo J. and Wei D. (2024). Chaos prediction of motor based on the integrated method of convolutional neural network and multi-reservoir echo state network. Mod. Phys. Lett. B 1:2450431. DOI:10.1142/s0217984924504311

    View in Article CrossRef Google Scholar

    [14] Jang J., Lee J., Bae J.-H., et al. (2024). InGaZnO-based synaptic transistor with embedded ZnO charge-trapping layer for reservoir computing. Sensor. Actuat. a-Phys. 373:115405. DOI:10.1016/j.sna.2024.115405

    View in Article CrossRef Google Scholar

    [15] Meier D., Íñiguez-González J., Rodrigues D., et al. (2024). Editorial: Focus issue on topological solitons for neuromorphic systems. Neuromorph. Comput. Eng. 4:010202. DOI:10.1088/2634-4386/ad207c

    View in Article CrossRef Google Scholar

    [16] Farronato M., Mannocci P., Melegari M., et al. (2023). Reservoir Computing with Charge-Trap Memory Based on a MoS2 Channel for Neuromorphic Engineering. Adv. Mater. 35:e2205381. DOI:10.1002/adma.202205381

    View in Article CrossRef Google Scholar

    [17] Momeni A. and Fleury R. (2022). Electromagnetic wave-based extreme deep learning with nonlinear time-Floquet entanglement. Nat. Commun. 13:2651. DOI:10.1038/s41467-022-30297-5

    View in Article CrossRef Google Scholar

    [18] Zhang H. T., Park T. J., Islam A., et al. (2022). Reconfigurable perovskite nickelate electronics for artificial intelligence. Science 375:533−539. DOI:10.1126/science.abj7943

    View in Article CrossRef Google Scholar

    [19] Zhang Z., Zhao X., Zhang X., et al. (2022). In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat. Commun. 13:6590. DOI:10.1038/s41467-022-34230-8

    View in Article CrossRef Google Scholar

    [20] Cazettes F., Mazzucato L., Murakami M., et al. (2023). A reservoir of foraging decision variables in the mouse brain. Nat. Neurosci. 26:840−849. DOI:10.1038/s41593-023-01305-8

    View in Article CrossRef Google Scholar

    [21] Tan H. and van Dijken S. (2023). Dynamic machine vision with retinomorphic photomemristor-reservoir computing. Nat. Commun. 14. 2169,DOI:10.1038/s41467-023-37886-y.

    View in Article Google Scholar

    [22] Vidamour I. T., Swindells C., Venkat G., et al. (2023). Reconfigurable reservoir computing in a magnetic metamaterial. Commun. Phys. 6:230. DOI:10.1038/s42005-023-01352-4

    View in Article CrossRef Google Scholar

    [23] Lin Y., Chen X., Zhang Q., et al. (2024). Nano device fabrication for in-memory and in-sensor reservoir computing. Int. J. Extreme Manuf. 7:012002. DOI:10.1088/2631-7990/ad88bb

    View in Article CrossRef Google Scholar

    [24] Li H., Yu Z., Zhao Q., et al. (2022). Accelerating deep learning with high energy efficiency: From microchip to physical systems. Innovation 3:100252. DOI:10.1016/j.xinn.2022.100252

    View in Article CrossRef Google Scholar

    [25] Fan L. (2021). Mapping the Human Brain: What Is the Next Frontier. Innovation 2:100073. DOI:10.1016/j.xinn.2020.100073

    View in Article CrossRef Google Scholar

    [26] Enel P., Procyk E., Quilodran R., et al. (2016). Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex. PLoS Comput. Biol. 12:e1004967. DOI:10.1371/journal.pcbi.1004967

    View in Article CrossRef Google Scholar

    [27] Mante V., Sussillo D., Shenoy K. V., et al. (2013). Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503:78−84. DOI:10.1038/nature12742

    View in Article CrossRef Google Scholar

    [28] Wu F., Yu P. and Mao L. (2023). Neurotronics: Communicating with brain through chemically intelligent materials. Innov. Mater. 1:100007. DOI:10.59717/j.xinn-mater.2023.100007

    View in Article CrossRef Google Scholar

    [29] Wang D. L., Nie Y. K., Hu G. L., et al. (2024). Ultrafast silicon photonic reservoir computing engine delivering over 200 TOPS. Nat. Commun. 15. DOI:10.1038/s41467-024-55172-3.

    View in Article Google Scholar

    [30] Appeltant L., Soriano M. C., Van der Sande G., et al. (2011). Information processing using a single dynamical node as complex system. Nat. Commun. 2:468. DOI:10.1038/ncomms1476

    View in Article CrossRef Google Scholar

    [31] Du C., Cai F., Zidan M. A., et al. (2017). Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8:2204. DOI:10.1038/s41467-017-02337-y

    View in Article CrossRef Google Scholar

    [32] Sun L., Wang Z., Jiang J., et al. (2021). In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7:1455. DOI:10.1126/sciadv.abg1455

    View in Article CrossRef Google Scholar

    [33] Lao J., Yan M., Tian B., et al. (2022). Ultralow-Power Machine Vision with Self-Powered Sensor Reservoir. Adv. Sci. 9:e2106092. DOI:10.1002/advs.202106092

    View in Article CrossRef Google Scholar

    [34] Liang X., Zhong Y., Tang J., et al. (2022). Rotating neurons for all-analog implementation of cyclic reservoir computing. Nat. Commun. 13:1549. DOI:10.1038/s41467-022-29260-1

    View in Article CrossRef Google Scholar

    [35] Chen R., Yang H., Li R., et al. (2024). Thin-film transistor for temporal self-adaptive reservoir computing with closed-loop architecture. Sci. Adv. 10:eadl1299. DOI:10.1126/sciadv.adl1299

    View in Article CrossRef Google Scholar

    [36] Wang S., Chen X., Zhao C., et al. (2023). An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron. 6:281−291. DOI:10.1038/s41928-023-00950-y

    View in Article CrossRef Google Scholar

    [37] Liu K., Dang B., Zhang T., et al. (2022). Multilayer Reservoir Computing Based on Ferroelectric α-In2Se3 for Hierarchical Information Processing. Adv. Mater. 34:e2108826. DOI:10.1002/adma.202108826

    View in Article CrossRef Google Scholar

    [38] Lin N., Wang S. C., Li Y., et al. (2025). Resistive memory-based zero-shot liquid state machine for multimodal event data learning. Nat. Comput. Sci. 5:37−47. DOI:10.1038/s43588-024-00751-z

    View in Article CrossRef Google Scholar

    [39] Jaeger H. (2001). The "echo state" approach to analysing and training recurrent neural networks-with an erratum note. Bonn, Germany: German Nat. Res. Center for Inf. Technol. GMD Tech. Rep. 148:13.

    View in Article Google Scholar

    [40] Lin N., Chen J., Zhao R., et al. (2024). In-memory and in-sensor reservoir computing with memristive devices. APL Mach. Learn. 2:901. DOI:10.1063/5.0174863

    View in Article CrossRef Google Scholar

    [41] Dambre J., Verstraeten D., Schrauwen B., et al. (2012). Information processing capacity of dynamical systems. Sci. Rep. 2:514. DOI:10.1038/srep00514

    View in Article CrossRef Google Scholar

    [42] Maass W., Natschlager T. and Markram H. (2002). Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14:2531−2560. DOI:10.1162/089976602760407955

    View in Article CrossRef Google Scholar

    [43] Natschläger T., Maass W. and Markram H. (2002). The" liquid computer": A novel strategy for real-time computing on time series. Telematik 8:39−43.

    View in Article Google Scholar

    [44] Fernando C. and Sojakka S. (2003). Pattern Recognition in a Bucket. In W. Banzhaf, J. Ziegler, T. Christaller, et al., eds. Advances in Artificial Life. Springer Berlin Heidelberg.

    View in Article Google Scholar

    [45] Boyd S. and Chua L. (1985). Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE T. Circ. Syst. 32:1150−1161. DOI:10.1109/tcs.1985.1085649

    View in Article CrossRef Google Scholar

    [46] Atiya A. F. and Parlos A. G. (2000). New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11:697−709. DOI:10.1109/72.846741

    View in Article CrossRef Google Scholar

    [47] Bertschinger N. and Natschlager T. (2004). Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput. 16:1413−1436. DOI:10.1162/089976604323057443

    View in Article CrossRef Google Scholar

    [48] Larger L., Goedgebuer J.-P. and Udaltsov V. (2004). Ikeda-based nonlinear delayed dynamics for application to secure optical transmission systems using chaos. C.R. Phys. 5:669−681. DOI:10.1016/j.crhy.2004.05.003

    View in Article CrossRef Google Scholar

    [49] Verstraeten D., Schrauwen B., Stroobandt D., et al. (2005). Isolated word recognition with the Liquid State Machine: a case study. Inform. Process. Lett. 95:521−528. DOI:10.1016/j.ipl.2005.05.019

    View in Article CrossRef Google Scholar

    [50] Legenstein R. and Maass W. (2007). Edge of chaos and prediction of computational performance for neural circuit models. Neural Netw. 20:323−334. DOI:10.1016/j.neunet.2007.04.017

    View in Article CrossRef Google Scholar

    [51] Sacchi R., Ozturk M. C., Principe J. C., et al. (2007). Water inflow forecasting using the echo state network: a brazilian case study. 2007 International Joint Conference on Neural Networks. IEEE.

    View in Article Google Scholar

    [52] Vandoorne K., Dierckx W., Schrauwen B., et al. (2008). Toward optical signal processing using photonic reservoir computing. Opt. Express 16:11182−11192. DOI:10.1364/oe.16.011182

    View in Article CrossRef Google Scholar

    [53] Sillin H. O., Aguilera R., Shieh H. H., et al. (2013). A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 24:384004. DOI:10.1088/0957-4484/24/38/384004

    View in Article CrossRef Google Scholar

    [54] Triefenbach F., Jalalvand A., Demuynck K., et al. (2013). Acoustic Modeling With Hierarchical Reservoirs. IEEE T. Audio Speech 21:2439−2450. DOI:10.1109/tasl.2013.2280209

    View in Article CrossRef Google Scholar

    [55] Vandoorne K., Mechet P., Van Vaerenbergh T., et al. (2014). Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5:3541. 3541,DOI:10.1038/ncomms4541.

    View in Article Google Scholar

    [56] Appeltant L., Van der Sande G., Danckaert J., et al. (2014). Constructing optimized binary masks for reservoir computing with delay systems. Sci. Rep. 4:3629. DOI:10.1038/srep03629

    View in Article CrossRef Google Scholar

    [57] Alomar M. L., Soriano M. C., Escalona-Moran M., et al. (2015). Digital Implementation of a Single Dynamical Node Reservoir Computer. IEEE T. CIRCUITS-II 62:977−981. DOI:10.1109/tcsii.2015.2458071

    View in Article CrossRef Google Scholar

    [58] Kudithipudi D., Saleh Q., Merkel C., et al. (2015). Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing. Front. Neurosci. 9:502. DOI:10.3389/fnins.2015.00502

    View in Article CrossRef Google Scholar

    [59] Fujii K. and Nakajima K. (2017). Harnessing Disordered-Ensemble Quantum Dynamics for Machine Learning. Phys. Rev. Appl. 8:024030. DOI:10.1103/PhysRevApplied.8.024030

    View in Article CrossRef Google Scholar

    [60] Tran S. D. and Teuscher C. (2017). Memcapacitive reservoir computing. 2017 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). IEEE.

    View in Article Google Scholar

    [61] Dion G., Mejaouri S. and Sylvestre J. (2018). Reservoir computing with a single delay-coupled non-linear mechanical oscillator. J. Appl. Phys. 124:2132. DOI:10.1063/1.5038038

    View in Article CrossRef Google Scholar

    [62] Nakane R., Tanaka G. and Hirose A. (2018). Reservoir Computing With Spin Waves Excited in a Garnet Film. IEEE Access 6:4462−4469. DOI:10.1109/access.2018.2794584

    View in Article CrossRef Google Scholar

    [63] Tanaka H., Akai-Kasaya M., TermehYousefi A., et al. (2018). A molecular neuromorphic network device consisting of single-walled carbon nanotubes complexed with polyoxometalate. Nat. Commun. 9:2693. DOI:10.1038/s41467-018-04886-2

    View in Article CrossRef Google Scholar

    [64] Viero Y., Guérin D., Vladyka A., et al. (2018). Light-Stimulatable Molecules/Nanoparticles Networks for Switchable Logical Functions and Reservoir Computing. Adv. Funct. Mater. 28:1801506. DOI:10.1002/adfm.201801506

    View in Article CrossRef Google Scholar

    [65] Jiang W. C., Chen L. N., Zhou K. Y., et al. (2019). Physical reservoir computing using magnetic skyrmion memristor and spin torque nano-oscillator. Appl. Phys. Lett. 115:2403. DOI:10.1063/1.5115183

    View in Article CrossRef Google Scholar

    [66] Gauthier D. J., Bollt E., Griffith A., et al. (2021). Next generation reservoir computing. Nat. Commun. 12:5564. DOI:10.1038/s41467-021-25801-2

    View in Article CrossRef Google Scholar

    [67] Liang X., Luo Y., Pei Y., et al. (2022). Multimode transistors and neural networks based on ion-dynamic capacitance. Nat. Electron. 5:859−869. DOI:10.1038/s41928-022-00876-x

    View in Article CrossRef Google Scholar

    [68] S. S., NI. O. and CR. C. (2022). Reply to Sanjay B. Kulkarni, Pankaj M. Joshi, Marco Bandini, et al.'s Letter to the Editor re: Sanad Saad, Nadir I. Osman, Christopher R. Chapple. Female Urethra: Is Ventral the True Dorsal? Eur Urol 2020;78:e218-9. Eur. Urol. 81:e16-e17. DOI:10.1016/j.eururo.2021.09.032.

    View in Article Google Scholar

    [69] Zhong Y., Tang J., Li X., et al. (2022). A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing. Nat. Electron. 5:672−681. DOI:10.1038/s41928-022-00838-3

    View in Article CrossRef Google Scholar

    [70] Liu K., Zhang T., Dang B., et al. (2022). An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5:761−773. DOI:10.1038/s41928-022-00847-2

    View in Article CrossRef Google Scholar

    [71] Wang S., Li Y., Wang D., et al. (2023). Echo state graph neural networks with analogue random resistive memory arrays. Nat. Mach. Intell. 5:104−113. DOI:10.1038/s42256-023-00609-5

    View in Article CrossRef Google Scholar

    [72] Lee O., Wei T., Stenning K. D., et al. (2024). Task-adaptive physical reservoir computing. Nat. Mater. 23:79−87. DOI:10.1038/s41563-023-01698-8

    View in Article CrossRef Google Scholar

    [73] Liu D. Y., Tian X. Y., Bai J., et al. (2024). A wearable in-sensor computing platform based on stretchable organic electrochemical transistors. Nat. Electron. 5:1−10. DOI:10.1038/s41928-024-01250-9

    View in Article CrossRef Google Scholar

    [74] Kim J., Park E. C., Shin W., et al. (2024). Analog reservoir computing via ferroelectric mixed phase boundary transistors. Nat. Commun. 15:9147. DOI:10.1038/s41467-024-53321-2

    View in Article CrossRef Google Scholar

    [75] Yu J., Li Y., Sun W., et al. (2021). Energy efficient and robust reservoir computing system using ultrathin (3.5 nm) ferroelectric tunneling junctions for temporal data learning. 2021 Symposium on VLSI Technology. IEEE.

    View in Article Google Scholar

    [76] Jaeger H. and Haas H. (2004). Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304:78−80. DOI:10.1126/science.1091277

    View in Article CrossRef Google Scholar

    [77] Gallicchio C., Micheli A. and Pedrelli L. (2017). Deep reservoir computing: A critical experimental analysis. Neurocomputing 268:87−99. DOI:10.1016/j.neucom.2016.12.089

    View in Article CrossRef Google Scholar

    [78] Petre P. and Cruz-Albrecht J. (2016). Neuromorphic mixed-signal circuitry for Asynchronous Pulse Processing. 2016 IEEE International Conference on Rebooting Computing (ICRC).

    View in Article Google Scholar

    [79] Bai K. and Yi Y. (2018). DFR: An Energy-efficient Analog Delay Feedback Reservoir Computing System for Brain-inspired Computing. Acm J. Emerg. Tech. Com. 14:1−22. DOI:10.1145/3264659

    View in Article CrossRef Google Scholar

    [80] Elbedwehy A. N., El-Mohandes A. M., Elnakib A., et al. (2022). Fpga-based reservoir computing system for ecg denoising. Microprocess. Microsyst. 91. DOI:10.1016/j.micpro.2022.104549.

    View in Article Google Scholar

    [81] Shen Y., Harris N. C., Skirlo S., et al. (2017). Deep learning with coherent nanophotonic circuits. Nat. Photonics 11:441−446. DOI:10.1038/nphoton.2017.93

    View in Article CrossRef Google Scholar

    [82] Nakajima M., Tanaka K. and Hashimoto T. (2021). Scalable reservoir computing on coherent linear photonic processor. Commun. Phys. 4:20. DOI:10.1038/s42005-021-00519-1

    View in Article CrossRef Google Scholar

    [83] Duport F., Schneider B., Smerieri A., et al. (2012). All-optical reservoir computing. Opt. Express 20:22783−22795. DOI:10.1364/OE.20.022783

    View in Article CrossRef Google Scholar

    [84] Qin J., Zhao Q., Yin H., et al. (2017). Numerical Simulation and Experiment on Optical Packet Header Recognition Utilizing Reservoir Computing Based on Optoelectronic Feedback. IEEE Photonics J. 9:1-11. 7901311,DOI:10.1109/jphot.2017.2658028.

    View in Article Google Scholar

    [85] Ghosh S., Opala A., Matuszewski M., et al. (2019). Quantum reservoir processing. Npj Quantum Inf. 5:35. DOI:10.1038/s41534-019-0149-8

    View in Article CrossRef Google Scholar

    [86] Ghosh S., Paterek T. and Liew T. C. H. (2019). Quantum Neuromorphic Platform for Quantum State Preparation. Phys. Rev. Lett. 123:260404. DOI:10.1103/PhysRevLett.123.260404

    View in Article CrossRef Google Scholar

    [87] Zhu X., Wang Q. and Lu W. D. (2020). Memristor networks for real-time neural activity analysis. Nat. Commun. 11:2439. DOI:10.1038/s41467-020-16261-1

    View in Article CrossRef Google Scholar

    [88] Jang Y. H., Kim W., Kim J., et al. (2021). Time-varying data processing with nonvolatile memristor-based temporal kernel. Nat. Commun. 12:5727. DOI:10.1038/s41467-021-25925-5

    View in Article CrossRef Google Scholar

    [89] Zhong Y., Tang J., Li X., et al. (2021). Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat. Commun. 12:408. DOI:10.1038/s41467-020-20692-1

    View in Article CrossRef Google Scholar

    [90] Chen Z., Li W., Fan Z., et al. (2023). All-ferroelectric implementation of reservoir computing. Nat. Commun. 14:3585. DOI:10.1038/s41467-023-39371-y

    View in Article CrossRef Google Scholar

    [91] Duong N. T., Chien Y.-C., Xiang H., et al. (2023). Dynamic Ferroelectric Transistor‐Based Reservoir Computing for Spatiotemporal Information Processing. Adv. Intell. Syst. 5:2300009. DOI:10.1002/aisy.202300009

    View in Article CrossRef Google Scholar

    [92] Tannirkulam Chandrasekaran S., Prashant Bhanushali S., Banerjee I., et al. (2021). Toward Real-Time, At-Home Patient Health Monitoring Using Reservoir Computing CMOS IC. IEEE J. Em. Sel. Top. C. 11:829−839. DOI:10.1109/jetcas.2021.3128587

    View in Article CrossRef Google Scholar

    [93] Chen X., Weng T., Li C., et al. (2022). Synchronization of reservoir computing models via a nonlinear controller. Physica A 607:128205. DOI:10.1016/j.physa.2022.128205

    View in Article CrossRef Google Scholar

    [94] Soriano M. C., Ortin S., Brunner D., et al. (2013). Optoelectronic reservoir computing: tackling noise-induced performance degradation. Opt. Express 21:12−20. DOI:10.1364/OE.21.000012

    View in Article CrossRef Google Scholar

    [95] Zhang H., Feng X., Li B., et al. (2014). Integrated photonic reservoir computing based on hierarchical time-multiplexing structure. Opt. Express 22:31356−31370. DOI:10.1364/OE.22.031356

    View in Article CrossRef Google Scholar

    [96] Du W., Li C., Huang Y., et al. (2022). An Optoelectronic Reservoir Computing for Temporal Information Processing. IEEE Electron Device Lett. 43:406−409. DOI:10.1109/led.2022.3142257

    View in Article CrossRef Google Scholar

    [97] Nakajima M., Inoue K., Tanaka K., et al. (2022). Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware. Nat. Commun. 13:7847. DOI:10.1038/s41467-022-35216-2

    View in Article CrossRef Google Scholar

    [98] Bhovad P. and Li S. (2021). Physical reservoir computing with origami and its application to robotic crawling. Sci. Rep. 11:13002. DOI:10.1038/s41598-021-92257-1

    View in Article CrossRef Google Scholar

    [99] Chen J., Nurdin H. I. and Yamamoto N. (2020). Temporal Information Processing on Noisy Quantum Computers. Phys. Rev. Appl. 14:024065. DOI:10.1103/PhysRevApplied.14.024065

    View in Article CrossRef Google Scholar

    [100] Ghosh S., Nakajima K., Krisnanda T., et al. (2021). Quantum Neuromorphic Computing with Reservoir Computing Networks. Adv. Quantum. Technol. 4:2100053. DOI:10.1002/qute.202100053

    View in Article CrossRef Google Scholar

    [101] Tran Q. H. and Nakajima K. (2021). Learning Temporal Quantum Tomography. Phys. Rev. Lett. 127:260401. DOI:10.1103/PhysRevLett.127.260401

    View in Article CrossRef Google Scholar

    [102] Kubota T., Suzuki Y., Kobayashi S., et al. (2023). Temporal information processing induced by quantum noise. Phys. Rev. Res. 5:023057. DOI:10.1103/PhysRevResearch.5.023057

    View in Article CrossRef Google Scholar

    [103] Larger L., Baylón-Fuentes A., Martinenghi R., et al. (2017). High-Speed Photonic Reservoir Computing Using a Time-Delay-Based Architecture: Million Words per Second Classification. Phys. Rev. X 7:011015. DOI:10.1103/PhysRevX.7.011015

    View in Article CrossRef Google Scholar

    [104] Rafayelyan M., Dong J., Tan Y., et al. (2020). Large-Scale Optical Reservoir Computing for Spatiotemporal Chaotic Systems Prediction. Phys. Rev. X 10:041037. DOI:10.1103/PhysRevX.10.041037

    View in Article CrossRef Google Scholar

    [105] Larger L., Soriano M. C., Brunner D., et al. (2012). Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Opt. Express 20:3241−3249. DOI:10.1364/OE.20.003241

    View in Article CrossRef Google Scholar

    [106] Lukoševičius M. and Jaeger H. (2009). Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3:127−149. DOI:10.1016/j.cosrev.2009.03.005

    View in Article CrossRef Google Scholar

    [107] Kendall J. D. and Kumar S. (2020). The building blocks of a brain-inspired computer. Appl. Phys. Rev. 7:1305. DOI:10.1063/1.5129306

    View in Article CrossRef Google Scholar

    [108] Mujal P., Martínez‐Peña R., Nokkala J., et al. (2021). Opportunities in Quantum Reservoir Computing and Extreme Learning Machines. Adv. Quantum. Technol. 4:2100027. DOI:10.1002/qute.202100027

    View in Article CrossRef Google Scholar

    [109] Cao J., Zhang X., Cheng H., et al. (2022). Emerging dynamic memristors for neuromorphic reservoir computing. Nanoscale 14:289−298. DOI:10.1039/d1nr06680c

    View in Article CrossRef Google Scholar

    [110] Kumar S., Wang X., Strachan J. P., et al. (2022). Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 7:575−591. DOI:10.1038/s41578-022-00434-z

    View in Article CrossRef Google Scholar

    [111] Tanaka H., Azhari S., Usami Y., et al. (2022). In-materio computing in random networks of carbon nanotubes complexed with chemically dynamic molecules: a review. Neuromorph. Comput. Eng. 2:022002. DOI:10.1088/2634-4386/ac676a

    View in Article CrossRef Google Scholar

    [112] Deng X., Kang N. and Zhang Z. (2023). Carbon-based cryoelectronics: graphene and carbon nanotube. Chip 2:100064. DOI:10.1016/j.chip.2023.100064

    View in Article CrossRef Google Scholar

    [113] Qi Z., Mi L., Qian H., et al. (2023). Physical Reservoir Computing Based on Nanoscale Materials and Devices. Adv. Funct. Mater. 33:2306149. DOI:10.1002/adfm.202306149

    View in Article CrossRef Google Scholar

    [114] Chakraborty N. N., Ameli S. O., Das H., et al. (2024). Hardware software co-design for leveraging STDP in a memristive neuroprocessor. Neuromorph. Comput. Eng. 4:024010. DOI:10.1088/2634-4386/ad462b

    View in Article CrossRef Google Scholar

    [115] Everschor-Sitte K., Majumdar A., Wolk K., et al. (2024). Topological magnetic and ferroelectric systems for reservoir computing. Nat. Rev. Phys. 6:455−462. DOI:10.1038/s42254-024-00729-w

    View in Article CrossRef Google Scholar

    [116] Nako E., Toprasertpong K., Nakane R., et al. (2022). Experimental demonstration of novel scheme of HZO/Si FeFET reservoir computing with parallel data processing for speech recognition. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits).

    View in Article Google Scholar

    [117] Tang M., Zhan X., Wu S., et al. (2022). A Compact Fully Ferroelectric-FETs Reservoir Computing Network With Sub-100 ns Operating Speed. IEEE Electron Device Lett. 43:1555−1558. DOI:10.1109/led.2022.3188496

    View in Article CrossRef Google Scholar

    [118] Tian B., Liu L., Yan M., et al. (2018). A Robust Artificial Synapse Based on Organic Ferroelectric Polymer. Adv. Electron. Mater. 5:1800600. DOI:10.1002/aelm.201800600

    View in Article CrossRef Google Scholar

    [119] Toprasertpong K., Nako E., Wang Z., et al. (2022). Reservoir computing on a silicon platform with a ferroelectric field-effect transistor. Communications Engineering 1:21. DOI:10.1038/s44172-022-00021-8

    View in Article CrossRef Google Scholar

    [120] Pei M., Zhu Y., Liu S., et al. (2023). Power-Efficient Multisensory Reservoir Computing Based on Zr-Doped HfO2 Memcapacitive Synapse Arrays. Adv. Mater. 35. 2305609,DOI:10.1002/adma.202305609.

    View in Article Google Scholar

    [121] Cao Y., Zhang Z., Qin B. W., et al. (2024). Physical Reservoir Computing Using van der Waals Ferroelectrics for Acoustic Keyword Spotting. ACS Nano 18:23265−23276. DOI:10.1021/acsnano.4c06144

    View in Article CrossRef Google Scholar

    [122] Lee J., Lee S., Kim J., et al. (2024). Temporal data learning of ferroelectric HfAlOx capacitors for reservoir computing system. J. Alloys Compd. 990:174371. DOI:10.1016/j.jallcom.2024.174371

    View in Article CrossRef Google Scholar

    [123] Torrejon J., Riou M., Araujo F. A., et al. (2017). Neuromorphic computing with nanoscale spintronic oscillators. Nature 547:428−431. DOI:10.1038/nature23011

    View in Article CrossRef Google Scholar

    [124] Sun W., Zhang W., Yu J., et al. (2022). 3d reservoir computing with high area efficiency (5.12 tops/mm2) implemented by 3d dynamic memristor array for temporal signal processing. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). IEEE.

    View in Article Google Scholar

    [125] Kanao T., Suto H., Mizushima K., et al. (2019). Reservoir Computing on Spin-Torque Oscillator Array. Phys. Rev. Appl. 12:4052. DOI:10.1103/PhysRevApplied.12.024052

    View in Article CrossRef Google Scholar

    [126] Marković D. (2019). Reservoir computing with the frequency, phase and amplitude of spin-torque nano-oscillators. Appl. Phys. Lett. 114:2409. DOI:10.1063/1.5079305

    View in Article CrossRef Google Scholar

    [127] Nakajima K., Fujii K., Negoro M., et al. (2019). Boosting Computational Power through Spatial Multiplexing in Quantum Reservoir Computing. Phys. Rev. Appl. 11:4021. DOI:10.1103/PhysRevApplied.11.034021

    View in Article CrossRef Google Scholar

    [128] Tsunegi S., Taniguchi T., Nakajima K., et al. (2019). Physical reservoir computing based on spin torque oscillator with forced synchronization. Appl. Phys. Lett. 114:4109. DOI:10.1063/1.5081797

    View in Article CrossRef Google Scholar

    [129] Akashi N., Yamaguchi T., Tsunegi S., et al. (2020). Input-driven bifurcations and information processing capacity in spintronics reservoirs. Phys. Rev. Res. 2:3303. DOI:10.1103/PhysRevResearch.2.043303

    View in Article CrossRef Google Scholar

    [130] Martinez-Pena R., Giorgi G. L., Nokkala J., et al. (2021). Dynamical Phase Transitions in Quantum Reservoir Computing. Phys. Rev. Lett. 127:100502. DOI:10.1103/PhysRevLett.127.100502

    View in Article CrossRef Google Scholar

    [131] Nakane R., Hirose A. and Tanaka G. (2021). Spin waves propagating through a stripe magnetic domain structure and their applications to reservoir computing. Phys. Rev. Res. 3:3243. DOI:10.1103/PhysRevResearch.3.033243

    View in Article CrossRef Google Scholar

    [132] Watt S., Kostylev M., Ustinov A. B., et al. (2021). Implementing a Magnonic Reservoir Computer Model Based on Time-Delay Multiplexing. Phys. Rev. Appl. 15:4060. DOI:10.1103/PhysRevApplied.15.064060

    View in Article CrossRef Google Scholar

    [133] Akashi N., Kuniyoshi Y., Tsunegi S., et al. (2022). A Coupled Spintronics Neuromorphic Approach for High-Performance Reservoir Computing. Adv. Intell. Syst. 4:389−390. DOI:10.1002/aisy.202200123

    View in Article CrossRef Google Scholar

    [134] Gartside J. C., Stenning K. D., Vanstone A., et al. (2022). Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting. Nat. Nanotechnol. 17:460−469. DOI:10.1038/s41565-022-01091-7

    View in Article CrossRef Google Scholar

    [135] Yokouchi T., Sugimoto S., Rana B., et al. (2022). Pattern recognition with neuromorphic computing using magnetic field-induced dynamics of skyrmions. Sci. Adv. 8:eabq5652. DOI:10.1126/sciadv.abq5652

    View in Article CrossRef Google Scholar

    [136] Nakane R., Hirose A. and Tanaka G. (2023). Performance Enhancement of a Spin-Wave-Based Reservoir Computing System Utilizing Different Physical Conditions. Phys. Rev. Appl. 19:034047. DOI:10.1103/PhysRevApplied.19.034047

    View in Article CrossRef Google Scholar

    [137] Sun Y., Lin T., Lei N., et al. (2023). Experimental demonstration of a skyrmion-enhanced strain-mediated physical reservoir computing system. Nat. Commun. 14:3434. DOI:10.1038/s41467-023-39207-9

    View in Article CrossRef Google Scholar

    [138] Diaz-Alvarez A., Higuchi R., Sanz-Leon P., et al. (2019). Emergent dynamics of neuromorphic nanowire networks. Sci. Rep. 9:14920. DOI:10.1038/s41598-019-51330-6

    View in Article CrossRef Google Scholar

    [139] Fu K., Zhu R., Loeffler A., et al. (2020). Reservoir computing with neuromemristive nanowire networks. 2020 International Joint Conference on Neural Networks (IJCNN). IEEE.

    View in Article Google Scholar

    [140] Hochstetter J., Zhu R., Loeffler A., et al. (2021). Avalanches and edge-of-chaos learning in neuromorphic nanowire networks. Nat. Commun. 12:4008. DOI:10.1038/s41467-021-24260-z

    View in Article CrossRef Google Scholar

    [141] Lilak S., Woods W., Scharnhorst K., et al. (2021). Spoken Digit Classification by In-Materio Reservoir Computing With Neuromorphic Atomic Switch Networks. Front. Nanotechnol. 3:675792. DOI:10.3389/fnano.2021.675792

    View in Article CrossRef Google Scholar

    [142] Zhu R., Hochstetter J., Loeffler A., et al. (2021). Information dynamics in neuromorphic nanowire networks. Sci. Rep. 11:13047. DOI:10.1038/s41598-021-92170-7

    View in Article CrossRef Google Scholar

    [143] Daniels R. K., Mallinson J. B., Heywood Z. E., et al. (2022). Reservoir computing with 3D nanowire networks. Neural Netw. 154:122−130. DOI:10.1016/j.neunet.2022.07.001

    View in Article CrossRef Google Scholar

    [144] Milano G., Montano K. and Ricciardi C. (2023). In materia implementation strategies of physical reservoir computing with memristive nanonetworks. J. Phys. D: Appl. Phys. 56:084005. DOI:10.1088/1361-6463/acb7ff

    View in Article CrossRef Google Scholar

    [145] Dale M., Miller J. F., Stepney S., et al. (2019). A substrate-independent framework to characterize reservoir computers. Proc. Math. Phys. Eng. Sci. 475:20180723. DOI:10.1098/rspa.2018.0723

    View in Article CrossRef Google Scholar

    [146] Cucchi M., Gruener C., Petrauskas L., et al. (2021). Reservoir computing with biocompatible organic electrochemical networks for brain-inspired biosignal classification. Sci. Adv. 7:eabh0693. DOI:10.1126/sciadv.abh0693

    View in Article CrossRef Google Scholar

    [147] Kan S., Nakajima K., Asai T., et al. (2022). Physical Implementation of Reservoir Computing through Electrochemical Reaction. Adv. Sci. 9:e2104076. DOI:10.1002/advs.202104076

    View in Article CrossRef Google Scholar

    [148] Usami Y., van de Ven B., Mathew D. G., et al. (2021). In-Materio Reservoir Computing in a Sulfonated Polyaniline Network. Adv. Mater. 33:e2102688. DOI:10.1002/adma.202102688

    View in Article CrossRef Google Scholar

    [149] Koh S. G., Shima H., Naitoh Y., et al. (2022). Reservoir computing with dielectric relaxation at an electrode-ionic liquid interface. Sci. Rep. 12:6958. DOI:10.1038/s41598-022-10152-9

    View in Article CrossRef Google Scholar

    [150] Nishioka D., Tsuchiya T., Namiki W., et al. (2022). Edge-of-chaos learning achieved by ion-electron-coupled dynamics in an ion-gating reservoir. Sci. Adv. 8:eade1156. DOI:10.1126/sciadv.ade1156

    View in Article CrossRef Google Scholar

    [151] Baek E., Song S., Baek C.-K., et al. (2024). Neuromorphic dendritic network computation with silent synapses for visual motion perception. Nat. Electron. 7:454−465. DOI:10.1038/s41928-024-01171-7

    View in Article CrossRef Google Scholar

    [152] Fang R., Li X., Ren K., et al. (2024). Improved dynamic characteristics of oxide electrolyte-gated transistor for time-delayed reservoir computing. Appl. Phys. Lett. 124:053505. DOI:10.1063/5.0185402

    View in Article CrossRef Google Scholar

    [153] Fang R., Wang S., Zhang W., et al. (2024). Oxide-Based Electrolyte-Gated Transistors with Stable and Tunable Relaxation Responses for Deep Time-Delayed Reservoir Computing. Adv. Electron. Mater. 10:2300652. DOI:10.1002/aelm.202300652

    View in Article CrossRef Google Scholar

    [154] Jiang C., Xu H., Yang L., et al. (2024). Neuromorphic antennal sensory system. Nat. Commun. 15:2109. DOI:10.1038/s41467-024-46393-7

    View in Article CrossRef Google Scholar

    [155] Jiang Y., Shi S., Wang S., et al. (2024). In-sensor reservoir computing for gas pattern recognition using Pt-AlGaN/GaN HEMTs. Device 3:100550. DOI:10.1016/j.device.2024.100550

    View in Article CrossRef Google Scholar

    [156] Li P., Zhang M., Zhou Q., et al. (2024). Reconfigurable optoelectronic transistors for multimodal recognition. Nat. Commun. 15:3257. DOI:10.1038/s41467-024-47580-2

    View in Article CrossRef Google Scholar

    [157] Liu K., Li J., Li F., et al. (2023). A multi-terminal ion-controlled transistor with multifunctionality and wide temporal dynamics for reservoir computing. Nano Res. 17:4444−4453. DOI:10.1007/s12274-023-6343-1

    View in Article CrossRef Google Scholar

    [158] Zha J., Xia Y., Shi S., et al. (2024). A 2D Heterostructure-Based Multifunctional Floating Gate Memory Device for Multimodal Reservoir Computing. Adv. Mater. 36:e2308502. DOI:10.1002/adma.202308502

    View in Article CrossRef Google Scholar

    [159] Liu R., He Y., Zhu X., et al. (2024). Hardware-Feasible and Efficient N-Type Organic Neuromorphic Signal Recognition via Reservoir Computing. Adv. Mater. 10:e2409258. DOI:10.1002/adma.202409258

    View in Article CrossRef Google Scholar

    [160] Merkel C., Saleh Q., Donahue C., et al. (2014). Memristive Reservoir Computing Architecture for Epileptic Seizure Detection. Procedia Comput. Sci. 41:249−254. DOI:10.1016/j.procs.2014.11.110

    View in Article CrossRef Google Scholar

    [161] Midya R., Wang Z., Asapu S., et al. (2019). Reservoir Computing Using Diffusive Memristors. Adv. Intell. Syst. 1:1900084. DOI:10.1002/aisy.201900084

    View in Article CrossRef Google Scholar

    [162] Tanaka G., Yamane T., Heroux J. B., et al. (2019). Recent advances in physical reservoir computing: A review. Neural Netw. 115:100−123. DOI:10.1016/j.neunet.2019.03.005

    View in Article CrossRef Google Scholar

    [163] Mao J.-Y., Zheng Z., Xiong Z.-Y., et al. (2020). Lead-free monocrystalline perovskite resistive switching device for temporal information processing. Nano Energy 71:104616. DOI:10.1016/j.nanoen.2020.104616

    View in Article CrossRef Google Scholar

    [164] Wang T., Huang H. M., Wang X. X., et al. (2021). An artificial olfactory inference system based on memristive devices. InfoMat 3:804−813. DOI:10.1002/inf2.12196

    View in Article CrossRef Google Scholar

    [165] Yang J., Cho H., Ryu H., et al. (2021). Tunable Synaptic Characteristics of a Ti/TiO(2)/Si Memory Device for Reservoir Computing. ACS Appl. Mater. Inter. 13:33244−33252. DOI:10.1021/acsami.1c06618

    View in Article CrossRef Google Scholar

    [166] Jaafar A. H., Shao L., Dai P., et al. (2022). 3D-structured mesoporous silica memristors for neuromorphic switching and reservoir computing. Nanoscale 14:17170−17181. DOI:10.1039/d2nr05012a

    View in Article CrossRef Google Scholar

    [167] Kim D., Shin J. and Kim S. (2022). Implementation of reservoir computing using volatile WO -based memristor. Appl. Surf. Sci. 599:153876. DOI:10.1016/j.apsusc.2022.153876

    View in Article CrossRef Google Scholar

    [168] Lyapunov N., Zheng X. D., Yang K., et al. (2022). A Bifunctional Memristor Enables Multiple Neuromorphic Computing Applications. Adv. Electron. Mater. 8:2101235. DOI:10.1002/aelm.202101235

    View in Article CrossRef Google Scholar

    [169] Tanaka G. and Nakane R. (2022). Simulation platform for pattern recognition based on reservoir computing with memristor networks. Sci. Rep. 12:9868. DOI:10.1038/s41598-022-13687-z

    View in Article CrossRef Google Scholar

    [170] Armendarez N. X., Mohamed A. S., Dhungel A., et al. (2024). Brain-Inspired Reservoir Computing Using Memristors with Tunable Dynamics and Short-Term Plasticity. ACS Appl. Mater. Inter. 16:6176−6188. DOI:10.1021/acsami.3c16003

    View in Article CrossRef Google Scholar

    [171] Baccetti V., Zhu R., Kuncic Z., et al. (2024). Ergodicity, lack thereof, and the performance of reservoir computing with memristive networks. Nano Express 5:015021. DOI:10.1088/2632-959X/ad2999

    View in Article CrossRef Google Scholar

    [172] Ju D. and Kim S. (2024). Temporal multibit operation of dynamic memristor for reservoir computing. Results Phys. 61:107796. DOI:10.1016/j.rinp.2024.107796

    View in Article CrossRef Google Scholar

    [173] Lee D. K., Noh G., Oh S., et al. (2024). Crystallinity-controlled volatility tuning of ZrO2 memristor for physical reservoir computing. InfoMat 4:e12635. DOI:10.1002/inf2.12635

    View in Article CrossRef Google Scholar

    [174] Lee Y., Huang Y., Chang Y. F., et al. (2024). Programmable Retention Characteristics in MoS2-Based Atomristors for Neuromorphic and Reservoir Computing Systems. ACS Nano 18:14327−14338. DOI:10.1021/acsnano.4c00333

    View in Article CrossRef Google Scholar

    [175] Dang B., Zhang T., Wu X., et al. (2024). Reconfigurable in-sensor processing based on a multi-phototransistor-one-memristor array. Nat. Electron. 7:991−1003. DOI:10.1038/s41928-024-01280-3

    View in Article CrossRef Google Scholar

    [176] Liang X., Zhong Y., Li X., et al. (2022). A Physical Reservoir Computing Model Based on Volatile Memristor for Temporal Signal Processing. 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE.

    View in Article Google Scholar

    [177] John R. A., Demirag Y., Shynkarenko Y., et al. (2022). Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 13:2074. DOI:10.1038/s41467-022-29727-1

    View in Article CrossRef Google Scholar

    [178] Jiang N., Tang J., Zhang W., et al. (2023). Bioinspired In-Sensor Reservoir Computing for Self-Adaptive Visual Recognition with Two-Dimensional Dual-Mode Phototransistors. Adv. Opt. Mater. 11:2300271. DOI:10.1002/adom.202300271

    View in Article CrossRef Google Scholar

    [179] Verstraeten D., Schrauwen B., D'Haene M., et al. (2007). An experimental unification of reservoir computing methods. Neural Netw. 20:391−403. DOI:10.1016/j.neunet.2007.04.003

    View in Article CrossRef Google Scholar

    [180] Moon J., Ma W., Shin J. H., et al. (2019). Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2:480−487. DOI:10.1038/s41928-019-0313-3

    View in Article CrossRef Google Scholar

    [181] Wu G. J., Tian B. B., Liu L., et al. (2020). Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 3:43−50. DOI:10.1038/s41928-019-0350-y

    View in Article CrossRef Google Scholar

    [182] Feng G., Zhu Q., Liu X., et al. (2024). A ferroelectric fin diode for robust non-volatile memory. Nat. Commun. 15. 513,DOI:10.1038/s41467-024-44759-5.

    View in Article Google Scholar

    [183] Tian B., Xie Z., Chen L., et al. (2023). Ultralow-power in-memory computing based on ferroelectric memcapacitor network. Exploration (Beijing) 3. 20220126,DOI:10.1002/EXP.20220126.

    View in Article Google Scholar

    [184] Cui H., Xiao Y., Yang Y., et al. (2025). A bioinspired in-materia analog photoelectronic reservoir computing for human action processing. Nat. Commun. 16. DOI:10.1038/s41467-025-56899-3.

    View in Article Google Scholar

    [185] Huang H., Liang X., Wang Y., et al. (2024). Fully integrated multi-mode optoelectronic memristor array for diversified in-sensor computing. Nat. Nanotechnol. 19:1−11. DOI:10.1038/s41565-024-01794-z

    View in Article CrossRef Google Scholar

    [186] Milano G., Pedretti G., Montano K., et al. (2022). In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater. 21:195−202. DOI:10.1038/s41563-021-01099-9

    View in Article CrossRef Google Scholar

    [187] Gao C., Liu D., Xu C., et al. (2024). Toward grouped-reservoir computing: organic neuromorphic vertical transistor with distributed reservoir states for efficient recognition and prediction. Nat. Commun. 15:740. DOI:10.1038/s41467-024-44942-8

    View in Article CrossRef Google Scholar

    [188] Lian M., Gao C., Lin Z., et al. (2024). Towards mixed physical node reservoir computing: light-emitting synaptic reservoir system with dual photoelectric output. Light Sci. Appl. 13:179. DOI:10.1038/s41377-024-01516-z

    View in Article CrossRef Google Scholar

    [189] Leng Y. B., Lv Z., Huang S., et al. (2024). A Near-Infrared Retinomorphic Device with High Dimensionality Reservoir Expression. Adv. Mater. 36:e2411225. DOI:10.1002/adma.202411225

    View in Article CrossRef Google Scholar

    [190] Moon J., Wu Y. T. and Lu W. D. (2021). Hierarchical architectures in reservoir computing systems. Neuromorph. Comput. Eng. 1:014006. DOI:10.1088/2634-4386/ac1b75

    View in Article CrossRef Google Scholar

    [191] Shen Y.-W., Li R.-Q., Liu G.-T., et al. (2023). Deep photonic reservoir computing recurrent network. Optica 10:1745−1751. DOI:10.1364/optica.506635

    View in Article CrossRef Google Scholar

    [192] Paquot Y., Duport F., Smerieri A., et al. (2012). Optoelectronic reservoir computing. Sci. Rep. 2:287. DOI:10.1038/srep00287

    View in Article CrossRef Google Scholar

    [193] Danesh W., Zhao C. Y., Wysocki B. T., et al. (2015). Channel Estimation in Wireless OFDM Systems Using Reservoir Computing. 2015 IEEE Symposium on Computational Intelligence for Security and Defense Applications (Cisda):127-131. DOI:10.1109/CISDA.2015.7208638.

    View in Article Google Scholar

    [194] Da Ros F., Ranzini S. M., Bulow H., et al. (2020). Reservoir-Computing Based Equalization With Optical Pre-Processing for Short-Reach Optical Transmission. IEEE Journal of Selected Topics in Quantum Electronics 26:1−12. DOI:10.1109/jstqe.2020.2975607

    View in Article CrossRef Google Scholar

    [195] Jere S., Safavinejad R., Zheng L., et al. (2023). Channel Equalization Through Reservoir Computing: A Theoretical Perspective. IEEE Wirel. Commun. Le. 12:774−778. DOI:10.1109/lwc.2023.3234239

    View in Article CrossRef Google Scholar

    [196] Antonelo E., Schrauwen B. and Stroobandt D. (2008). Mobile robot control in the road sign problem using reservoir computing networks. IEEE Int. Conf. Robot. Autom. IEEE.

    View in Article Google Scholar

    [197] Sabelhaus A. P., Bruce J., Caluwaerts K., et al. (2015). System Design and Locomotion of SUPERball, an Untethered Tensegrity Robot. IEEE Int. Conf. Robot.:2867-2873. DOI:10.1109/IROS.2013.6696539.

    View in Article Google Scholar

    [198] Zhao Q., Nakajima K., Sumioka H., et al. (2013). Spine dynamics as a computational resource in spine-driven quadruped locomotion. IEEE Int. C. Int. Robot.:1445-1451. DOI:10.1109/ICRA.2015.7139590.

    View in Article Google Scholar

    [199] Escalona-Moran M. A., Soriano M. C., Fischer I., et al. (2015). Electrocardiogram classification using reservoir computing with logistic regression. IEEE J. Biomed. Health 19:892−898. DOI:10.1109/JBHI.2014.2332001

    View in Article CrossRef Google Scholar

    [200] Yadav R., Zhang W. Z., Kaiwartya O., et al. (2020). Energy-Latency Tradeoff for Dynamic Computation Offloading in Vehicular Fog Computing. IEEE T. Veh. Technol. 69:14198−14211. DOI:10.1109/Tvt.2020.3040596

    View in Article CrossRef Google Scholar

    [201] Yadav R., Zhang W. Z., Elgendy I. A., et al. (2021). Smart Healthcare: RL-Based Task Offloading Scheme for Edge-Enable Sensor Networks. IEEE Sens. J. 21:24910−24918. DOI:10.1109/Jsen.2021.3096245

    View in Article CrossRef Google Scholar

    [202] Ling C., Zhang W. Z., He H., et al. (2024). QoS and Fairness Oriented Dynamic Computation Offloading in the Internet of Vehicles Based on Estimate Time of Arrival. IEEE T. Veh. Technol. 73:10554−10571. DOI:10.1109/Tvt.2024.3364669

    View in Article CrossRef Google Scholar

    [203] Sun X., Wang D. S., Zhang W. Z., et al. (2024). Minimizing Service Latency Through Image-Based Microservice Caching and Randomized Request Routing in Mobile Edge Computing. IEEE Internet Things 11:30054−30068. DOI:10.1109/Jiot.2024.3410546

    View in Article CrossRef Google Scholar

  • Cite this article:

    Liu J., Feng G., Li W., et al. (2025). Physical reservoir computing for Edge AI applications. The Innovation Materials 3:100127. https://doi.org/10.59717/j.xinn-mater.2025.100127
    Liu J., Feng G., Li W., et al. (2025). Physical reservoir computing for Edge AI applications. The Innovation Materials 3:100127. https://doi.org/10.59717/j.xinn-mater.2025.100127

Welcome!

To request copyright permission to republish or share portions of our works, please visit Copyright Clearance Center's (CCC) Marketplace website at marketplace.copyright.com.

Figures(10)     Tables(2)

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(10383) PDF downloads(12811)

Relative Articles

Cited by

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint